PSA Mathematik/ Arbeiten mit Termen

Aus Wikibooks
Zur Navigation springen Zur Suche springen
INDEX
zum vorherigen G1-Niveau Thema ZUM VORHERIGEN G1-NIVEAU THEMA ANFANG DES Alle G1-Niveau Themen G1-ABSCHNITTS ZUM NÄCHSTEN G1-NIVEAU THEMA zum nächsten G1-Niveau Thema


Definitionen[Bearbeiten]

Ein Term ist ein mathematischer Ausdruck. ,  ,  ,  ,     sind alles Terme, wobei     aus mehreren Teiltermen besteht.

Potenzen[Bearbeiten]

Definition[Bearbeiten]

Jeder Term der Form mn ist eine Potenz. Was unten steht (hier m) nennt man Basis, was oben rechts (hier n) Hochzahl.

Potenz        Was bedeutet diese Schreibweise?

Wenn man 4+4+4 hat, kann man auch 3·4 schreiben: . Eine Multiplikation zeigt, wie oft man eine Zahl mit sich selbst addiert.

Wenn man 4·4·4 hat, dann kann man 4³ schreiben. Eine Potenzzahl (hier 4³) zeigt, wie oft (so oft, wie die Hochzahl, hier 3) man eine Zahl (die Basis, hier 4) mit sich selbst multipliziert.

Rechenarten[Bearbeiten]

Zwei Potenzzahlen mit der gleichen Basis kann man multiplizieren, indem man die gleiche Basis und als Hochzahl die Summe der Hochzahlen nimmt.

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen addiert man, auch wenn sie negativ sind:

Bei einer Addition oder Subtraktion von Potenzen kann man dagegen die Hochzahlen nicht addieren!


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Zwei Potenzzahlen mit der gleichen Basis kann man dividieren, indem man die gleiche Basis nimmt und als Hochzahl die Differenz der Hochzahlen (oben minus unten!).

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen subtrahiert man (oben minus unten), auch wenn sie negativ sind:

Da ein Bruch (fast) gleichbedeutend mit einer Division ist, kann man auch sagen, dass bei der Division von Potenzzahlen mit gleicher Basis das Ergebnis die gleiche Basis ist, mit einer Hochzahl, die die Differenz aus der Hochzahl des Dividends und der Hochzahl des Divisors ist.

Es muss auch klar sein: x² ist nicht das Gleiche wie y² (kann ausnahmsweise sein, ist es in der Regel aber nicht!) und x, x² und x⁵ sind ebenfalls i.d.R. auch nicht das Gleiche! Wenn die Basis anders ist, kann man mit den Hochzahlen keine Strichrechnung machen, z.B.:

   oder etwas Ähnliches. Man kann einfach diesen Ausdruck NICHT vereinfachen!

Grundaufgaben[Bearbeiten]

Vereinfachen Sie!

3x²+5-7x⁵+11-4x²+3-11x⁵+5x²=?

Diesen Term kann man vereinfachen, indem man Gleiches mit Gleichem addiert bzw. subtrahiert:

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Mit Rot sind alle Teilterme (Summanden), die x2 beinhalten, mit Blau alle Teilterme, die x5 beinhalten und mit Schwarz alle einfachen Zahlen markiert. Man summiert die entsprechenden Teilterme. x2 gibt es 3-4+7 also insgesamt 6 mal, x5 (mit Blau) -7-11 also -18 mal und die Zahlen summiert man auch, 5+11+3 ist 19. Das Gesamtergebnis kann man vereinfacht so schreiben:

6x² +19 -18x⁵

Klammer Auflösen[Bearbeiten]

Ziel des Ausmultiplizierens[Bearbeiten]

Lösen Sie die Klammern auf!

Ziel solcher Aufgaben ist, einen Ausdruck ohne Klammern zu schreiben, der gleichwertig zu diesem Ausdruck (mit Klammern) ist. Probieren wir zunächst einmal die Klammern einfach wegzulassen. Zuerst soll man etwas erklären:

Wenn zwischen zwei mathematischen Ausdrücken nichts (keine Rechenart) steht, ist ein "mal" gemeint (Multiplikation) (einzige Ausnahme sind hier die gemischten Zahlen)

Probieren wir jetzt in beiden Ausdrücken eine Zahl an der Stelle von x einzusetzen, beispielsweise 0:

Die beide Ausdrücke sind nicht gleich. Probieren wir es auch mit 1:

Wieder sind die Ausdrücke nicht gleich. Man sagt dann, dass    ist, dass    nicht gleich zu    ist. Obwohl eine Zahl schon ausreichen könnte, stimmt das eigentlich für alle Zahlen, die man für einsetzen kann.

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Probieren wir dann beide Summanden in der Klammer mit dem Ausdruck außerhalb der Klammer zu multiplizieren:

Egal mit welcher Zahl wir es jetzt ausprobieren, werden die beide Ausdrücke immer gleich sein! Beispielsweise mit :

Da das immer gilt, kann man schreiben:

Wir haben daher unser Ziel erreicht! Wir haben einen gleichwertigen Ausdruck ohne Klammern!

Klammern werden aufgelöst, indem jeder Summand in Klammern mit dem Ausdruck außerhalb der Klammer multipliziert wird.

Aufgaben mit einer Klammer[Bearbeiten]

Lösen Sie die Klammern auf!

Die Aufgabe hier ist, einen gleichwertigen Ausdruck ohne Klammern zu schreiben. Wie eben erklärt, multipliziert man dafür den Term außerhalb der Klammer (  ) mit jedem Summand in den Klammern (also erst mit   , dann mit    und dann mit   ):

Klammer1.jpg

Der Ausdruck am Ende ist immer gleich mit dem Ausdruck am Anfang. Wir haben also die Klammer aufgelöst!

Aufgaben mit 2 Klammern[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Lösen Sie die Klammern auf!

Die Aufgabe hier ist wieder, einen gleichwertigen Ausdruck ohne Klammern zu schreiben. Um das zu machen, multipliziert man jeden Summand der ersten Klammer    mit jedem Summand der zweiten Klammer   :

Klammer2.jpg
Hier gilt die Multiplikationsregel der Vorzeichen: plus mal plus ist plus, plus mal minus ist minus, minus mal plus ist minus, minus mal minus ist plus. (Das Gleiche gilt bei durch)

+ · + = +

+ · − = −

− · + = −

− · − = +

Arbeiten mit negativen Zahlen[Bearbeiten]

Wir haben gerade eben die Regeln für die Multiplikation mit Plus und Minus gesehen. Wie kann man diese Regeln mit Zahlen erklären?

Dass ist, ist trivial. ist und ist . ist daher gleichbedeutend wie und, wie Multiplikation definiert wird, ist das 15.

Dass ist, macht eben auch Sinn. Laut Definition der Multiplikation ist , wie man beim Arbeiten mit negativen Zahlen lernt.

Wenn man hat, ist die Erklärung ebenso leicht. In der Multiplikation spielt die Reihenfolge keine Rolle, daher ist .


Warum ist aber Minus mal Minus doch Plus?

Um das zu erklären, kann man folgende Rechnung betrachten:

Macht man nach der Regel erst die Rechnung in Klammern, ist das Ergebnis:

Wenn erst die Klammer aufgelöst wird, wie wir das vorher gelernt haben, dann ergibt sich Folgendes:

ist , wie wir eben gelernt haben.

Wenn Minus mal Minus Plus ist, dann ist und das Ganze ergibt:

Wenn Minus mal Minus Minus wäre, dann wäre und das Ganze ergäbe:

was ein falsches Ergebnis ist, da wir schon gesehen haben, dass das Ergebnis, wenn man erst die Rechnung in Klammern macht, ist. Ähnliche Ergebnisse bekommt man, egal welches Beispiel benutzt wird. Daher ist Minus mal Minus Plus.

Ähnliches gilt, wenn man nur Vorzeichen hat:


zum vorherigen G1-Niveau Thema ZUM VORHERIGEN G1-NIVEAU THEMA ENDE DES Alle G1-Niveau Themen G1-ABSCHNITTS ZUM NÄCHSTEN G1-NIVEAU THEMA zum nächsten G1-Niveau Thema


zum vorherigen E1-Niveau Thema ZUM VORHERIGEN E1-NIVEAU THEMA ANFANG DES Alle E1-Niveau Themen E1-ABSCHNITTS ZUM NÄCHSTEN E1-NIVEAU THEMA zum nächsten E1-Niveau Thema


Herausheben[Bearbeiten]

Herausheben ist das Gegenteil von Klammer-Auflösen. Man hat einen Term ohne Klammer und versucht in den Summanden die gemeinsamen Teilterme zu finden, die dann außerhalb der Klammer bleiben. Die restlichen Terme bleiben dann als Summanden in der Klammer:

  • 6x⁷ – 14x² + 10x³=?    Heben Sie heraus!

(das ist allerdings das gleiche Beispiel, wie in Klammer auflösen, nur in die Gegenrichtung).

Die kleinste Hochzahl von x ist 2. Jeder Summand hat daher ein x² drinnen. Außerdem kann man die Zahl in jedem Summand durch 2 teilen. Also jeder Summand hat daher eine 2 drinnen. 2x² ist daher das gemeinsame Element, es bleibt außerhalb der Klammer:

6x⁷ – 14x² + 10x³= 2x² · (3x⁵-7+5x)

Wie haben wir die Teilterme in der Klammer gefunden?

6x⁷ : 2x² = 3x⁵,    14x² : 2x² = 7,    10x³ : 2x² = 5x !


Bei den Hochzahlen wählt man die kleinste Hochzahl. Wenn eine Variable bei einem Summand nicht vorkommt, dann kann man sie nicht herausheben. Bei den Zahlen kann man erst die Primfaktorzerlegung durchführen und dann die gemeinsamen Faktoren herausheben:

  • 45b⁴y²n⁷ – 30y⁵n⁹ – 75b⁸y⁸n⁸ + 105 b y n⁷ = ?

45b⁴y²n⁷ – 30y⁵n⁹ – 75b⁸y⁸n⁸ + 105 b y n⁷    =    3·3·5 b⁴y²n⁷ – 2·3·5 y⁵n⁹ – 3·5·5 b⁸y⁸n⁸ + 3·5·7 b y n⁷

Hier haben wir die PFZ gemacht. Überall kommt 3 und 5 zumindest einmal vor, b kommt im zweiten Summand nicht vor (daher kann man b nicht herausheben), die kleinste Hochzahl von y ist 1 (y=y¹) und von n 7. Man kann also „3“, „5“, „y“ und „n⁷“ herausheben:

3·5 y n⁷ · (...?...) = 15yn⁷ · (...?...)

Was bleibt jetzt in der Klammer? Wir dividieren jeden Teilterm (Summand) mit dem herausgehobenen Teilterm (15yn⁷):

45b⁴y²n⁷ : 15yn⁷ = 3b⁴y          30y⁵n⁹ : 15yn⁷ = 2y⁴n²
75b⁸y⁸n⁸ : 15yn⁷ = 5b⁸y⁷n          105 b y n⁷ : 15yn⁷ = 7b

also:

45b⁴y²n⁷ – 30y⁵n⁹ – 75b⁸y⁸n⁸ + 105 b y n⁷ = 15yn⁷ ( 3b⁴y – 2y⁴n² – 5b⁸y⁷n+ 7b )

Binomische Formeln[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Allgemein kann man die binomischen Formeln als eine Art mathematisches Spiel wahrnehmen, dass auf die höhere Mathematik vorbereitet.


Es gibt drei binomische Formeln:

  • Die Plusformel:
(a+b)²   =   a² + 2ab + b²
  • Die Minusformel:
(a-b)²   =   a² -2ab +b²
  • Die Plusminusformel:    
(a+b) (a-b)   =   a² – b²


Warum (a+b)² = a² + 2ab + b² ist, kann man leicht feststellen, wenn man die Potenz auf ihre Faktoren zerlegt und die Klammern aus multipliziert:

(a+b)² = (a+b) (a+b) = a² + ab + ba +b² = a² + 2ab + b²

Ähnlich kann man die anderen Formeln zeigen:

(a-b)² = (a-b) (a-b) = a² – ab – ba +b² = a² – 2ab + b²
(a+b)(a-b) = a² + ab – ba – b² = a² – b²


Nun die Aufgaben, die mit binomischen Formeln zu tun haben, gehen davon aus, dass man die binomische Formeln schon kann und an der Stelle von a und b andere Terme stehen:

  • Plusformel: (3d+5)²     Hier haben wir statt a 3d und statt b 5.
(a + b)² = + 2 a b +
(3d + 5)²   =  (3d)²  +   2   (3d)   (5)   +   5² 
= 9d² + 30d + 25


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT
  • Minusformel: (c – 4x)² Hier haben wir statt a c und statt b 4x.
(a b)² = 2 a b +
(c 4x)²   =  (c)²  −   2   (c)   (4x)   +   (4x)² 
= 8cx + 16x²


  • Plusminusformel: (5u + 2v) (5u – 2v) Hier haben wir statt a 5u und statt b 2v.
(a + b)² (a b =
(5u + 2v)²   ⋅  (5u)  −   2v   =   (2v)²   −   (2v)² 
= 25u² 4v²


Besonders wichtig sind die binomischen Formeln bei den Umkehraufgaben:

36x² – 60ax +25a²=?

Hier ist gefragt, den Term als Quadrat eines sogenannten Binoms oder als Produkt von Faktoren (in Klammern) zu schreiben. Man kann sofort beobachten, dass es drei Summanden gibt, drei Teilterme: 36x², 60ax, 25a². Dadurch kann man sofort die Plusminus Formel ausschließen (da gibt es nur zwei Terme: a²-b²). Da es am mittleren Term ein Minus gibt, findet man sofort, dass es um die Minusform geht. Die quadratischen Terme sind 36x² und 25a². Wenn man sich ein bisschen mit den Quadratzahlen auskennt, weiß man, dass 36 das Quadrat von 6 und 25 das Quadrat von 5 ist. Also kann 36x² nur das Quadrat von 6x und 25a² von 5a sein. Der mittlere Term sollte dann 2·6x·5a sein, was auch tatsächlich stimmt ( 2·6x·5a=60ax). Daher gilt:

36x² – 60ax +25a² = (6x – 5a)²


Noch ein Beispiel:

121d² – 4t²


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Das kann nur die Plusminusform sein, weil sie die einzige ist, die nur zwei Teilterme hat. Daher:

121d² – 4t² = (11d + 2t) (11d – 2t)

Bemerkung: die ersten sogenannten Quadratzahlen sind:

1 (=1²), 4 (=2²), 9 (=3²), 16 (=4²), 25 (=5²), 36 (=6²), 49 (=7²), 64 (=8²), 81 (=9²), 100 (=10²), 121 (=11²), 144 (=12²).

Bruchterme kürzen[Bearbeiten]

Die Kenntnisse dieses Kapitels kann man benutzen, um Bruchterme zu kürzen. Zuerst vereinfacht man die Terme sowohl oben (im Zähler) als auch unten (im Nenner), dann hebt man heraus, was man herausheben kann (oben und unten) und am Ende schaut man nach, ob eine binomische Formel vorhanden ist (wieder oben und unten, im Zähler und im Nenner). Am Ende, wenn man Produkte im Zähler und im Nenner hat, kann man kürzen, wenn es möglich ist: Nehmen wir beispielsweise folgenden Bruchterm:

  • Erster Schritt: Vereinfachen (geht nur im Zähler;  ist so viel wie ): 
  • Zweiter Schritt: Herausheben (geht oben und unten): 
  • Dritter Schritt: Nach binomischen Formeln suchen. Das geht hier nur unten; der Term im Klammer   ist nach der Minus binomische Formel gleich . Daher ergibt sich der Bruch: 
  • Vierter Schritt: Kürzen, was man kürzen kann: 

Das Ergebnis ist daher:


zum vorherigen E1-Niveau Thema ZUM VORHERIGEN E1-NIVEAU THEMA ENDE DES Alle E1-Niveau Themen E1-ABSCHNITTS ZUM NÄCHSTEN E1-NIVEAU THEMA zum nächsten E1-Niveau Thema


zum vorherigen E2-Niveau Thema ZUM VORHERIGEN E2-NIVEAU THEMA ANFANG DES Alle E2-Niveau Themen E2-ABSCHNITTS ZUM NÄCHSTEN E2-NIVEAU THEMA zum nächsten E2-Niveau Thema


Bruchterme in Brüchen mit gemeinsamen Nenner umwandeln[Bearbeiten]

Im Kapitel über Brüchen haben wir schon gesehen, wie man zwei gleichnamige und zwei ungleichnamige Brüche addiert:

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern: Zähler und Nenner des ersten Bruches mit Nenner des zweiten erweitern und entsprechend für den zweiten Bruch!

Bruchstrich1.jpg

Dabei ist es nicht wichtig, ob man minus oder plus zwischen den Brüchen hat. Allein der Nenner (ob er der gleiche oder nicht ist) spielt einer Rolle.


Der Vorgang ist genau der gleiche für Bruchterme.

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern:


Wenn aber die Sache etwas komplizierter wird, dann benutzt man einen Vorgang, der sehr ähnlich zum Verfahren der Primfaktorzerlegung und ihre Anwendung bei Strichrechnungen zwischen mehreren Brüchen ist.


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Für jeden Teilterm, jede Variable, im Nenner, wählt man die höchst Hochzahl die vorkommt. Diese wird dann im gemeinsamen Nenner benutzt. Für a ist sie 3 (a³), für t 7 (t⁷), für x ist die Hochzahl 1(x¹ also x) und für s auch 1 (also s). Der gemeinsame Nenner wird daher a³t⁷xs sein. Den Zähler multipliziert man dann, mit den aus dem Nenner fehlenden Teilen.

Wieso habe wir den Zähler im ersten Bruch (5s) mit ts multipliziert? Wir haben erst den gemeinsamen Nenner (a³t⁷xs) durch den Nenner des Bruches (a³t⁶x) dividiert:

Mit diesem Term (diesem Ergebnis) muss man den Zähler multiplizieren. Den gleichen Prozess haben wir beim zweiten Bruch wiederholt. Dieser Prozess allerdings (gemeinsamen Nenner durch den jeweiligen Nenner dividieren) haben wir auch bei den Strichrechnungen zwischen mehreren Brüchen benutzt, wo wir auch die Primfaktorzerlegung angewandt haben.


Was im Zähler steht, ist nicht so wichtig. Im Nenner allerdings können die Faktoren größere Terme in Klammern sein:

Finden wir erst den gemeinsamen Nenner. Es gibt im Nenner des ersten Bruches die Termen a, w, (t-1), (t+1) und (t-3). Im zweiten Bruch findet man im Nenner noch folgende Terme dazu: p, (q^2+7+r). Wir sollten für den gemeinsamen Nenner die höchste Hochzahl des jeweiligen Terms benutzen. Beispielsweise ist diese für den Term a die Hochzahl 3, für den Term w die Hochzahl 5, für den Term (t+1) die Hochzahl 5 usw. Der gemeinsame Nenner wird dann    sein.


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Der Zähler des ersten Bruches wird durch den Quotient des gemeinsamen Nenners durch den Nenner des ersten Bruches erweitert:

Entsprechend für den zweiten Bruch:

Nun kann man das Ganze in einem Bruch schreiben:



Bruchtermegleichungen[Bearbeiten]

Wie das Wort besagt, sind Bruchtermegleichungen Gleichungen, die Bruchterme beinhalten. Wir werden hier uns mit Bruchtermegleichungen, die nur eine unbekannte Variable beinhalten. Ziel ist durch Umformungen den Wert der Variable zu finden, der die Gleichung erfüllt.

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Die Schritte, um die Lösung zu finden, sind am Anfang wie die Schritten bei Abschnitt„Bruchterme kürzen“.

  • Erster Schritt: Vereinfachen (geht nur im Zähler des ersten Bruches;  ist so viel wie ): 
  • Zweiter Schritt: Herausheben (geht nur im Zähler und im Nenner des ersten Bruches;): 
  • Dritter Schritt: Nach binomischen Formeln suchen (das geht hier nur im Nenner des Bruches auf der rechten Seite der Gleichung:  ):  
  • Vierter Schritt: Kürzen, was man kürzen kann (das geht in diesem Beispiel beim ersten Bruch:  ). Damit ergibt sich:


  • Fünfter Schritt: Hat man diese Schritte überprüft, versucht man die Bruchterme auf den gleichen Nenner zu bringen, wie am vorherigen Teilkapitel gezeigt. Hier gibt es im Nenner zwei verschiedenen Terme,   und . Der Bruch auf der rechten Seite hat schon beide, man braucht (und darf) ihn NICHT erweitern. Am ersten Bruch fehlt noch der Term   und mit diesem muss er erweitert werden. Am zweiten Bruch fehlt der Term   und mit diesem muss er erweitert werden.

  • Sechster Schritt: Jetzt haben wir überall den gleichen Nenner. Wenn wir beide Seiten der Gleichung (also alle Brüche) mit diesem Nenner multiplizieren, dann wird er überall gekürzt.
Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

  • Siebter Schritt: Das vorläufige Ergebnis ist daher die folgende Gleichung, die wir dann mit einfachen Umformungen lösen können:

Die Lösungsmenge, also die Zahlen, die die Bruchtermegleichung am Anfang erfüllen, ist hier nur eine Zahl, die Zahl 2. Man schreibt:

Wie man sieht, ist die Lösung einer Bruchtermegleichung kompliziert. Das Üben und die Erfahrung machen die Sache selbstverständlich einfacher. Es gibt aber doch noch einen Schritt, um so eine Gleichung vollständig zu lösen: Die Definitionsmenge muss vorerst herausgefunden werden. Mit diesem Schritt beschäftigen wir uns im nächsten Teilkapitel.


zum vorherigen E2-Niveau Thema ZUM VORHERIGEN E2-NIVEAU THEMA ENDE DES Alle E2-Niveau Themen E2-ABSCHNITTS ZUM NÄCHSTEN E2-NIVEAU THEMA zum nächsten E2-Niveau Thema


zum vorherigen E1-Niveau Thema ZUM VORHERIGEN E1-NIVEAU THEMA ANFANG DES Alle E1-Niveau Themen E1-ABSCHNITTS ZUM NÄCHSTEN E1-NIVEAU THEMA zum nächsten E1-Niveau Thema


Definitionsmenge[Bearbeiten]

Nehmen wir folgendes Beispiel:

In den Nennern gibt es verschiedene Terme:

Alle diese Terme kann man als Produkte von verschiedenen Faktoren schreiben:

Alle diese Faktoren stehen im Nenner. Es gibt eine Regel in Mathematik, die besagt:

Die Division durch 0 ist nicht definierbar.

Warum das so ist, kann man in der höheren Mathematik zeigen. Der Nenner darf also nicht null sein. In welchen Fällen kann der erste, der zweite oder der dritte Nenner null sein? Dafür setzen wir diese Nenner gleich null!

Wann kann jetzt der erste Ausdruck null sein? Wenn zumindest einer der Faktoren null ist!

In der gleichen Weise für die anderen zwei Nenner:

Der Ausdruck kann nur dann definiert werden, wenn x nicht 0, 1 oder -1 ist. x darf daher alle andere Zahlen sein außer -1, 0 und 1. All die Zahlen, die x sein darf, nennt man Definitionsmenge. Man sagt, dass die Definitionsmenge die Menge der reellen Zahlen außer -1,0 und 1 ist und schreibt:

oder

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Die Definitionsmenge anzugeben ist bei jeder Aufgabe sehr wichtig. Nehmen wir das Beispiel am Anfang und setzen wir es gleich null:

Die Lösungsschritte haben wir im vorherigen Absatz gelernt. Die Definitionsmenge ist (wie gerade eben gezeigt)  . Wer die Lösungsschritte macht, kommt zum Ergebnis . Dieser Wert gehört aber nicht zur Definitionsmenge. x darf nicht -1 sein, weil in diesem Fall eine Division durch null vorkommt. Man sagt in diesem Fall, dass die Gleichung keine Lösung hat (und sie hat tatsächlich keine Lösung: -1 kann keine Lösung sein!) oder dass die Lösungsmenge die sogenannte leere Menge ist: oder .

Bei manchen Aufgaben kann es sein, dass die allgemeine Definitionsmenge angegeben wird (z.B. die natürliche Zahlen). Wenn man das Beispiel mit den Tischen im Kapitel über lineare Gleichungssysteme betrachtet, kann man feststellen, dass die Antwort nur eine natürliche Zahl sein kann und dass etwas in der Angabe nicht stimmt, wenn das nicht der Fall ist.

Obwohl es nicht Thema diese Buches ist, erwähnen wir hier, dass die Definitionsmenge auch durch Ungleichungen angegeben werden kann. Das ist beispielsweise der Fall, wenn man einen Term in einer quadratischen Wurzel hat. Nehmen wir das folgende Beispiel:

Wir behaupten hier, dass dieser Ausdruck nur dann definiert werden kann[1], wenn der Term unter der Wurzel positiv oder null (anders gesagt: nicht negativ) ist. Das liegt daran, dass die Gegenrechnung der Wurzel das Quadrat ist und das Quadrat von jeder beliebigen Zahl immer positiv ist (oder null, wenn die Zahl null ist). Bei positiven Zahlen ist diese Tatsache klar: + mal + wird + sein. Aber auch bei den negativen Zahlen ist es genauso: − mal − ist auch immer plus! Es gibt also keine Zahl, deren Quadrat negativ ist. In unserem Beispiel muss daher gelten:

Man sagt „x muss größer oder gleich null sein“.

  1. genauer gesagt in der Menge der reellen Zahlen. Warum aber das jetzt gesagt werden muss, ist überhaupt nicht Thema dieses Buches


zum vorherigen E1-Niveau Thema ZUM VORHERIGEN E1-NIVEAU THEMA ENDE DES Alle E1-Niveau Themen E1-ABSCHNITTS ZUM NÄCHSTEN E1-NIVEAU THEMA zum nächsten E1-Niveau Thema