PSA Mathematik/ Diagramme

Aus Wikibooks
Zur Navigation springen Zur Suche springen
INDEX
zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ANFANG DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


Einführung[Bearbeiten]

In Diagrammen kann man verschiedene Daten in einem Bild darstellen, die man dann schnell ablesen kann. Diagramme können helfen, einen schnellen Überblick zu bekommen, werden aber auch oft benutzt, um einen falschen Eindruck zu bewirken. Hier werden das Säulendiagramm, das Liniendiagramm, das Kreisdiagramm und das Boxplotdiagramm präsentiert, es gibt aber auch zahlreiche andere Diagrammarten, wie z.B. Punktdiagramm, Balkendiagramm usw.

Säulendiagramm[Bearbeiten]

Das folgende Diagramm gibt die Anzahl der Packungen die eine gewisse Anzahl von Bananen pro Packung beinhalten.

Säulendiagramm

So ein Diagramm nennt man Säulendiagramm, weil es aus „Säulen“ besteht. Wenn die Frage z.B. ist, wie viele Packungen 4 Bananen haben, geht man so vor:

Auf der Achse unten (waagerechte Achse, x-Achse, auch Abszissenachse oder einfach Abszisse genannt) kann man die Bananen pro Packung ablesen, also kann man Bananen ablesen. Da wo 4 Bananen stehen (unten am Diagramm) befindet sich eine Säule. Man kann sehen, wie hoch diese Säule ist. Sie ist so hoch wie 5 Packungen. Die Anzahl der Packungen kann man links ablesen (auf der senkrechte Achse, der y-Achse, auch Ordinatenachse oder einfach Ordinate genannt). Also es gibt 5 Packungen mit 4 Bananen.

Wie viele Packungen haben 3 Bananen? Da, wo 3 Bananen stehen (unten, x-Achse), gibt es keine Säule! Die Höhe der Säule ist daher 0. Es gibt also keine (0) Packung, die 3 Bananen hat!

Wie viele Packungen haben keine Banane? Da, wo 0 Bananen stehen (unten, x-Achse), gibt es eine Säule, die 4 Packungen hoch ist. Es gibt also 4 Packungen mit keiner Banane!

Wie viele Packungen haben höchstens 3 Bananen? Höchstens bedeutet bis, also so viel wie 3 Bananen oder weniger (also 2, 1 oder keine Banane). Es gibt keine Packung mit 3 Bananen, 3 Pack. mit 2 Ban., 2 Pack. mit 1 Banane und 4 Pack. mit keiner Banane, also insgesamt 0+3+2+4=9 Pack..

Wie viele Packungen haben mindestens 3 Bananen? Mindestens bedeutet ab, also so viel wie 3 Bananen oder mehr (also 4, 5, 6 oder mehr Bananen). Es gibt keine Packung mit 3 Bananen, 5 Pack. mit 4 Ban. und 1 Pack. mit 5 Ban., also insgesamt 0+5+1=6 Pack..


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ENDE DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


zum vorherigen V-Niveau Thema ZUM VORHERIGEN V-NIVEAU THEMA ANFANG DES Alle V-Niveau Themen V-ABSCHNITTS ZUM NÄCHSTEN V-NIVEAU THEMA zum nächsten V-Niveau Thema


Mittelwerte bei einem Säulendiagramm[Bearbeiten]

Bei einem Säulendiagramm kann man auch Mittelwerte finden. Nehmen wir das gleiche Diagramm:

Aus dem Diagramm kann man eine Tabelle erzeugen!

Saulediag.png
Bananen pro Packung Anzahl der Packungen Gesamte Bananen in diesen Packungen
0 4 0⋅4= 0
1 2 1⋅2= 2
2 3 2⋅3= 6
3 0 3⋅0= 0
4 5 4⋅5= 20
5 1 5⋅1= 5
4+2+3+0+5+1= 0+2+6+0+20+5=
Summe 15 Packungen 33 Bananen

Es gibt also 33 Bananen in 15 Packungen. Der Durchschnitt ist daher:   B/P (Bananen pro Packung) im Durchschnitt.

Man kann auch den Median finden. Man soll die Werte (wie viele Bananen) einordnen. Wir haben 4 Packungen mit 0 Bananen (also die null kommt vier mal vor), 2 mit einer Banane, 3 mit 2 Bananen usw.:

   

Wie man sehen kann, 3 kommt nicht vor. Wir haben ja keine Packung mit 3 Bananen, also der Wert 3 Bananen kommt nicht vor! Wir haben insgesamt 15 Werte (15 Packungen). Der Wert in der Mitte ist der achte Wert, also 2. Der Median ist 2.

Welcher Wert kommt öfters vor? 4 Bananen kommt 5 mal vor (in 5 Packungen). Alle andere Werte kommen nicht so oft vor. Also 4 ist der Modalwert.


zum vorherigen V-Niveau Thema ZUM VORHERIGEN V-NIVEAU THEMA ENDE DES Alle V-Niveau Themen V-ABSCHNITTS ZUM NÄCHSTEN V-NIVEAU THEMA zum nächsten V-Niveau Thema


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ANFANG DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


Liniendiagramm[Bearbeiten]

In einem Liniendiagramm spricht man von einem Koordinatensystem. Es gibt zwei „Koordinaten“, die x-Achse (senkrecht) und die y-Achse (waagerecht).

LinienDiag1.png

In Balkendiagramm im vorherigen Absatz hatten wir diskrete Werte. Das bedeutet, das man z.B. den Wert 2 und den Wert 3 (Bananen im letzten Beispiel) hat, aber keinen Wert dazwischen (z.B. keine 2,156 Bananen). Das Gegenteil von diskreten Werten sind die kontinuierliche Werte. In unserem Beispiel hier sieht man eine sogenannte (quasi-kontinuierliche) Kostenkurve. Man kann in Diagramm ablesen, sowohl wie viel die Produktion von z.B. 60 T-Shirts kostet, als auch wie viele T-Shirts man mit z.B. 20€ produzieren kann. Für die erste Frage (wie viel kosten 60 T-Shirts) fängt man an der x-Achse an, da wo die Anzahl der T-Shirts angegeben ist. Man geht von 60 (T-Shirts) senkrecht nach oben, bis man die Linie (oft Kurve genannt) trifft. Dann geht man waagerecht zur y-Achse (hier links), bis man die y-Achse trifft, da wo die Kosten stehen. In diesem Fall sind die Kosten 25€. Umgekehrt geht man vor, wenn die Kosten angegeben sind. In unserem Beispiel sind 20€ gegeben. Wie viele T-Shirts kann man damit produzieren? Man fängt in diesem Fall mit der y-Achse an, da auf dieser Achse die Kosten angegeben sind. Man geht dann waagerecht rechts bis man die Linie trifft und dann senkrecht nach unten, bis man die x-Achse trifft. Da kann man 45 T-Shirts ablesen. Man kann also mit 20€ 45 T-Shirts produzieren.


LinienDiag2.png

Die Kurve in einem Liniendiagramm kann irgendeine Form haben (und nicht nur eine Gerade). Das folgende Beispiel zeigt die Körpertemperatur von einer Person (namens Gregor) am 12.3.15. Man kann sich aber vorstellen, was im Diagramm dargestellt wird. Man kann z.B. sehen welche Temperatur Gregor um 6 oder um 22.15 Uhr hatte, oder am welchen Zeitpunkten seine Temperatur z.B. 36,45°C oder 36,6°C war.

Kreisdiagramm[Bearbeiten]

KreisDiag.png

Ein Kreisdiagramm zeigt Anteile des Ganzen. Es kann benutzt werden, um einen schnellen Überblick von statistischen Daten zu bekommen.

Ein Beispiel: In einer Klasse sind 8 Personen aus Österreich, 2 aus Deutschland, 2 aus der Türkei, 2 aus Serbien und 2 aus Tschechien. Diese Information kann man so wie im Bild in einem Kreisdiagramm darstellen. Die Hälfte des Kreises sind die 8 Personen aus Österreich. Die andere Hälfte ist in vier gleichen Teilen geteilt, also jeweils 2 Personen für Türkei, Deutschland, Serbien und Tschechien.


Boxplot[Bearbeiten]

Elements of a boxplot.svg

Ein Boxplotdiagramm hilft bei der Darstellung von statistischen Daten. Mit einem Boxplotdiagramm bekommt man einen schnellen Überblick über die Verteilung der Daten. Im Bild kann man mit einer dicken senkrechten Linie den Median sehen. Das „Box“ fängt links dort, wo ¼ der Daten stehen und endet rechts dort, wo ¾ der Daten stehen. Dazu gibt es zwei senkrechte Linien, die den kleinsten und den größten Wert zeigen. Dazu kann es auch „Ausreißer“ geben, also Daten die zu groß oder zu klein sind.


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ENDE DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema