PSA Mathematik/ Bruchrechnungen

Aus Wikibooks
Zur Navigation springen Zur Suche springen
INDEX


zum vorherigen G1-Niveau Thema ZUM VORHERIGEN G1-NIVEAU THEMA ANFANG DES Alle G1-Niveau Themen G1-ABSCHNITTS ZUM NÄCHSTEN G1-NIVEAU THEMA zum nächsten G1-Niveau Thema


Definitionen[Bearbeiten]

Bruch:       


Es gilt:      (Ein Bruch ist wie eine Division)

Unterschied: Ein Bruch ist eine Zahl. Eine Division ist eine Rechenart zwischen zwei Zahlen.

Echter Bruch: Wenn der Nenner größer als der Zähler ist:

Unechter Bruch: Wenn der Zähler größer als der Nenner ist:

Gleichnamige Brüche: Brüche, die den gleichen Nenner haben (z.B. ,   )

Gemischte Zahlen[Bearbeiten]

Eine gemischte Zahl besteht aus einer natürlichen Zahl und einem echten Bruch:  

Gemischte Zahl in unechten Bruch umwandeln[Bearbeiten]

Um eine gemischte Zahl in einen Bruch umzuwandeln, multipliziert man die natürliche Zahl mit dem Nenner des Bruches und addiert das Ergebnis zum Zähler. Das neue Ergebnis ist dann der Zähler des neuen Bruches, der Nenner bleibt der gleiche:

Unechten Bruch in gemischte Zahl umwandeln[Bearbeiten]

Um einen unechten Bruch in eine gemischte Zahl umzuwandeln, dividiert man den Zähler mit dem Nenner (ohne Nachkommastellen). Das Ergebnis der Division ist der „Zahlteil“ der gemischten Zahl, der Rest ist der Zähler des „Bruchteils“, der Nenner bleibt der gleiche:

Bruchgemisch1.jpg     (siehe Division)

Folgendes Beispiel setzt die Anwendung eines Taschenrechners voraus:

Eintausend-achthundert-fünfundneunzig Dreiundzwanzigstel sind so viel wie zweiundachtzig Ganzen und neun Zwanzigstel.

Das Ergebnis der Division 1895:23 mit dem Taschenrechner ist 82 Komma einige Nachkommastellen. Dieses Ergebnis ohne Nachkommastellen (82) wird die ganze Zahl in der gemischte Zahl sein. Das Ergebnis ohne Nachkommastellen (82) wird dann mit den Nenner (hier 23) multipliziert: 82·23=1886. Dieses Produkt (1886) wird dann vom Zähler (1895) subtrahiert: 1895-1886=9. Diese Differenz (9) stellt den neuen Zähler in der gemischten Zahl dar, der Nenner bleibt unverändert (23).


zum vorherigen G1-Niveau Thema ZUM VORHERIGEN G1-NIVEAU THEMA ENDE DES Alle G1-Niveau Themen G1-ABSCHNITTS ZUM NÄCHSTEN G1-NIVEAU THEMA zum nächsten G1-Niveau Thema


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ANFANG DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


Erweitern und Kürzen[Bearbeiten]

Erweitern ist, wenn man sowohl Zähler als auch Nenner eines Bruches mit der gleichen Zahl multipliziert. Der neue Bruch bleibt dann doch gleich:

Kürzen ist, wenn man sowohl Zähler als auch Nenner eines Bruches mit der gleichen Zahl dividiert. Der neue Bruch bleibt dann doch gleich:

In all diesen Fällen arbeitet man mit natürlichen Zahlen (positive Zahlen ohne Komma).

Erklärung des Erweiterns und des Kürzens[Bearbeiten]

 
StrichrechnungBruch 02.jpg
 
7
2
 
 
 
 
StrichrechnungBruch 04.jpg 5
Vergleichen wir die beiden Bilder. Im ersten Bild wird das Ganze im geteilt, zwei Teile davon werden dunkel dargestellt. Das ist also eine Repräsentation des Bruches . Im zweiten Bild wird das Ganze nicht nur in (waagerecht) sondern auch in (senkrecht) geteilt. Dadurch entstehen im Ganzen kleine "Quadrate". Jedes kleines Quadrat ist daher des Ganzen. Die dunkle Region () beinhaltet allerdings solche "Quadrate" also . Man folgt daraus, dass ist. Man hat in diesem Fall sowohl den Zähler als auch den Nenner mit der gleichen Zahl (hier ) multipliziert: . Diesen Prozess nennt man erweitern.


StrichrechnungBruch 05.jpg   StrichrechnungBruch 03.jpg   Der Gegenprozess ist dann das Kürzen. Im ersten Bild wird das Ganze in Zeilen und Spalten also insgesamt in kleine "Quadrate" geteilt (das könnte selbstverständlich eine andere Austeilung sein). Die blaue Region ist solche Teile, also . Wenn man jetzt die waagerechte Austeilung (in Fünf Zeilen geteilt) entfernt (zweites Bild), dann ist das ganze nur in (Spalten) geteilt, wobei jetzt die blaue Region Spalten davon ist also . In diesem Fall haben wir sowohl Zähler als auch Nenner durch die gleichen Zahl (hier ) dividiert: . Diesen Prozess nennt man kürzen.
Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT



zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ENDE DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


zum vorherigen G1-Niveau Thema ZUM VORHERIGEN G1-NIVEAU THEMA ANFANG DES Alle G1-Niveau Themen G1-ABSCHNITTS ZUM NÄCHSTEN G1-NIVEAU THEMA zum nächsten G1-Niveau Thema


Strichrechnungen[Bearbeiten]

Wenn man zwei Brüche addiert oder subtrahiert, dann muss man auf den Nenner aufpassen:

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern: Zähler und Nenner des ersten Bruches mit Nenner des zweiten erweitern (blaue Pfeile) und entsprechend für den zweiten Bruch (rote Pfeile)!

Bruchstrich1.jpg

Dabei ist es nicht wichtig, ob man minus oder plus zwischen den Brüchen hat. Allein der Nenner (ob er der gleiche oder nicht ist) spielt einer Rolle.


Erklärung der Strichrechnungen[Bearbeiten]

BruchStrichGlNen.svg

Wenn man den gleichen Nenner hat, ist es leicht mit einer Figur zu verstehen, warum die angegebene Regel gilt. Man kann sehen:

wenn zwei Schokoladentafeln in 7 geteilt werden und von einer Schokoladentafel 3 Teile (drei Siebtel) und von der anderen 2 Teile (zwei Siebtel) genommen werden, hat man insgesamt 5 Teile (also fünf Siebtel).


Was ist aber, wenn man nicht den gleichen Nenner hat, wie z.B. mit    ?


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Wie kann man das zeigen, dass das Ergebnis    sein soll?

Einfach! Man teilt die erste Figur auch in 7 Teilen und die zweite in 5:

Jedes kleines Quadrat in den neuen Figuren ist    des Ganzen. Wir haben in beiden Figuren 5·7=35 kleine Quadrate. Wie man sehen kann, sind die    gleich so viel wie    und die    gleich so viel wie    . Da wir jetzt gleichnamigen Brüchen haben, kann man die Zähler addieren:


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT




Punktrechnungen[Bearbeiten]

Bei einer Multiplikation zwischen zwei Brüchen multipliziert man Zähler mit Zähler und Nenner mit Nenner (Oben mal Oben, Unten mal Unten):

Bei der Division von zwei Brüchhen multipliziert man den ersten Bruch mit dem Kehrwert des zweitens Bruches:

   ( ist der Kehrwert von  )

Hier spielt der Nenner keine Rolle (im Gegenteil zu den Strichrechnungen).


zum vorherigen G1-Niveau Thema ZUM VORHERIGEN G1-NIVEAU THEMA ENDE DES Alle G1-Niveau Themen G1-ABSCHNITTS ZUM NÄCHSTEN G1-NIVEAU THEMA zum nächsten G1-Niveau Thema


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ANFANG DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


Arbeiten mit ganzen Zahlen und Brüchen[Bearbeiten]

Die Rechnungen mit ganzen Zahlen und Brüchen sind leicht, wenn man den vorherigen Stoff schon verstanden hat.

Strichrechnungen

Um eine ganze Zahl in einen Bruch umzuwandeln, reicht das Produkt der ganzen Zahl mit dem Nenner des Bruches als Zähler im Bruch zu schreiben:

Das sollte schon klar sein, da 15:5=3 ist... Um das zu veranschaulichen reicht es 3 ganzen jeweils in 5 geteilt nebeneinander zu stellen. Dann werden genau 3×5=15 Fünftel aufgezählt!

5over5.jpg 5over5.jpg 5over5.jpg


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Hat man einmal die ganze Zahl als (gleichnamigen) Bruch, kann man auch eine entsprechende Strichrechnung durchführen, z.B.:

Punktrechnungen

2over5.jpg   2over5.jpg   2over5.jpg   2over5.jpg

Genau so leicht ist die entsprechende Multiplikation. Im ersten Bild werden zwei Fünftel dargestellt und diese werden 4 mal nebeneinander dargestellt. Insgesamt sind es daher 4×2=8 Fünftel.

Um das Produkt einer ganzen Zahl mit einem Bruch zu berechnen, reicht es das Produkt der ganzen Zahl mit dem Zähler des Bruches in einem neuen gleichnamigen Bruch zu schreiben.

Die Division ist dann auch leicht:

Um den Quotient einer ganzen Zahl durch einem Bruch zu berechnen, reicht es das Produkt der ganzen Zahl mit dem Kehrwert des Bruches zu berechnen.

Kombinationen[Bearbeiten]

Bei Kombinationen von Bruchrechnungen muss man auf der Reihenfolge (siehe Vorrang der Rechenarten) aufpassen:


Man muss zuerst die Klammern machen:


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT
  • Erste Klammer

   Hier haben wir nur eine Strichrechnung und zwar mit dem gleichen Nenner.


  • Zweite Klammer

      Hier müssen wir erst die Punktrechnung machen und dann die Strichrechnung.

      Hier soll man erst kürzen.

     



Jetzt kann man in der Rechnung die Ergebnisse für die Klammern einsetzen:

Textaufgaben zu den Bruchrechnungen[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Die Textaufgaben mit Bruchrechnungen werden i.d.R. leicht in die mathematische Sprache umgewandelt:

In einem Staat mit 8,46 Millionen Einwohner trinkt jeder Einwohner durchschnittlich vier Neuntel Liter Milch täglich.
    1. Wie viel Liter werden dann täglich konsumiert?
    2. Der Gewinn für die Eigentümer ist 0,8¢/Liter Milch. Wie viel ist der tägliche Gewinn? Finden Sie ihn gerechtfertigt?
  1. Im einem anderen Staat gibt es 4 Supermarktketten. Zusammen gewinnen die Eigentümer 105000€ täglich. Eigentümer A bekommt zwei Fünftel des Gewinns, Eigentümer B ein Drittel und den Rest teilen die anderen zwei Eigentümer C und D. Wie viel gewinnt täglich jeder Eigentümer? Finden Sie den Gewinn gerechtfertigt?

Aufgabe a lässt sich leicht berechnen:

Da der Gewinn pro Liter 0,8¢ ist, soll man 0,8 mit 3,76 Mil. multiplizieren (dann hat man ¢) und dann durch 100 dividieren (dann hat man €):

Ob dieser Gewinn gerechtfertigt ist, soll jeder für sich entscheiden (die Eigentümer werden ihn sicherlich gerechtfertigt finden, sonst würden sie ihn nicht machen...).

Aufgabe b ist ebenfalls nicht besonders schwer:

Eigentümer A:

Eigentümer B:

Eigentümer C und D teilen den Rest:


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ENDE DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema