Tabelle Standardnormalverteilung

Aus Wikibooks

Dies ist ein Ergänzungsartikel zum Artikel Normalverteilung in der Wikipedia. Die im Artikel oft erwähnte Tabelle der 0-1-Normalverteilung ist hier angeführt.


Da sich das Integral der Standardnormalverteilung

nicht auf eine elementare Stammfunktion zurückführen lässt, wird für die Berechnung meist auf Tabellen zurückgegriffen. Diese gelten aber nicht für beliebige und Werte, sondern nur für die standardisierte Form der Gauß'schen Verteilung, bei der jeweils und ist (man spricht auch von einer 0-1-Normalverteilung, Standardnormalverteilung oder normierten Normalverteilung). Trotzdem ist die Tabelle auch für beliebige --Normalverteilung nützlich, da sich diese auf sehr einfache Weise in eine 0-1 Verteilung überführen lassen. Die folgende Tabelle der Standardnormalverteilung berechnet sich demnach durch folgende Funktion

(weil und )

Als Reihenentwicklung:

Für weitere Details siehe Normalverteilung.

Verteilungsfunktion der Standardnormalverteilung[Bearbeiten]

z \ * 0 1 2 3 4 5 6 7 8 9
0,0* 0,50000 0,50399 0,50798 0,51197 0,51595 0,51994 0,52392 0,52790 0,53188 0,53586
0,1* 0,53983 0,54380 0,54776 0,55172 0,55567 0,55962 0,56356 0,56749 0,57142 0,57535
0,2* 0,57926 0,58317 0,58706 0,59095 0,59483 0,59871 0,60257 0,60642 0,61026 0,61409
0,3* 0,61791 0,62172 0,62552 0,62930 0,63307 0,63683 0,64058 0,64431 0,64803 0,65173
0,4* 0,65542 0,65910 0,66276 0,66640 0,67003 0,67364 0,67724 0,68082 0,68439 0,68793
0,5* 0,69146 0,69497 0,69847 0,70194 0,70540 0,70884 0,71226 0,71566 0,71904 0,72240
0,6* 0,72575 0,72907 0,73237 0,73565 0,73891 0,74215 0,74537 0,74857 0,75175 0,75490
0,7* 0,75804 0,76115 0,76424 0,76730 0,77035 0,77337 0,77637 0,77935 0,78230 0,78524
0,8* 0,78814 0,79103 0,79389 0,79673 0,79955 0,80234 0,80511 0,80785 0,81057 0,81327
0,9* 0,81594 0,81859 0,82121 0,82381 0,82639 0,82894 0,83147 0,83398 0,83646 0,83891
1,0* 0,84134 0,84375 0,84614 0,84849 0,85083 0,85314 0,85543 0,85769 0,85993 0,86214
1,1* 0,86433 0,86650 0,86864 0,87076 0,87286 0,87493 0,87698 0,87900 0,88100 0,88298
1,2* 0,88493 0,88686 0,88877 0,89065 0,89251 0,89435 0,89617 0,89796 0,89973 0,90147
1,3* 0,90320 0,90490 0,90658 0,90824 0,90988 0,91149 0,91309 0,91466 0,91621 0,91774
1,4* 0,91924 0,92073 0,92220 0,92364 0,92507 0,92647 0,92785 0,92922 0,93056 0,93189
1,5* 0,93319 0,93448 0,93574 0,93699 0,93822 0,93943 0,94062 0,94179 0,94295 0,94408
1,6* 0,94520 0,94630 0,94738 0,94845 0,94950 0,95053 0,95154 0,95254 0,95352 0,95449
1,7* 0,95543 0,95637 0,95728 0,95818 0,95907 0,95994 0,96080 0,96164 0,96246 0,96327
1,8* 0,96407 0,96485 0,96562 0,96638 0,96712 0,96784 0,96856 0,96926 0,96995 0,97062
1,9* 0,97128 0,97193 0,97257 0,97320 0,97381 0,97441 0,97500 0,97558 0,97615 0,97670
2,0* 0,97725 0,97778 0,97831 0,97882 0,97932 0,97982 0,98030 0,98077 0,98124 0,98169
2,1* 0,98214 0,98257 0,98300 0,98341 0,98382 0,98422 0,98461 0,98500 0,98537 0,98574
2,2* 0,98610 0,98645 0,98679 0,98713 0,98745 0,98778 0,98809 0,98840 0,98870 0,98899
2,3* 0,98928 0,98956 0,98983 0,99010 0,99036 0,99061 0,99086 0,99111 0,99134 0,99158
2,4* 0,99180 0,99202 0,99224 0,99245 0,99266 0,99286 0,99305 0,99324 0,99343 0,99361
2,5* 0,99379 0,99396 0,99413 0,99430 0,99446 0,99461 0,99477 0,99492 0,99506 0,99520
2,6* 0,99534 0,99547 0,99560 0,99573 0,99585 0,99598 0,99609 0,99621 0,99632 0,99643
2,7* 0,99653 0,99664 0,99674 0,99683 0,99693 0,99702 0,99711 0,99720 0,99728 0,99736
2,8* 0,99744 0,99752 0,99760 0,99767 0,99774 0,99781 0,99788 0,99795 0,99801 0,99807
2,9* 0,99813 0,99819 0,99825 0,99831 0,99836 0,99841 0,99846 0,99851 0,99856 0,99861
3,0* 0,99865 0,99869 0,99874 0,99878 0,99882 0,99886 0,99889 0,99893 0,99896 0,99900
3,1* 0,99903 0,99906 0,99910 0,99913 0,99916 0,99918 0,99921 0,99924 0,99926 0,99929
3,2* 0,99931 0,99934 0,99936 0,99938 0,99940 0,99942 0,99944 0,99946 0,99948 0,99950
3,3* 0,99952 0,99953 0,99955 0,99957 0,99958 0,99960 0,99961 0,99962 0,99964 0,99965
3,4* 0,99966 0,99968 0,99969 0,99970 0,99971 0,99972 0,99973 0,99974 0,99975 0,99976
3,5* 0,99977 0,99978 0,99978 0,99979 0,99980 0,99981 0,99981 0,99982 0,99983 0,99983
3,6* 0,99984 0,99985 0,99985 0,99986 0,99986 0,99987 0,99987 0,99988 0,99988 0,99989
3,7* 0,99989 0,99990 0,99990 0,99990 0,99991 0,99991 0,99992 0,99992 0,99992 0,99992
3,8* 0,99993 0,99993 0,99993 0,99994 0,99994 0,99994 0,99994 0,99995 0,99995 0,99995
3,9* 0,99995 0,99995 0,99996 0,99996 0,99996 0,99996 0,99996 0,99996 0,99997 0,99997
4,0* 0,99997 0,99997 0,99997 0,99997 0,99997 0,99997 0,99998 0,99998 0,99998 0,99998
Anmerkung: Negative Werte werden aus Gründen der Symmetrie nicht angegeben, weil ist.

Arbeiten mit der Tabelle[Bearbeiten]

Aus der Tabelle kann die Wahrscheinlichkeit für die Standardnormalverteilung ermittelt werden. Aufgrund des Zusammenhanges (und damit auch wegen der Symmetrie der Gauß'schen Glockenkurve) sind hier nur die positiven Werte von zu finden.

Ist nun die Wahrscheinlichkeit für Werte von im Intervall von 0 bis 4.09 gesucht, so steht bis zum Zehntel in der linken Randzeile der Tabelle und das Hunderstel findet sich in der Kopfzeile. Dort wo sich die zugehörige Zeile und Spalte kreuzen steht die Wahrscheinlichkeit .

Übersteigt die Grenze von 4.09, dann gilt

, für

Vorsicht ist bei der Umkehrung geboten, bei der eine Wahrscheinlichkeit vorgegeben und das dazugehörige gesucht ist. Hier muss derjenige Wert angesehen werden, der den geringeren Abstand zur vorgegebenen Wahrscheinlichkeit hat. Anschließend setzt man aus der Zeile und Spalte dieses Wertes zusammen. Ist also z.B. die Wahrscheinlichkeit 0,90670 gegeben, so wird in der Tabelle der Wert 0,90658 (entspricht einem von 1.32 ) gewählt, weil dieser viel näher liegt, als der nächste mögliche Wert von 0,90824 (wobei dieser ein von 1.33 ergäbe).

Anmerkung: Wurde eine beliebige --Normalverteilung in die Standardnormalverteilung transformiert, so muss die in der Tabelle abgelesene Wahrscheinlichkeit nicht mehr rücktransformiert werden, da eine flächengleiche Transformation vorliegt! (Wurde hingegen aus der Tabelle ermittelt, so muss die Grenze noch durch berechnet werden.)

Beispiel[Bearbeiten]

Gegeben sei eine Normalverteilung mit dem Erwartungswert von 5 und der Standardabweichung von 2. Gesucht ist die Wahrscheinlichkeit dafür, dass die Zufallsvariable zwischen den Werten 3 und 7 liegt.

Formal:

Betrachtet man die Gauß'sche Glockenkurve, dann ist dies die Fläche unter dem Graphen der Wahrscheinlichkeitsdichte

, mit und ,

welche durch und begrenzt wird.

Um die Wahrscheinlichkeit berechnen zu können, muss die zu dieser Wahrscheinlichkeitsdichte gehörige Verteilungsfunktion

transformiert werden (was im Kapitel Transformation der Normalverteilung im Artikel w:Normalverteilung formal beschrieben ist). Durch die Transformation wird die Kurve mit dem Erwartungswert der Standardabweichung verschoben und gestaucht (bzw. gestreckt), so dass sie einer 0-1-Normalverteilung entspricht. Dabei verschieben sich aber auch die Grenzen und , ebenfalls wird die Zufallsvariable transformiert.

Dies geschieht durch

bzw.

(D. h. bei der eigentlichen Berechnung müssen die Transformationsschritte der Verteilungsfunktion nicht durchgerechnet werden, sie dienen nur dem Verständnis, wie die z-Formel zustande kommt.)

Am Beispiel gezeigt:

Während man nun den Wert für einfach aus der Tabelle bestimmen kann, muss man sich für überlegen, dass die gesuchte Fläche(bzw. Wahrscheinlichkeit) sich von bis zur Grenze -1 erstreckt. Durch die Symmetrie der Glockenkurve ist dies allerdings derselbe Wert wie von +1 bis . Von der Gesamtfläche unter der Kurve, die ja 1 ist (=Wahrscheinlichkeit für ein sicheres Ereignis) wird also abgezogen, d. h.

Umgelegt auf das Beispiel ergibt sich

      // in der Tabelle nachschlagen

D. h. die angegebene Normalverteilung hat eine Wahrscheinlichkeit von fast 70 Prozent.