PSA Mathematik/ G2

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Inhaltsverzeichnis

Grundrechenarten[Bearbeiten]

Definitionen der Grundrechenarten[Bearbeiten]

Die vier Grundrechenarten[Bearbeiten]

Rechenart Ausgedrückt als Symbol Namen der Teile Name des Ergebnisses
Addition plus +                         
(addieren, erhöhen) Summand Summand Summe
Subtraktion minus                       
(subtrahieren, reduzieren, vermindern, abziehen) Minuend Subtrahend Differenz
Multiplikation mal   (×)                       
(multiplizieren, vervielfachen, -fach) Faktor  ⋅  Faktor Produkt
Division durch :  (÷, /)                       
(dividieren, teilen) Dividend Divisor Quotient

Das Symbol = ist ein Gleichheitszeichen. Es steht für die Gleichheit zweier Ausdrücke. Es wird in einem eigenen Abschnitt genauer erklärt.

Das Symbol × für die Multiplikation wird kaum benutzt, weil es leicht mit dem Symbol oder dem Buchstaben x für die Variable x verwechselt werden kann. Wozu in Rechnungen Buchstaben verwendet werden, werden wir später lernen. Für die Multiplikation wird in diesem Buch das Symbol · benutzt.
Das ist ein Punkt ungefähr auf halber Höhe einer Ziffer notiert.

Für die Division benutzt man auch Punkte : Die anderen Symbole für die Division / und ÷ werden seltener benutzt.
Typisch wird allerdings / bei den Einheiten verwendet, beispielsweise in der Geschwindigkeit (km/h). In diesem Beispiel sagt man "Kilometer pro Stunde". Mit dem Wort "pro" ist Division gemeint.

Weil für Multiplikation und Division Punkte als Symbole verwendet werden, nennt man die beiden Rechenarten zusammen Punktrechnungen.

Die Symbole für die Addition + und die Subtraktion – verwenden dagegen beide Striche. Daher nennt man diese beiden Rechenarten zusammen Strichrechnungen.

Bei Addition und Multiplikation spielt jeweils die Reihenfolge keine Rolle:

Die Reihenfolge spielt keine Rolle bei der Addition.
Die Reihenfolge spielt keine Rolle bei der Multiplikation.

Bei Subtraktion und Division ist die Reihenfolge wichtig. Das Ergebnis ist nicht das Gleiche, wenn die Reihenfolge anders ist:

aber
aber

Weitere Ausdrücke für die vier Grundrechenarten[Bearbeiten]

Im Alltag gibt es allerdings einige Worte, die irgendeine Rechenart bedeuten können:

Schneiden, Kürzen (zum Beispiel Gehalt) und so weiter könnte minus bedeuten
Wachsen, zwei Sachen zusammen, insgesamt könnte plus bedeuten
in einige gleiche Teilen schneiden könnte doch geteilt durch bedeuten

... und so weiter ...

Das Gleichheitszeichen[Bearbeiten]

Ein Symbol, das bisher nicht erklärt wurde, ist das Gleichheitszeichen "=". Es wird benutzt, um zu zeigen, dass der Ausdruck links des Zeichens das Gleiche ist, wie der Ausdruck rechts des Zeichens. Dies betrifft sowohl den Wert als auch die Einheit.

✔(richtig)

✔(richtig)

✘(falsch: falscher Wert)

✘(falsch: falsche Einheit)

✘(falsch: rechts fehlt die Einheit m)

Wie man mit Einheiten arbeitet, werden wir genauer im entsprechenden Kapitel lernen. Da werden wir auch erfahren, dass

doch richtig ist.

Es gibt allerdings Gleichungen zwischen mehr als zwei Ausdrucken ("Gleichungsketten"), wie wir vorher gesehen haben:

Bei Gleichungsketten sind alle Ausdrücke gleich, daher kann man in diesem Beispiel auch schreiben:

oder

Es gilt daher allgemein:

  • wenn dann auch
  • wenn dann auch

Gleichungsketten kann man allerdings in der Regel nicht bei sogenannten Äquivalenzumformungen benutzen, wie wir später lernen werden.

Die Gleichung zwischen zwei Ausdrucke spielt allerdings eine wichtige Rolle beim Einsetzen, ein Verfahren, das wir im entsprechenden Kapitel lernen werden.

Negative Zahlen[Bearbeiten]

Das Minuszeichen benutzt man nicht nur bei der Subtraktion, sondern auch um sogenannte negative Zahlen zu bezeichnen. Was die negativen Zahlen sind, kann man ziemlich einfach verstehen, wenn man sich vorstellt, in einem Aufzug zu sein. Betrachten wir die folgende Bilderfolge:

AufzugA1.jpg
AufzugA2.jpg
AufzugA3.jpg
AufzugA4.jpg
AufzugA5.jpg
AufzugA6.jpg

Im ersten Bild fängt man vom Erdgeschoss an, dieses kann man mit der Zahl 0 bezeichnen. Dann fährt man mit dem Aufzug 2 Stockwerke nach oben. Die Richtung nach oben kann man mit Plus (+) bezeichnen. Das ist im Bild zu sehen. 0+2=2. Im dritten Bild fährt man aus dem 2. Stock 3 Stockwerke weiter nach oben (+ Richtung). 2+3=5. Im vierten Bild fährt man 8 Stockwerke nach unten. Nach unten kann man mit Minus (−) bezeichnen, da die Stockwerke weniger werden. Wenn man aber 5−8 rechnet, kann das Ergebnis nicht 3 sein. 3 ist oberhalb des Erdgeschosses, wir sind aber jetzt in dritten Untergeschoss. Um die Stockwerke unter dem Erdgeschoss zu bezeichnen, braucht man etwas Neues: das Minuszeichen vor dem Stockwerk! Wir sind also im Stock −3, also 3 Stockwerke unterhalb des Erdgeschosses.

Im fünften Bild fährt man ein Stockwerk weiter nach unten. Wir waren im Stock −3 und nach unten bedeutet minus. Am Ende sind wir 4 Stockwerke unter der Erde, also im Stock −4: −3−1=−4. Wenn also beide Zahlen negativ sind, addiert man ihren sogenannten Betrag (3 und 1) und schreibt vor dem Ergebnis wieder ein Minus. Im sechsten Bild fährt man aus dem 4 Stock unter der Erde (−4) 5 Stockwerke nach oben (nach oben bedeutet Plus machen) und befindet sich am Ende einen Stock oberhalb des Erdgeschosses (bei +1): −4+5=1. Wenn man zwei Zahlen mit unterschiedlichem Vorzeichen hat, subtrahiert man die Beträge (größerer Betrag minus kleineren Betrag, hier: 5−4=1) und schreibt man vor dem Ergebnis das Vorzeichen des größeren Betrags (also hier von 5, da sie mehr als 4 ist). Im vierten Bild haben wir 5−8 gerechnet. Da haben wir wieder die Beträge subtrahiert (größerer minus kleineren: 8−5=3) und im Ergebnis haben wir wieder das Vorzeichen des größeren Betrags geschrieben (also das Minus, das vor 8 steht): 5−8 = −3.

Zusammengefasst: Wenn man zwei Zahlen mit dem gleichen Vorzeichen hat (z.B. 4+7 oder −3−5), dann addiert man die Beträge (4+7=11 und 3+5=8) und schreibt vor dem Ergebnis das Vorzeichen: (4+7=11 und −3−5 = −8). Wenn die eine Zahl positiv (+) ist und die andere negativ(−), subtrahiert man die Beträge und schreibt vor dem Ergebnis das Vorzeichen des größten Betrags: 4−7=−3 15−9=6

Negative Zahlen werden immer mit einem Minus davor geschrieben, z.B. −6 oder −7,453 oder . Positive Zahlen werden mit einem Plus davor geschrieben, z.B. +6 oder +7,453 oder . Bei positiven Zahlen kann man das Vorzeichen auslassen. Zum Beispiel ist 6 die positive Zahl +6, mit 7,453 wird die positive Zahl +7,453 gemeint und mit einfach .

Wenn allerdings das Plus oder das Minus nach der Zahl geschrieben wird, bedeutet es nicht, dass es eine positive oder negative Zahl ist. In diesem Fall erwartet man, dass noch eine Zahl folgen soll. 3− ist einfach unvollständig und auf gar keinen Fall die Zahl Minus drei ...

Weiteres über Rechnungen mit negativen Zahlen werden wir im Teilkapitel über die Plusminusregel lernen.

Das Komma bei Dezimalzahlen[Bearbeiten]

Noch ein wichtiger Punkt bei der Schreibweise muss man noch kurz ansprechen. Und es geht hier genau um den Punkt.

Wenn man mit dem Taschenrechner die Division 2 durch 7 macht, kommt etwas wie folgendes vor:

Das ist eine Zahl, die kleiner als eins ist. Auf Deutsch allerdings schreibt man:

Falls der Unterschied nicht klar ist:

im ersten Fall steht zwischen 0 und dem Rest der Zahl ein Punkt:

im zweiten Fall ein Komma:

Man sagt auf Deutsch "Null Komma zwei acht fünf sieben...". Dieser Unterschied muss einem bewusst sein!

Auf Englisch und bei den meisten Taschenrechnern schreibt man

oder sogar

.

Auf Deutsch und in ein paar anderen Sprachen werden die beiden Teile umgekehrt durch ein Komma getrennt:

oder sogar

.

Auf diese Tatsache sollte man aufpassen!

Insbesondere wenn Menschen mit unterschiedlichen Kulturen, Sprachen oder Notationen Daten miteinander austauschen, kann dieser Unterschied für Verwirrung sorgen. Beim internationalen Datenaustausch und bei Programmiersprachen wird daher praktisch durchgehend der Punkt und nicht das Komma als Trennzeichen verwendet, in diesem Buch (wie allgemein auf Deutsch) allerdings das Komma.

Addition[Bearbeiten]

Rechenart Ausgedrückt als Symbol Namen der Teile Name des Ergebnisses
Addition plus +     2        +      7      =   9
(addieren, erhöhen) Summand + Summand = Summe

Beispiele: a) 35,7 + 59367 + 95382,89 + 567332,76=?       b) 56333,76 + 0,089 + 33727,727 + 9=?

Lösungen
Aufgabe a
2 2 1 2 1 2   1 0
0 0 0 0 3 5 , 1
0 5 9 3 6 7 , 0 0
0 9 5 3 8 2 , 8 9
5 6 7 3 3 2 , 7 6
 7 2 2 1 1 8 , 3 5
     
Aufgabe b
1 1 0 2 1   1 1
5 6 3 3 3 , 7 6 0
0 0 0 0 0 , 0 8 9
3 3 7 2 7 , 7 2 7
0 0 0 0 9 , 0 0 0
 9 0 0 7 0 , 5 7 6

Man schreibt die Zahlen, die man addieren will, untereinander. Die Kommas müssen untereinander sein! Wenn eine Zahl kein Komma hat, dann schreibt man ein Komma am Ende der Zahl.

Um die Aufgabe übersichtlicher zu machen, schreibt man links und rechts der Zahlen Nullen(0), wenn Ziffer (im Vergleich zu den anderen Zahlen) „fehlen“.

Man addiert die Zahlen von jeder Spalte und fängt mit der rechten Spalte an (und dann immer eine Spalte nach links). Die Summe der Ziffer der Spalte schreibt man unterhalb dieser Spalte.

Wenn die Summe der Ziffer in der Spalte mehr als 9 ist, dann schreibt man unterhalb der Spalte nur die letzte Ziffer und die restlichen oberhalb der nächsten Spalte links. Z.B. bei der Aufgabe a ist die Summe der Ziffer der Spalte rechts (mit der man anfängt) 0+0+9+6=15. Man schreibt darunter 5 (die letzte Ziffer) und 1 (15 ohne 5) oberhalb der nächsten Spalte links usw. Hier ist Aufgabe a Schritt zum Schritt gezeigt:

Aufgabe a Schritt zum Schritt gelöst
35,7 + 59367 + 95382,89 + 567332,76=?
Summe01.jpg Summe02.jpg Summe03.jpg
Summe04.jpg Summe05.jpg Summe06.jpg
Summe07.jpg Summe08.jpg Summe09.jpg
Summe10.jpg Summe11.jpg Summe12.jpg
Summe13.jpg Summe14.jpg Summe15.jpg
Summe16.jpg Summe17.jpg Summe18.jpg
Den ganzen Vorgang kann man
auch hier als Animation sehen:
Summe.gif


Subtraktion[Bearbeiten]

Rechenart Ausgedrückt als Symbol Namen der Teile Name des Ergebnisses
Subtraktion minus     65      −      22      =   43
(subtrahieren, reduzieren, vermindern, abziehen) Minuend − Subtrahend = Differenz

Beispiele: a) 9,2-6,7       b) 9,5-6,4       c) 4752,8–203,007

Man schreibt die Zahlen untereinander. Die Kommas müssen untereinander sein! Wenn eine Zahl kein Komma hat, dann schreibt man ein Komma am Ende der Zahl.

Die Zahl oben muss genau so viele Ziffer vor und nach dem Komma haben, wie die Zahl unten. Daher schreibt man rechts der Zahl oben Nullen(0), wenn Ziffer in den Nachkommastellen (im Vergleich zur Zahl unten) „fehlen“.

Man subtrahiert die Zahlen von jeder Spalte (oben minus unten) und fängt mit der rechten Spalte an (und dann immer eine Spalte nach links).

Wenn die Ziffer oben kleiner als die Ziffer unten ist, dann addiert man zu dieser Ziffer 10 und subtrahiert von der nächsten Ziffer oben links eins. In der nächsten Spalte links benutzt man dann oben die reduzierte Ziffer. Beispielsweise:

Aufgaben a und b: 9,2−6,7=?     9,5-6,4=?
SubtrA1.jpg SubtrA2.jpg SubtrA3.jpg
SubtrA4.jpg SubtrA5.jpg SubtrA6.jpg
Das ganze kann man hier auch als Animation sehen:
SubtrA.gif

Bei größeren Zahlen macht man den ganzen Vorgang bei jedem Schritt.

Aufgabe c: 4752,8–203,007=?
SubtrB1.jpg SubtrB2.jpg SubtrB3.jpg
SubtrB4.jpg SubtrB5.jpg SubtrB6.jpg


Das Ganze kann man hier auch als Animation sehen:
SubtrB.gif
Noch ein paar gelöste Beispiele:
Bsp. A
453,803−452,944=0,857
   Bsp. B
504,6−3,6003=500,997
   
Bsp. C
200−199,9998=0,0002
SubtrC1.jpg SubtrC2.jpg SubtrC3.jpg

Multiplikation[Bearbeiten]

Definition der Multiplikation[Bearbeiten]

Rechenart Ausgedrückt als Symbol Namen der Teile Name des Ergebnisses
Multiplikation mal   (×)      9      ⋅      13      =   117
(multiplizieren, vervielfachen, -fach) Faktor  ⋅  Faktor = Produkt

Zunächst einmal erklären wir die Bedeutung der Multiplikation.

bedeutet, dass man mal die zueinander addiert (plus macht). Also . Allerdings spielt bei der Multiplikation die Reihenfolge keine Rolle. . Letzteres () bedeutet drei mal die 5 zueinander addieren: .

Mit Hilfe der Addition kann man ein Multiplikationstabelle erstellen, sie wird das kleine Einmaleins genannt.

das kleine Einmaleins

Multiplikation mit Hilfe der Einmaleins-Tabelle[Bearbeiten]

Mit Hilfe der Einmaleinstabelle [1] kann man Multiplikationen zwischen Zahlen mit einer Ziffer ganz schnell berechnen:

2 mal 7 mit Hilfe der Einmaleinstabelle finden
Zeile "2" wählen
Spalte "7" wählen
Box wo sie sich
treffen wählen
Ergebnis: 14
  1. (die man allerdings schon auswendig lernen könnte)

Das Ganze auch als Animation:

MultiO.gif

Und noch ein paar Beispiele:

Die Reihenfolge Spielt...
keine Rolle! 5x3=3x5
Ebenfalls: 7x8...
... = 8x7!
noch ein Beispiel

Multiplikation von Zahlen mit mehreren Ziffern und Nachkommastellen[Bearbeiten]

   a)       b)       c)       d)       e)       f)       g)       h)

Beispiel a haben wir im Abschnitt über Definition schon beantwortet:

Bevor wir mit den restlichen Beispielen weitermachen, müssen wir zwei Sachen noch erklären.

  1. Bemerkung: Multiplizieren mit Klammern
    Wenn etwas in Mathematik in Klammern steht, ist es so gemeint, dass die Rechnung in den Klammern erst gemacht werden muss. Wenn wir berechnen wollen, rechnen wir erst berechnen, also was in den Klammern steht. . Dann führen wir die Multiplikation aus: . Hätten wir erst gerechnet und dann , wäre das Ergebnis falsch: .
    Das bedeutet dann, dass man die Zahl außerhalb der Klammern erst mit jedem Summand in den Klammern multiplizieren muss und dann diese Produkte addieren. ist nicht . Man muss erst die Zahl außerhalb der Klammern (3) erst mit jedem Summand in den Klammern (2 und 5) multiplizieren und dann diese Produkte (6 und 15) addieren: (also das richtige Ergebnis). Man schreibt:

    oder
  2. Bemerkung: Multiplizieren mit 10
    Wenn man eine Zahl mit 10 multipliziert, ist das Ergebnis diese Zahl mit einer Null auf ihren rechten Seite geschrieben. Das haben wir in der einmaleins-Tabelle gesehen: usw. Leicht denkt man dann, dass das Gleiche mit passiert. Tatsächlich ist gleich einer mit einer dahinter, also .


Im Beispiel b ist es möglich, als Produkt von und zu schreiben. Es steht tatsächlich in der einmaleins-Tabelle, dass ist, also

Daher

(wir haben gerade eben im Beispiel a gesehen, dass ist).

Wir wir in der zweiten Bemerkung (Multiplizieren mit 10) gerade eben gelernt haben, gilt für

Man kann also zusammenfassen:

, also .


Um Beispiel c zu lösen, können wir die erste Bemerkung (Multiplikation mit Klammern) benutzen:

ist

wie wir eben im Beispiel b gesehen haben.

wie man aus der Einmaleins-Tabelle ablesen kann. Somit ist

,

also

.


In der gleichen Weise und mit den gleichen Schritten kann man Beispiel d berechnen:

,

also

.


Aber auch Beispiel e ist dann nicht so schwer, man soll einfach eine Null zum Ergebnis von d dazu schreiben, wie wir in der Bemerkung über Multiplikation mit 10 gelernt haben:


Wenn jetzt mit multipliziert wird, wie im Beispiel f, dann werden die folgenden Schritte gemacht:

(Wir haben hier die Ergebnisse aus den Beispielen e und c benutzt)

ist

wie wir schon bei der Addition gelernt haben. Also:

Es gibt verschiedene Schreibweisen, die diesen Prozess beschreiben.


    oder     (ohne Null)

    und    

    oder    


Wenn man Kommas hat, lässt man die Kommas und die Nullen am Anfang aus und macht die Multiplikation. Im Beispiel g () haben wir insgesamt 8 Nachkommastellen (zwei bei und sechs bei , also 2+6=8 Stellen nach dem Komma insgesamt). Beim Ergebnis der Multiplikation ohne Kommas () fängt man dann mit der Ziffer rechts (hier ) an und zählt nach links so viele Stellen, wie die gesamten Nachkommastellen (hier 8 Stellen). Dort muss beim neuen Ergebnis das Komma stehen. hat aber nur vier Ziffer. Wenn die Zahl weniger Ziffer als die Nachkommastellen hat wie hier, schreibt man erst mehrere Nullen links der Zahl:

Komma 7 Stellen nach links stellen →

Daher:

Wenn man Nullen am Ende der Zahlen hat, dann lässt man diese Nullen aus. Man macht die Multiplikation und schreibt dann wieder die ausgelassenen Nullen dazu. Im Beispiel h () haben wir 4 Nullen (eine bei und drei bei ). Also zum Ergebnis schreibt man noch 4 Nullen dazu: . Also .


Das Folgende Beispiel zeigt die Vorgangsweise genauer und Schritt zum Schritt:

MultiA1.jpg MultiA2.jpg MultiA4.jpg
MultiA5.jpg MultiA6.jpg MultiA7.jpg
Das ganze kann man hier
auch als Animation sehen:
MultiA.gif


Und noch ein Beispiel, diesmal mit zwei Zahlen mit jeweils drei Ziffern:

MultiB1.jpg MultiB2.jpg MultiB3.jpg


Division[Bearbeiten]

Definition der Division[Bearbeiten]

Rechenart Ausgedrückt als Symbol Namen der Teile Name des Ergebnisses
Division durch :  (÷, /)     84      :      7      =   12
(dividieren, teilen) Dividend : Divisor = Quotient

Einfache Division mit Hilfe der Einmaleins-Tabelle[Bearbeiten]

Mit diesem Vorgang kann man Divisionen durchführen, wenn der Divisor höchstens (also kleiner oder gleich) 10 ist und der Dividend höchsten das 10-fache des Divisors (also wenn der Divisor 4 ist, höchsten 40, wenn der Divisor 7 ist, höchstens 70 und so weiter.)

Zum Beispiel 17 : 5
Zeile des Divisors wählen
 
 
17 liegt zwischen 15 und 20
Beide Spalten wählen
 
Schauen, welche Zahlen
oben in den Spalten stehen
 
 
Von beiden Zahlen (3 und 4)
die kleinste wählen.
Das ist das Ergebnis
17 : 5 = 3
Aber 3 mal 5 ist
doch nicht 17
Es gibt einen Rest. Diesen
berechnen wir dann:
3 mal 5 = 15 und 17−15=2
also 17 : 5 = 3 mit Rest 2
Man schreibt:
17:5=3 R 2
Hier als Animation
1x1A.gif

Der Haupt(vor)gang[Bearbeiten]

Der Vorgang der Division, wenn der Dividend eine größere Zahl ist, kann durch vier Schritte beschrieben werden:

  1. ↓ Ziffer runter (ganz links anfangen)
  2. ÷ was runter steht durch den Divisor dividieren (mit Hilfe der Einmaleinstabelle)
  3. × das Ergebnis der Division mit dem Divisor multiplizieren
  4. − dieses Produkt von dem, was "runter steht" subtrahieren. So berechnet man den Rest der Division (Schritt 2)

So einen Vorgang nennt man in Mathematik (und nicht nur) Algorithmus. Die vier Schritte (↓ ÷ × –) werden wiederholt (so was nennt man Iteration). Wenn der Rest null ist und es kein Ziffer mehr am Dividend gibt, dann hört man auf. Es gibt aber auch die Möglichkeit, dass der Rest nie Null wird. Dieser Fall wird später erklärt.

Am besten versteht man den Vorgang durch ein Beispiel (um ihn zu lernen, muss man selbstverständlich üben...). Probieren wir 792:3 zu berechnen:

DivisionA01.jpg DivisionA02.jpg DivisionA03.jpg DivisionA04.jpg
Jetzt wird der Vorgang wiederholt!
DivisionA05.jpg DivisionA06.jpg DivisionA07.jpg DivisionA08.jpg
Jetzt wird der Vorgang noch mal wiederholt!
DivisionA09.jpg DivisionA10.jpg DivisionA11.jpg DivisionA12.jpg

Das ganze in einer Animation:

DivisionAL.gif

Was aber man in der Tat schreibt, sieht doch anders aus! Man schreibt nur gewisse Schritte, der Rest macht man im Kopf oder als Nebenrechnung am Rand. Hier die Schritte, wie sie tatsächlich geschrieben werden:

DivisionA13.jpg DivisionA14.jpg DivisionA15.jpg

und die entsprechende Animation:

DivisionAM.gif

Ein letztes Beispiel:

DivisionA16.jpg DivisionA17.jpg DivisionA18.jpg

und die entsprechende Animation:

DivisionAN.gif

In diesem Fall sagt man, dass 842 durch 5 gleich 168 mit Rest 2 ist. Man schreibt 842:5=168 R 2. Der Rest muss allerdings immer kleiner als der Divisor sein (auch in den Zwischenschritten), sonst hat etwas nicht richtig geklappt. Die Division kann man allerdings weiterführen, wie wir bald lernen werden.

Dividend mit Nullen am Ende[Bearbeiten]

Wenn der Dividend Nullen am Ende hat, kann man sich ein paar Schritte sparen. Schauen wir ein Beispiel:

DivNulA1.jpg DivNulA2.jpg DivNulA3.jpg
DivNulA4.jpg DivNulA5.jpg DivNulA6.jpg

Schauen wir jetzt, wie die richtige Regel lautet:

DivNulB1.jpg DivNulB2.jpg DivNulB3.jpg
DivNulB4.jpg DivNulB5.jpg DivNulB6.jpg

Man kann also die Division aufhören und die restlichen Nullen erst dann schreiben, wenn der Rest zum ersten Mal Null ist!

Wenn der Divisor auch Nullen am Ende hat, kann man vom beiden Divisor und Dividend so viele Nullen streichen, wie die Nullen des Divisors und erst dann die Division durchführen. Beispielsweise ist 7910000:400=79100:4 (in beiden Fällen ist das Ergebnis 19775). Warum das so ist, kann man erst verstehen, wenn man das Kürzen von Brüchen gelernt hat, daher lernen wir es hier zunächst einmal einfach so, als Regel...

Null in der Mitte des Ergebnisses[Bearbeiten]

Division Erklärung Ein Fehler, der oft vorkommt, ist die Nullen in der Mitte des Ergebnisses auszulassen.
Im ersten Bild sieht man den richtigen Vorgang.
 
Für jede Ziffer des Dividents, die runtergebracht wird,
muss ein Ziffer im Ergebnis geschrieben werden!

 
Das richtige Ergebnis ist daher 2008. Im zweiten Bild sieht man den falschen Vorgang.
Selbstverständlich ist 28 nicht gleich 2008 und daher ein falsches Ergebnis!

Null am Anfang des Ergebnisses[Bearbeiten]

DivNA.png Was ist aber, wenn die Null (oder die Nullen) ganz am Anfang des Ergebnisses stehen? In diesem Fall spielt es keine Rolle, ob die Null da steht oder nicht. 059 bedeutet genau die gleiche Zahl wie 59 (allerdings auch genau wie 59,000 und 00059, auf gar keinen Fall aber wie 590 oder 59000...).
 
Wenn man Nullen vor dem Anfang einer Zahl oder nach der letzten Nachkommastelle schreibt, ändert sich die Zahl nicht.
 
47,03=00047,03=47,030000=0047,03000.
 
Das gilt allerdings nur für den Anfang der Zahl oder nach der letzten Nachkommastelle. Wenn man Nullen irgendwo in der Mitte der Zahl schreibt, dann hat man nicht mehr die gleiche Zahl.
47,03 ≠ 407,03 ≠ 470,03 ≠ 47,003    Alle diese Zahlen sind nicht gleich!
Aus diesem Grund kann man am Anfang (und nur am Anfang) der Division mit den ersten zwei (oder drei und so weiter) Ziffern anfangen, wenn die erste kleiner als der Divisor ist. Dieser Vorgang wird im zweiten Bild dargestellt.

Dividend mit Komma (einfach)[Bearbeiten]

DivKENT.jpg Was ist, wenn der Divident schon Nachkommastellen hat? In diesem Fall wird die Division, wie wir sie bisher gelernt haben, mit einer Änderung durchgeführt:
 
Wenn zur nächsten Ziffer nach dem Komma gesprungen werden muss, dann muss man erst ein Komma im Ergebnis schreiben.
 
In unserem Fall ist es nicht wenn man die Ziffer 9 im Dividend erreicht. Das Komma muss geschrieben werden, erst bevor man die nächste Ziffer nach dem Komma (hier die Ziffer 2) runter bringen muss. Erst dann schreibt man das Komma und dann macht man die Rechnung (12:3) und dann schreibt man das Ergebnis dieser Rechnung (4) nach dem Komma. Es gibt kein anderes Komma in der Zahl (also auf gar keinen Fall irgendwo ein zweites Komma schreiben).
Eine Bemerkung noch: Den letzten Rest haben wird hier mit (R) in Klammern geschrieben. Den Begriff Rest benutzt man eigentlich bei ganzzahligen Divisionen (mit Zahlen ohne Nachkommastellen)[1]. 0 ist hier der Teilrest der letzten Teildivision (12:4=3 R 0). Wenn bei einer Division mit Nachkommastellen im Ergebnis Teilrest 0 hat, kann man mit der Division aufhören. Das ist allerdings nur selten der Fall, wie wir gleich lernen werden.
  1. Der genaue Begriff ist allerdings in diesem Fall Modulo

Divisor mit Komma (einfach)[Bearbeiten]

Was ist, wenn der Divisor Nachkommastellen hat, wie zum Beispiel in 236,2875:0,5? In diesem Fall wird das Komma sowohl im Divisor als auch im Dividenden so oft nach rechts verschoben, bis der Divisor keine (notwendige) Kommastelle mehr hat. In unserem Beispiel, wenn das Komma im Divisor (0,5) ein Mal nach rechts verschoben wird, bekommt man die Zahl 5, die keine Nachkommastellen hat. Das Komma wird dann auch im Dividenden (236,2875) ein Mal nach rechts verschoben (also der neue Dividend wird 2362,875 sein). Mit diesen neuen Zahlen kann man die Division ganz normal fortführen, wie im Bild am Rand. Der Prozess ist also:

DivKOR1.jpg
  • Komma in Divisor verschieben, bis er keine Nachkommastelle hat:
  • Komma genauso oft (hier einmal) im Divident verschieben:
  • Division mit den neuen Zahlen durchführen (siehe Bild)

Was ist, wenn der Dividend keine Nachkommastellen hat, beispielsweise 205:0,04?

In diesem Fall denkt man, dass ein Komma am Ende des Dividenden steht, und schreibt so viele Nullen wie notwendig nach dem Komma: 205=205,00 (allerdings gilt auch 205=205,00000 und so weiter). Dann wird der Vorgang wie vorher durchgeführt:

DivKOR2.jpg
  • Komma im Divisor verschieben:
  • Komma genauso oft (hier zweimal) im Dividenden verschieben, bis er keine Nachkommastelle hat:
  • Division mit den neuen Zahlen durchführen (siehe Bild)

Ein letztes Beispiel: 205:0,0004. Hier muss man das Komma sogar viermal verschieben:

DivKOR3.jpg
  • Komma im Divisor verschieben: \ →
  • Komma genauso oft (hier zweimal) im Dividenden verschieben, bis er keine Nachkommastelle hat:
  • Division mit den neuen Zahlen durchführen (siehe Bild)

Dividend ohne Komma, Ergebnis mit Komma (nicht periodisch)[Bearbeiten]

Was ist, wenn die Division nicht genau aufgeht. wie zum Beispiel in 935:4?
DivEKNP2.jpg In diesem Beispiel ist es klar, dass ein Rest geben wird. Die Division kann man aber doch weiter fortsetzen, wie wir bei Zahlen mit Nachkommastellen schon gelernt haben. In diesem Beispiel können wir 935 als Zahl mit Nachkommastellen schreiben (freilich alle Nullen), wie wir schon gelernt haben: 935=935,00... Dann führen wir die Division in der gewöhnlichen Weise durch (siehe Bild). Allerdings kann man in diesem Fall die Nullen im Dividenden gar nicht schreiben, wie im Bild links unten zu sehen ist. In diesem Fall werden Nullen weiter unten geschrieben, bis der Teilrest irgendwann Null wird. Vorsicht aber: Wenn der Dividend zu Ende ist und die erste Null dazu benutzt wird, muss man ein Komma im Ergebnis schreiben!
DivEKNP1.jpg   DivEKNP3.jpg Diesen Prozess (weiter Nullen schreiben) kann man auch benutzen, wenn der Dividend zwar schon Nachkommastellen hat, der Teilrest am Ende aber doch nicht Null ist. In diesem Fall schreibt man Nullen weiter, selbstverständlich ohne ein zweites Komma im Ergebnis zu schreiben!

Dividend ohne Komma, Ergebnis mit Komma (periodisch)[Bearbeiten]

Bisher war es fast immer in den Beispielen so, dass der Teilrest am Ende Null war. Das war kein Zufall, die Beispiele wurden einfach so gewählt, damit sie verständlicher sind. In der Regel ist der Teilrest keine genaue Zahl. Probieren wir es mit dem folgenden Beispiel:

DivEKP1.jpg Wie wir schon gelernt haben, wenn man das Ende der Zahl erreicht und keine Ziffer mehr hat, kann man doch die Division weiterführen: erst eine Null im Ergebnis schreiben und dann eine Null jedes Mal dazuschreiben, bis irgendwann der Teilrest Null wird. In unserem Fall hier passiert so etwas aber nicht. Wie man sieht, wiederholen sich die Zahlen 2 und 7 immer wieder und, wie man hoffentlich versteht, das wird immer so bleiben. Wir haben hier diese Wiederholung mit verschiedenen Farben dargestellt. Die wiederholte Zifferreihenfolge nennt man Periode. Man sagt, dass das Ergebnis von 938 durch 11 gleich 85 Komma 27 periodisch ist. Man bezeichnet die Periode mit einem Strich über der Zifferreihenfolge (oder mit einem Punkt, wenn es nur eine Ziffer ist). Man schreibt also:
DivEKP2.jpg Man braucht die Division nicht weiterführen. Wann kann man aber genau damit aufhören? Wenn man schon mit Null hinzufügen angefangen hat (passiert hier bei der letzten Ziffer der Zahl 938) und der gleiche Teildividend vorkommt, dann kann man aufhören, wie im Bild hier

Kombinationen[Bearbeiten]

Hier finden wir ein paar weiterführende Beispiele zur Vertiefung der Kenntnissen.

DivEKP3.jpg

Probieren wir erst die Division 3706,1:0,00007. Wenn der Divisor ein Komma hat (wie hier 0,00007), dann muss man das Komma sowohl im Divisor also auch im Dividenden so oft nach rechts verstellen, bis der Divisor keine Nachkommastellen mehr hat. Falls der Dividend dann nicht genügende Nachkommastellen hat, werden sie mit Nullen nachgefüllt. Daher ist 3706,1:0,00007 gleich so viel wie 370610000:7

3706,1:0,00007=370610000:7

Letztere Division führen wir auch im Bild durch. Wir fangen dann mit dem Hauptvorgang (in verkürzter Darstellung) an. Da die erste Stelle des Dividenden (3) kleiner als der Divisor ist, kann man weitere Ziffer des Dividenden benutzen (also 37), weil Nullen am Anfang des Ergebnisses (und nur dort) keine Rolle spielen. Diese zwei Stellen wurden mit Hellblau markiert. Da, wo die rote Stelle und der rote rechts-Pfeil im Bild ist, kann man weitere Nullen einführen, nachdem erst ein Komma im Ergebnis geschrieben wird (roter nach-oben-Pfeil und Komma im Ergebnis). Mit Lila (um dem Teildividenden 30) wird darauf aufmerksam gemacht, dass das Ergebnis doch periodisch ist (also der Teildividend 30 und alle andere Teildividenten, die nach ihm kommen, in der gleichen Reihe immer wiederholt vorkommen). Die Periode, wie im Ergebnis wieder mit Lila notiert, ist die Zifferfolge 428591.

Da man aber die Periode im Ergebnis erst nach dem Komma notiert wird, schreibt man nicht

(falsch), sondern

(richtig).

Im vorherigen Beispiel haben wir eine Division durch 11 gesehen. Da bestand die Periode aus zwei Ziffern (27). Im letzten Beispiel (Division durch 7) bestand die Periode aus sechs Ziffern (914285). Bei einer anderer Division (durch 4), gab es wieder keine Periode. Es kann also eine Periode geben oder nicht, und sie kann lang oder kurz sein. Im folgenden Beispiel (938:23) haben wir die Periode nicht mal angegeben, da sie schon aus 22 Ziffern(!) besteht. Es gibt einen Beweis dafür, dass wenn der Divisor und der Dividend ganze Zahlen sind (oder sein können), immer eine Periode entsteht (also eine wiederholte Reihenfolge von Ziffern nach dem Komma) oder ein Teilrest Null (also die Division kann aufhören). Diese Periode kann sehr lang sein, es gibt sie aber in diesem Fall immer.

Im folgenden Beispiel lernen wir allerdings auch dazu genauer, wie man die Division durchführt, wenn der Divisor größer als 10 ist. Wir haben schon eine solche Division gesehen, aber noch nicht erklärt, wie das funktioniert.

DivEKP6.jpg

Grundsätzlich gibt es hier nichts Neues. Man soll wieder die Grundschritten durchführen:

Ziffer runter (ganz links anfangen)
÷ was runter Steht durch den Divisor dividieren ("wie oft der Divisor in den Teildividenden hineinpasst")
× das Ergebnis der Division mit dem Divisor multiplizieren
dieses Produkt von dem, was "runter steht" subtrahieren.

Nun aber werden diese Schritte irgendwo am Rand durchgeführt und jeweils unter dem Teildividenden das Ergebnis der Subtraktion am Ende geschrieben.

Schritt Ziffer runter: Weil die erste Ziffer im Dividend (9) kleiner als der Divisor (23) ist, nehmen wir am Anfang die ersten zwei Ziffer des Dividenden (93)
Schritt ÷ dividieren: 23 passt in 93 viermal hinein (das kann man allerdings bei größeren Zahlen nur raten und ausprobieren). Wie erste Ziffer des Ergebnisses wird daher 4 sein.
Schritt × multiplizieren: Die letzte Ziffer des Ergebnisse (4) wird mit dem Divisor multipliziert: 4×23=92.
Schritt subtrahieren: Das Ergebnis der Multiplikation (92) wird aus dem vorläufigen Teildividenden (93) subtrahiert (93−92=1). Allein das Ergebnis der Subtraktion (hier 1) wird dann unter den Teildividenden geschrieben. Im Bild haben wir allerdings die zwei letzten Schritten am Rand links zusammengefasst (93−4×23=1).

Diese Schritte werden dann wiederholt, bis man irgendwann die Periode entdeckt. Hier haben wir allerdings schon ziemlich bald aufgehört (wie schon erwähnt, ist die Periode in diesem Beispiel sehr lang...).

DivEKP4.jpg
DivEKP9.jpg

Im folgenden Beispiel ist der Divisor wieder größer als 10, wir haben aber hier die Teilschritte des Hauptvorgangs (↓ ÷ × −) nicht am Rand geschrieben. Die Division lautet 4,52:1,3, man soll also erst das Komma verschieben: 4,52:1,3=45,2:13. Letztere Division wird im Bild gezeigt. Wieder muss man mit zwei Ziffern anfangen. Sofort nach der ersten Ziffer im Ergebnis muss man ein Komma schreiben (roter Pfeil). Und wieder gibt es eine Periode (wenn der Teildividend 100 wiederholt wird), die Ziffernfolge 769230. Die Periode besteht hier (wie bei der Division durch 7 am Anfang dieses Teilkapitels) aus sechs Ziffern. Also . Hier ist zu beachten, dass nicht alle Ziffern nach dem Komma die Periode sind! Die Periode fängt in diesem Fall erst nach der ersten Nachkommastelle an.

Wenn allerdings die Division 0,0452:13 durchgeführt wird, muss man im Ergebnis schon mit Null und Komma anfangen (Bild links)! Der Rest des Vorgangs bleibt unverändert. Vorsicht aber: in diesem Fall (wenn Komma schon am Anfang steht), darf man Nullen nicht auslassen! Die Periode allerdings fängt in diesem Fall noch weitere Stellen nach dem Komma an: .

DivEKP5.jpg
DivEKP7.jpg

Bei der Division 330,103:11 (links) finden wir noch ein paar Neuigkeiten. Die Periode besteht zwar wieder aus zwei Ziffern wie in der vorherigen Division durch 11, diesmal sind es aber die Ziffern 36 (und nicht 27). Es gibt in dieser Division einige Nullen dazwischen, die man selbstverständlich NICHT auslassen darf und dazu ein Komma unter diesen Nullen.

Bei der Division 391,204:11 (rechts) stellt man fest, dass die Division durch 11 sogar auch genau ausgehen kann (das stimmt ja für alle Divisoren, die ganzzahlig, also ohne Komma, sind). Wenn der Teilrest Null ist, ist der Vorgang fertig. Wann die Division durch bestimmte Zahlen genau aufgeht, lernt man im Kapitel über Teilbarkeit.

DivEKP8.jpg

Im letzten Beispiel können wir sehen, dass die Periode auch nur eine Ziffer sein kann (hier 6). In diesem Beispiel fängt die Periode wieder erst an der dritten Nachkommastelle an. Man schreibt:

Punktrechnungen mit 10, 100, 1000 und so weiter[Bearbeiten]

  • Wenn man eine Zahl mit 10, 100, 1000 und so weiter multipliziert, dann verschiebt sich das Komma der Zahl einfach nach rechts (die Zahl wird größer), so oft, wie es Nullen gibt:
3,45 · 10 = 34,5    (Mal 10; in 10 gibt es eine Null, Komma wird einmal nach rechts verschoben)
54 · 10000 = 54,0000 · 10000 = 540000    (Mal 10000; in 10000 gibt es vier Nullen, Komma wird 4 Mal nach rechts verschoben; Allerdings gibt es kein Komma am Ende der Zahl 54; man schreibt ein Komma am Ende der Zahl und dazu nach dem Komma so viele Nullen, wie man will, und schiebt dann das Komma)
0,008 · 100 = 0,8    (Mal 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach rechts verschoben)
  • Wenn man eine Zahl mit 10, 100, 1000 und so weiter dividiert, dann verschiebt sich das Komma der Zahl einfach nach links (die Zahl wird kleiner), so oft, wie es Nullen gibt:
3,45:10 = 0,345    (Durch 10; in 10 gibt es eine Null, Komma wird einmal nach links verschoben; allerdings gibt es links vor 3,4 keine Null, man schreibt also links von der Zahl so viele Nullen, wie man will, und schiebt dann das Komma)
54:10000 = 0,0054    (Durch 10000; in 10000 gibt es 4 Nullen, Komma wird 4 Mal nach links verschoben; allerdings gibt es links vor 54 kein Komma, man schreibt also links von der Zahl ein Komma und so viele Nullen, wie man will, und schiebt dann das Komma)
0,008:100 = 0,00008    (Durch 10; in 10 gibt es eine Null, Komma wird 1 Mal nach links verschoben; allerdings muss man zuerst am Ende der Kommazahl weitere Nullen schreiben)
900000:100 = 9000,00 = 9000    (Durch 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach links verschoben; da es kein Komma am Ende der Zahl gibt, muss man erst das Komma schreiben)


Textaufgaben[Bearbeiten]

Mit den Grundrechenarten kann man auch Textaufgaben bilden. Bei diesen Aufgaben ist in der Regel die Bedeutung der Wörter nicht so wichtig, wie der Aufbau des Satzes:

  • Dividieren Sie die Differenz von 125 und 20 mit der Summe von 4 und 3.

Schauen wir mal, wie der Satz aufgebaut ist. Erst steht, dass man dividieren muss (also durch machen). Was muss man aber dividieren? Was steht nach dem Wort dividieren? Die Zahlen 125 und 20? NEIN! Nach dem Wort dividieren (durch machen) steht das Wort Differenz! Man muss also erst eine Differenz berechnen! Welche Differenz? Die Differenz von 125 und 20(was nach dem Wort Differenz steht)! Das steht ja auch da! Die Differenz (Minus) von 125 und 20 ist 125−20=105. Diese Differenz muss man durch irgendwas dividieren. Ist das durch 4, durch 3 oder doch was anderes? Doch was anderes! Die Differenz muss man mit der Summe (Plus machen) dividieren. Man muss also erst eine Summe berechnen, die Summe von 4 und 3 (was nach dem Wort Summe steht), 4+3=7. Man soll also die Differenz (105) durch die Summe (7) dividieren:

105:7=15. 15 ist also die Antwort zur Aufgabe!

Vorrang der Rechenarten[Bearbeiten]

Der Haupt(vor)gang[Bearbeiten]

Bei einer Rechnung muss die Reihenfolge der Rechnungen klar sein, sonst ist das Ergebnis nicht eindeutig:

:

  • Wenn man von links nach rechts liest, dann: also Ergebnis 7.
  • Wenn man von rechts nach links liest, dann: also Ergebnis 15.

Das Ergebnis ist nicht das Gleiche! In den meisten Sprachen der Welt fängt man links an. Dann ist das richtige (und eindeutige) Ergebnis 7. Nur bei Addition oder Multiplikation spielt die Leserichtung und allgemein die Reihenfolge keine Rolle:

In diesem Buch wird die Deutsche Leserichtung benutzt, also von links nach rechts.

Was ist, wenn man Strich- und Punktrechnungen gleichzeitig hat? Spielt hier die Reihenfolge wieder keiner Rolle, wie bei der Addition oder der Multiplikation?

Machen wir die Rechnung einfach von links nach rechts, ist das Ergebnis:

Ändern wir die Reihenfolge der Multiplikation:

und machen wir die Rechnung einfach von links nach rechts, bekommen wir ein anderes Ergebnis:

Es gilt auch:

  • Wenn man erst die Strichrechnung macht, ist das Ergebnis:
  • Wenn man erst die Punktrechnung macht, ist das Ergebnis:

Das Ergebnis ist wieder unterschiedlich.Ein unterschiedliches Ergebnis kommt auch dann vor, wenn die Reihenfolge bei der Addition geändert wird und die Multiplikation erst gemacht wird:

und

Hier haben wir die Reihenfolge bei der Addition geändert (einmal steht 2+3 und dann 3+2). Machen wir in beiden Fällen erst die Multiplikation:

und

Das Ergebnis ist wieder unterschiedlich. Wenn wir aber einen mathematischen Ausdruck haben, wollen wir ein eindeutiges Ergebnis. Damit das Ergebnis eindeutig ist, muss es eine Regel geben. In Mathematik haben die Punktrechnungen (mal und durch) immer Vorrang vor den Strichrechnungen (Plus und Minus). Man muss zuerst die Punktrechnungen machen und dann die Strichrechungen. Also ist hier 14 das richtige Ergebnis. Wenn es also in einer Rechnung Strich- und Punktrechnungen gibt, dann muss man zuerst die Punktrechnungen machen!

Wenn es aber eine Klammer gibt, dann muss man erst die Rechnung in der Klammer machen:

Hier ist das Ergebnis doch

...und hier ist das Ergebnis wieder .


Wenn in einem mathematischen Ausdruck mehrere Rechenarten vorkommen, dann muss eine Regel gelten, damit das Ergebnis eindeutig ist. Die grundlegende Regel lautet:

Klammer vor Punkt vor Strich.

(Zu Erinnerung: Punktrechnungen sind mal und durch, Strichrechnungen sind plus und minus)

Wenn es wiederum innerhalb einer Klammer mehrere Rechnungen gibt, dann muss man die Klammer erst machen und in der Klammer an die Regeln halten:

Unterstreichen wir zuerst die Rechnungen in den Klammern:

    In beiden Klammern muss man zuerst die Punktrechnung machen
    und dann die Strichrechnung in Klammer
    Man kann also die Klammer durch das jeweilige Ergebnis ersetzen
 
    Kompakter geschrieben ist die Rechnung jetzt:

Hier muss man erst die Punktrechnungen machen


Hier das Ganze noch einmal übersichtlicher und in einer Animation:

KvPvS1.jpg
KvPvS2.jpg
KvPvS3.jpg
KvPvS4.jpg
KvPvS5.jpg
KvPvS6.jpg
KvPvS7.jpg
Animation
Alle Schritte kompakt dargestellt:
   



Komplexeres Beispiel[Bearbeiten]

    In der großen Klammer hat die kleine Klammer Vorrang (Klammer vor Punkt vor Strich)
    In der kleinen Klammer erst Punkt und dann Strichrechnung
7   +               Kleine Klammer durch ihr Ergebnis in der großen Klammer ersetzen
   +               In den verbliebenen Klammern erst Punkt- und dann Strichrechnungen
          Man kann also die Klammer durch das jeweilige Ergebnis ersetzen

(an Plus-Minus Regeln halten!)

KvPvSB01.jpg
KvPvSB02.jpg
KvPvSB03.jpg
KvPvSB04.jpg
KvPvSB05.jpg
KvPvSB06.jpg
KvPvSB07.jpg
KvPvSB08.jpg
KvPvSB09.jpg
KvPvSB10.jpg
KvPvSB11.jpg
KvPvSB12.jpg
KvPvSB13.jpg

(an Plus-Minus Regeln halten!)

und die entsprechende Animation:

KvPvSB.gif

Bruchrechnungen[Bearbeiten]

Definitionen[Bearbeiten]

Bruch:       


Es gilt:      (Ein Bruch ist wie eine Division)

Unterschied: Ein Bruch ist eine Zahl. Eine Division ist eine Rechenart zwischen zwei Zahlen.

Echter Bruch: Wenn der Nenner größer als der Zähler ist:

Unechter Bruch: Wenn der Zähler größer als der Nenner ist:

Gleichnamige Brüche: Brüche, die den gleichen Nenner haben (z.B. ,   )

Gemischte Zahlen[Bearbeiten]

Eine gemischte Zahl besteht aus einer natürlichen Zahl und einem echten Bruch:  

Gemischte Zahl in unechten Bruch umwandeln[Bearbeiten]

Um eine gemischte Zahl in einen Bruch umzuwandeln, multipliziert man die natürliche Zahl mit dem Nenner des Bruches und addiert das Ergebnis zum Zähler. Das neue Ergebnis ist dann der Zähler des neuen Bruches, der Nenner bleibt der gleiche:

Unechten Bruch in gemischte Zahl umwandeln[Bearbeiten]

Um einen unechten Bruch in eine gemischte Zahl umzuwandeln, dividiert man den Zähler mit dem Nenner (ohne Nachkommastellen). Das Ergebnis der Division ist der „Zahlteil“ der gemischten Zahl, der Rest ist der Zähler des „Bruchteils“, der Nenner bleibt der gleiche:

Bruchgemisch1.jpg     (siehe Division)

Folgendes Beispiel setzt die Anwendung eines Taschenrechners voraus:

Eintausend-achthundert-fünfundneunzig Dreiundzwanzigstel sind so viel wie zweiundachtzig Ganzen und neun Zwanzigstel.

Das Ergebnis der Division 1895:23 mit dem Taschenrechner ist 82 Komma einige Nachkommastellen. Dieses Ergebnis ohne Nachkommastellen (82) wird die ganze Zahl in der gemischte Zahl sein. Das Ergebnis ohne Nachkommastellen (82) wird dann mit den Nenner (hier 23) multipliziert: 82·23=1886. Dieses Produkt (1886) wird dann vom Zähler (1895) subtrahiert: 1895-1886=9. Diese Differenz (9) stellt den neuen Zähler in der gemischten Zahl dar, der Nenner bleibt unverändert (23).



Erweitern und Kürzen[Bearbeiten]

Erweitern ist, wenn man sowohl Zähler als auch Nenner eines Bruches mit der gleichen Zahl multipliziert. Der neue Bruch bleibt dann doch gleich:

Kürzen ist, wenn man sowohl Zähler als auch Nenner eines Bruches mit der gleichen Zahl dividiert. Der neue Bruch bleibt dann doch gleich:

In all diesen Fällen arbeitet man mit natürlichen Zahlen (positive Zahlen ohne Komma).

Erklärung des Erweiterns und des Kürzens[Bearbeiten]

 
StrichrechnungBruch 02.jpg
 
7
2
 
 
 
 
StrichrechnungBruch 04.jpg 5
Vergleichen wir die beiden Bilder. Im ersten Bild wird das Ganze im geteilt, zwei Teile davon werden dunkel dargestellt. Das ist also eine Repräsentation des Bruches . Im zweiten Bild wird das Ganze nicht nur in (waagerecht) sondern auch in (senkrecht) geteilt. Dadurch entstehen im Ganzen kleine "Quadrate". Jedes kleines Quadrat ist daher des Ganzen. Die dunkle Region () beinhaltet allerdings solche "Quadrate" also . Man folgt daraus, dass ist. Man hat in diesem Fall sowohl den Zähler als auch den Nenner mit der gleichen Zahl (hier ) multipliziert: . Diesen Prozess nennt man erweitern.


StrichrechnungBruch 05.jpg   StrichrechnungBruch 03.jpg   Der Gegenprozess ist dann das Kürzen. Im ersten Bild wird das Ganze in Zeilen und Spalten also insgesamt in kleine "Quadrate" geteilt (das könnte selbstverständlich eine andere Austeilung sein). Die blaue Region ist solche Teile, also . Wenn man jetzt die waagerechte Austeilung (in Fünf Zeilen geteilt) entfernt (zweites Bild), dann ist das ganze nur in (Spalten) geteilt, wobei jetzt die blaue Region Spalten davon ist also . In diesem Fall haben wir sowohl Zähler als auch Nenner durch die gleichen Zahl (hier ) dividiert: . Diesen Prozess nennt man kürzen.



Strichrechnungen[Bearbeiten]

Wenn man zwei Brüche addiert oder subtrahiert, dann muss man auf den Nenner aufpassen:

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern: Zähler und Nenner des ersten Bruches mit Nenner des zweiten erweitern (blaue Pfeile) und entsprechend für den zweiten Bruch (rote Pfeile)!

Bruchstrich1.jpg

Dabei ist es nicht wichtig, ob man minus oder plus zwischen den Brüchen hat. Allein der Nenner (ob er der gleiche oder nicht ist) spielt einer Rolle.


Erklärung der Strichrechnungen[Bearbeiten]

BruchStrichGlNen.svg

Wenn man den gleichen Nenner hat, ist es leicht mit einer Figur zu verstehen, warum die angegebene Regel gilt. Man kann sehen:

wenn zwei Schokoladentafeln in 7 geteilt werden und von einer Schokoladentafel 3 Teile (drei Siebtel) und von der anderen 2 Teile (zwei Siebtel) genommen werden, hat man insgesamt 5 Teile (also fünf Siebtel).


Was ist aber, wenn man nicht den gleichen Nenner hat, wie z.B. mit    ?

Wie kann man das zeigen, dass das Ergebnis    sein soll?

Einfach! Man teilt die erste Figur auch in 7 Teilen und die zweite in 5:

Jedes kleines Quadrat in den neuen Figuren ist    des Ganzen. Wir haben in beiden Figuren 5·7=35 kleine Quadrate. Wie man sehen kann, sind die    gleich so viel wie    und die    gleich so viel wie    . Da wir jetzt gleichnamigen Brüchen haben, kann man die Zähler addieren:

Punktrechnungen[Bearbeiten]

Bei einer Multiplikation zwischen zwei Brüchen multipliziert man Zähler mit Zähler und Nenner mit Nenner (Oben mal Oben, Unten mal Unten):

Bei der Division von zwei Brüchen multipliziert man den ersten Bruch mit dem Kehrwert des zweitens Bruches:

   ( ist der Kehrwert von  )

Hier spielt der Nenner keine Rolle (im Gegenteil zu den Strichrechnungen).

Doppelbrüche[Bearbeiten]

Ein Doppelbruch ist wie die Division zwischen zwei Brüchen. Der Bruch oben wird durch den Bruch unten dividiert, also mit dem Kehrwert des Bruches unten multipliziert:


Arbeiten mit ganzen Zahlen und Brüchen[Bearbeiten]

Die Rechnungen mit ganzen Zahlen und Brüchen sind leicht, wenn man den vorherigen Stoff schon verstanden hat.

Strichrechnungen

Um eine ganze Zahl in einen Bruch umzuwandeln, reicht das Produkt der ganzen Zahl mit dem Nenner des Bruches als Zähler im Bruch zu schreiben:

Das sollte schon klar sein, da 15:5=3 ist... Um das zu veranschaulichen reicht es 3 ganzen jeweils in 5 geteilt nebeneinander zu stellen. Dann werden genau 3×5=15 Fünftel aufgezählt!

5over5.jpg 5over5.jpg 5over5.jpg

Hat man einmal die ganze Zahl als (gleichnamigen) Bruch, kann man auch eine entsprechende Strichrechnung durchführen, z.B.:

Punktrechnungen

2over5.jpg   2over5.jpg   2over5.jpg   2over5.jpg

Genau so leicht ist die entsprechende Multiplikation. Im ersten Bild werden zwei Fünftel dargestellt und diese werden 4 mal nebeneinander dargestellt. Insgesamt sind es daher 4×2=8 Fünftel.

Um das Produkt einer ganzen Zahl mit einem Bruch zu berechnen, reicht es das Produkt der ganzen Zahl mit dem Zähler des Bruches in einem neuen gleichnamigen Bruch zu schreiben.

Die Division ist dann auch leicht:

Um den Quotient einer ganzen Zahl durch einem Bruch zu berechnen, reicht es das Produkt der ganzen Zahl mit dem Kehrwert des Bruches zu berechnen.

Kombinationen[Bearbeiten]

Bei Kombinationen von Bruchrechnungen muss man auf der Reihenfolge (siehe Vorrang der Rechenarten) aufpassen:


Man muss zuerst die Klammern machen:

  • Erste Klammer

   Hier haben wir nur eine Strichrechnung und zwar mit dem gleichen Nenner.


  • Zweite Klammer

      Hier müssen wir erst die Punktrechnung machen und dann die Strichrechnung.

      Hier soll man erst kürzen.

     



Jetzt kann man in der Rechnung die Ergebnisse für die Klammern einsetzen:

Textaufgaben zu den Bruchrechnungen[Bearbeiten]

Die Textaufgaben mit Bruchrechnungen werden i.d.R. leicht in die mathematische Sprache umgewandelt:

In einem Staat mit 8,46 Millionen Einwohner trinkt jeder Einwohner durchschnittlich vier Neuntel Liter Milch täglich.
    1. Wie viel Liter werden dann täglich konsumiert?
    2. Der Gewinn für die Eigentümer ist 0,8¢/Liter Milch. Wie viel ist der tägliche Gewinn? Finden Sie ihn gerechtfertigt?
  1. Im einem anderen Staat gibt es 4 Supermarktketten. Zusammen gewinnen die Eigentümer 105000€ täglich. Eigentümer A bekommt zwei Fünftel des Gewinns, Eigentümer B ein Drittel und den Rest teilen die anderen zwei Eigentümer C und D. Wie viel gewinnt täglich jeder Eigentümer? Finden Sie den Gewinn gerechtfertigt?

Aufgabe a lässt sich leicht berechnen:

Da der Gewinn pro Liter 0,8¢ ist, soll man 0,8 mit 3,76 Mil. multiplizieren (dann hat man ¢) und dann durch 100 dividieren (dann hat man €):

Ob dieser Gewinn gerechtfertigt ist, soll jeder für sich entscheiden (die Eigentümer werden ihn sicherlich gerechtfertigt finden, sonst würden sie ihn nicht machen...).

Aufgabe b ist ebenfalls nicht besonders schwer:

Eigentümer A:

Eigentümer B:

Eigentümer C und D teilen den Rest:

Primfaktorzerlegung[Bearbeiten]

Definitionen[Bearbeiten]

Primzahlen sind die natürlichen Zahlen (Zahlen ohne Komma und Minus), die nur durch 1 und sich selbst geteilt werden können. (teilbar: dividieren, ohne dass eine Kommazahl entsteht)

2 3 4 5 6 7 8 9 10 11 12 13
geht
auch
durch
2 2
3
2
4
3 2
5
2
3
4
6
Prim-
zahl
 ✔   ✔  ✘   ✔   ✘   ✔   ✘   ✘   ✘   ✔   ✘   ✔

Z.B.:

2 ist nur durch 2 und 1 teilbar und daher eine Primzahl.

3 ist nur durch 3 und 1 teilbar und daher eine Primzahl.

4 ist nur durch 4 und 1, aber auch durch 2 teilbar und daher keine Primzahl.

5 ist nur durch 5 und 1 teilbar und daher eine Primzahl.

6 ist nur durch 6 und 1, aber auch durch 2 und 3 teilbar und daher keine Primzahl.

usw.


Was bedeutet in diesen Sätzen "teilbar"? Eine Zahl ist durch eine andere Zahl teilbar, wenn das Ergebnis der Division kein Nachkommastellen enthält.

Nehmen wir die Zahl 5.

 

Dividiert man 5 durch jede größere natürlich Zahl (also: 6,7,8…), erhält man als Ergebnis eine Kommazahl kleiner als 1 (also Null-Komma-irgendwas). Beispielsweise:

Teilbar ist die Zahl 5 also nur durch eins (5:1=5) und sich selbst (5:5=1). Da bei unserem Beispiel alle anderen Ergebnisse ein Komma enthalten ist die Zahl 5 eine Primzahl.

Für 6 hingegen ist das nicht der Fall. 6 ist selbstverständlich durch 1 und 6 teilbar, aber eben auch durch 2 (6:2=3) und durch 3 (6:3=2). Daher ist 6 KEINE Primzahl.


Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19, 23 ...

Faktor ist ein Teil einer Multiplikation.

Primfaktorzerlegung (PFZ) bedeutet daher, eine Zahl als Produkt von Primzahlen auszudrücken (die dann Faktoren sind; Primzahlen die auch Faktoren sind, nennt man Primfaktoren; wenn man eine Zahl in Primfaktoren zerlegt, hat man die PFZ).

Vorgangsweise[Bearbeiten]

Nehmen wir die Zahl 7800. Wir versuchen sie durch die Primzahlen der Reihe nach und soweit es jedes Mal geht zu dividieren. Die erste Primzahl ist 2 7800 : 2 = 3900. Geht es weiter durch 2? Ja! 3900 : 2 = 1950. Geht es noch weiter? Ja! 1950:2=975. Weiter durch 2 geht es aber nicht.

Probieren wir dann durch 3. Geht es? Ja! 975:3=325. Geht es weiter durch 3? Nein! (325:3 = 108,33

Probieren wir die nächste Primzahl: 325:5=65. Das geht nochmal: 65:5=13.

Die nächsten Primzahlen sind 7 und 11, da geht es nicht. Es geht wieder durch 13 13:13=1.

Hier sind wir fertig. Wir haben 7800 drei mal durch 2, ein mal durch 3, zwei mal durch 5 und ein mal durch 13 dividiert und dann war das Ergebnis 1. Es gilt daher: 7800:2:2:2:3:5:5:13=1 und umgekehrt (Gegenrechnung) 7800=2·2·2·3·5·5·13.

Schreibweise[Bearbeiten]

Den ganzen Prozess Schritt zum Schritt kann man so darstellen:

7800   
 
 
 
 
 
 
 
7800     2
3900   
 
 
 
 
 
 
7800     2
3900     2
1950   
 
 
 
 
 
7800     2
3900     2
1950     2
975     3
325     
 
 
 
7800     2
3900     2
1950     2
975     3
325     5
65     
 
 
7800     2
3900     2
1950     2
975     3
325     5
65     5
13     
 
7800     2
3900     2
1950     2
975     3
325     5
65     5
13     13
1   

Anwendungen[Bearbeiten]

Brüche kürzen[Bearbeiten]

Wir haben schon das Kürzen von Brüchen gesehen:

Hier sieht man sofort, dass man sowohl den Zähler als auch den Nenner durch 5 teilen kann. Was ist aber, wenn man große Zahlen hat. In diesem Fall ist es besser, die PFZ der Zahlen erst durchzuführen:

 
?
6664     2
3332     2
1666     2
833     7
119     7
17     17
1   
8820     2
4410     2
2205     3
735     3
245     5
49     7
7     7
1   
Man schreibt Zähler und Nenner als
Produkt von Primzahlen und kürzt
den Bruch (also Primzahlen, die oben
und unten vorkommen, werden gestrichen)
 


Teilbarkeit[Bearbeiten]

Bei der PFZ haben wir immer probiert, eine Zahl durch einer Primzahl zu teilen. Kann man wissen, ob das geht, ohne die Division zu machen? Für viele Primzahlen geht das. Die einfachsten Regel sind für 2, 3 und 5:

Durch 2[Bearbeiten]

Wenn eine Zahl in 0, 2, 4, 6, 8 endet (gerade Zahl), dann ist sie durch 2 teilbar:

2004 und 33338 sind durch 2 teilbar: 2004 endet in 4, 33338 in 8.

2005 oder 486863 sind nicht durch 2 teilbar: 2005 endet in 5 und 486863 in 3.

Durch 5[Bearbeiten]

Wenn eine Zahl in 0 oder 5 endet, dann ist sie durch 5 teilbar:

409 und 85923 sind nicht durch 5 teilbar (sie enden in 9 bzw. in 3).

490 und 89235 hingegen sind durch 5 teilbar (sie enden in 0 bzw. in 5)

Durch 3 (oder 9)[Bearbeiten]

Wenn die Summe der Ziffer[1] einer Zahl durch 3 (bzw. 9) teilbar ist, dass ist die Zahl auch durch 3 (bzw. 9) teilbar:

135 ist durch 3 teilbar: 1+3+5=9 (9:3=3, die Summe der Ziffer 9 ist durch 3 teilbar, also auch die Zahl 135). Sie ist auch durch 9 teilbar (9 ist durch 9 teilbar)

3564825 ist durch 3 teilbar: 3+5+6+4+8+2+5=33, 33:3=11. 33 ist durch 3 teilbar, daher auch 3564825. 33 ist aber nicht durch 9 teilbar, also 3564825 auch nicht.

3564824 ist nicht durch 3 oder 9 teilbar: 3+5+6+4+8+2+4=32, 32 ist nicht durch 3 oder 9 teilbar.

35644825 ist sowohl durch 3 als auch durch 9 teilbar: 3+5+6+4+4+8+2+4=32, 32 ist durch 3 und 9 teilbar.

Durch 7[Bearbeiten]

Um zu verstehen, wie man herausfindet, ob eine Zahl durch 7 teilbar ist, machen wir ein Beispiel. Nehmen wir die Zahl 4445. Man teilt sie in Teilen am Ende anfangend und jedes mal zwei Ziffer nehmend: 44 | 45. Wenn die Summe vom doppelten des rechten teils und vom linken Teil durch 7 teilbar ist, dann ist auch die ganze Zahl: 2·44+45=133. Wenn man nicht sofort sehen kann, ob 133 durch 7 teilbar ist, kann man den Vorgang wiederholen: 133 in zwei Teilen → 1 | 33 2·1+33=35. 35 ist durch 7 teilbar, daher auch 133 und 4445. Bei größeren Zahlen muss man den Vorgang wiederholen. Probieren wir es mit einer größeren Zahl: 437381 43 | 73 | 81 2·43+73=159 2·159+81=399 → 3 | 99 3·2+99= 105 → 1 | 05 1·2+05=7 7 ist offenbar durch 7 teilbar also auch 105 und 399 und 437381! Man muss sagen: diese Regel kann doch länger dauern, als die eigentliche Division zu machen...

Durch 11[Bearbeiten]

Für die Teilbarkeit durch 11 gibt es eine Regel: wenn die Differenz der alternierenden Summe der Ziffer einer Zahl 0 oder durch 11 teilbar ist, dann ist die Zahl auch durch 11 teilbar. Beispiel: 981607. Man nimmt die Summe der ersten, der dritten und der fünften (alternierend) Ziffer 9+1+0= 10 und die Summe der zweiten, der vierten und der sechsten (alternierend) Ziffer 8+6+7=21. Die Differenz der beiden Summen ist 21-10=11, was durch 11 teilbar ist. Daher ist auch 981607 durch 11 teilbar!


Schlussrechnung[Bearbeiten]

Direkte Proportionalität[Bearbeiten]

Fangen wir direkt mit einem Beispiel an.

  • 5 Tische kosten 315€. Wie viel kosten 2 Tische?

Hier spricht man von einer sogenannten direkte Proportionalität. Weniger Tische werden weniger Geld kosten. Das Beispiel besteht aus zwei Sätze:

was gegeben ist: „5 Tische kosten 315€“. Diese Daten schreibt man auf ein Zeile nebeneinander. Man schreibt also am Anfang:
5 Tische ... 315€
was gefragt ist: „Wie viel kosten 2 Tische?“ Hier ist der Preis der Tische in € gefragt. Man schreibt eine zweite Zeile unter die erste: Dabei schreiben wir das Gefragte (Preis der Tische) als x und die Anzahl der Tische unter der Anzahl Tische von der ersten Zeile:
5 Tische ... 315€
2 Tische ... x


Man fängt mit der gefragten Größe an (hier €), also mit der Zahl, die an der gleichen
Spalte mit x steht, und multipliziert diese Zahl mit der Zahl schräg gegenüber.

315·2=630.

Das Ergebnis dividiert man mit der verbliebenden Zahl (hier 5).

630:5=126

Jetzt kommt die Frage: 126 was? Was haben wir hier gerechnet? Sicherlich nicht Frösche und auch nicht Äpfel. Wie kann man herausfinden, was hier gerechnet wurde? Eine Möglichkeit ist es, die folgende Frage zu stellen: „Wieviel kosten 2 Tische?“ Kosten sind gefragt, also €. Das Ergebnis ist daher der Wert in €. Ein anderer Weg ist es darauf zu schauen, wo x steht: Es steht unterhalb von „315€“. Wir haben gesagt, dass in jeder Spalte die Sachen (in Mathematik „Einheiten“ genannt) übereinstimmen müssen. Unterhalb von € müssen € stehen. Daher sollte die Einheit von x auch € sein. Somit ist die Antwort:

„Zwei Tische kosten 126€.“

Der ganze Prozess noch einmal Schritt für Schritt:

Schluss1.jpg
Schluss2.jpg
Schluss3.jpg
Schluss4.jpg
Schluss5.jpg
Schluss6.jpg
Schluss7.jpg
Schluss8.jpg

und die entsprechende Animation:

Schluss.gif

Noch ein Beispiel:

3,5 Liter eines Stoffes wiegen 14,7 kg.

a) Wie viel wiegen 0,0175 Liter?
b) Wie viel Liter sind 3850kg?


Hier gibt es zwei Fragen, das gegebene ist aber in beiden Fällen das gleiche, nämlich der erste Satz.

a) Für die erste Frage schreiben wir das gegebene an einer Zeile und das gefragte darunter (gleiche Sachen unter gleichem):

     

Die Zahl, die an der gleichen
Spalte mit x steht, mal die Zahl schräg
gegenüber und durch die andere Zahl
:
  

Noch einmal stellt sich die Frage: 0,735 was? Was haben wir hier gerechnet? Wieso haben wir kg geschrieben? Die Frage war „Wie viel wiegen 0,0175 Liter?“ Also muss die Einheit vom Ergebnis kg sein. Wenn wir die Schlussrechnung betrachten, sehen wir ebenfalls, dass x unterhalb von „14,7 kg“ steht. In einer Spalte müssen die Einheiten übereinstimmen, unterhalb von kg müssen gleichfalls kg stehen. Somit ist die Antwort:

„0,0175 Liter des Stoffes wiegen 0,735kg.“


b) Für die zweite Frage schreiben wir wieder das gegebene in einer Zeile und das gefragte darunter (gleiche Sachen (Einheiten) unter gleiche):

     

Ob man die Liter links oder rechts schreibt oder das gegebene oben oder unten, spielt keiner Rolle. Wichtig ist: das Gegebene in einer Zeil und gleiche Sachen (Einheiten) in der gleichen Spalte!

     

In diesen Aufgaben ist es wichtig zu verstehen: Man braucht nicht wissen, was die Wörter bedeuten! Man soll einfach die Struktur der Sätze der Aufgabe verstehen!


Indirekte Proportionalität[Bearbeiten]

In der direkten Proportionalität haben wir gesehen, wie man vorgeht, wenn zwei Größen gleichzeitig größer oder kleiner werden. Wenn man mehr von einer Ware kaufen will, dann muss man auch mehr bezahlen. Wenn man weniger kaufen will, dann zahlt man auch weniger. Wenn man mehr kg von einem Stoff hat, dann hat man auch mehr Liter des Stoffes. Es gibt aber auch Fälle, bei denen die Erhöhung einer Größe die Verminderung einer anderen bedeutet:

  • 3 Arbeiter brauchen 15 Stunden, um ein Haus mit Fliesen zu verlegen. Wie viel Zeit brauchen dann 5 Arbeiter?

1 Arbeiter würde in diesem Fall mehr Zeit brauchen. Es gibt für einen Arbeiter viel mehr Boden zu verlegen, wenn er alleine arbeitet. Also weniger Arbeiter brauchen mehr Zeit. Das ist also KEINE direkte sondern eine indirekte Proportionalität.

Wie bei der direkten Proportionalität schreibt man hier auch die gegebenen Größen nebeneinander und gleiche Größen untereinander.

In diesem Fall multipliziert man mit der Zahl gerade gegenüber (und NICHT schräg gegenüber, wie in der direkten Proportionalität) und dividiert dann durch die andere Zahl:

        (die die Arbeiter in diesem Fall brauchen).

Um zu unterscheiden, ob man eine direkte oder indirekte Proportionalität hat, muss man schon die Sprache und die Zusammenhänge gut verstehen können!

Vergleich direkter und indirekter Proportionalität[Bearbeiten]

Wie wir in den vorherigen Absätzen gesehen haben, muss man sowohl bei der direkten als auch bei der indirekten Proportionalität die Daten, die (in der Regel in einem Satz) in Verbindung gebracht werden, in einer Zeile nebeneinander schreiben (hier bei der direkten Proportionalität 3,5 Liter und 14,7 kg und bei der indirekten 3 Arbeiter und 15 Stunden) und dafür sorgen, dass in jeder Spalte die gleichen Einheiten geschrieben werden.

                                           


Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Bei beiden Vorgängen fängt man dann mit der Zahl an, die nur an der gleichen Spalte mit x steht (hier 14,7 kg in der direkten und 15 Stunden in der indirekten Proporionalität). Der Unterschied ist: bei der direkten Proportionalität geht man dann schräg, bei der indirekten gerade gegenüber, und multiplitiert mit dieser Zahl (hier 0,0175 Liter in der direkten und 3 Arbeiter in der indirekten Proporionalität). Am Ende dividiert man in beiden Fällen mit der übriggebliebenen Zahl (hier 3,5 Liter in der direkten und 5 Arbeiter in der indirekten Proporionalität).

                                           

Wie kann man verstehen, ob eine direkte oder eine indirekte Proportionalität vorliegt?

Nehmen wir den folgenden Bruch b:  ,  wobei z der Zähler und n der Nenner ist. Wenn z=20 und n=5 ist, dann ist der Bruch b=4: . Wenn jetzt der Zähler z größer wird (z.B. z=30), dann wird der ganze Bruch b auch größer:  . Wenn der Zählerz kleiner wird (z.B. z=10), dann wird der ganze Bruch auch kleiner:  . Je größer der Zähler, desto größer der Bruch. Je kleiner der Zähler, desto kleiner der Bruch. Diesen Zusammenhang nennt man direkte Proportionalität.

Wenn jetzt der Nenner größer wird (z.B. n=10), dann wird der ganze Bruch das Gegenteil, also kleiner:

Wenn der Zähler z=20 und und der Nenner n=5 ist, dann ist der Bruch b=4: . Wird der Nenner n größer, z.B. 10, dann wird der Bruch b kleiner:  . Wenn der Nenner kleiner wird (z.B. n=2), dann wird der ganze Bruch das Gegenteil, also größer:  . Je größer der Nenner, desto kleiner der Bruch. Je kleiner der Nenner, desto größer der Bruch. Diesen Zusammenhang nennt man indirekte Proportionalität.

Wenn zwei Größen (z.B. Volumen und grob gesagt Gewicht[2]) gleichzeitig wachsen oder gleichzeitig weniger werden, dann liegt eine direkte Proportionalität vor (z.B. wenn man mehr Wasser hat, ist sowohl das Volumen als auch das Gewicht mehr). Wenn der Wachstum einer Größe zur Verminderung einer anderen führt, dann liegt eine indirekte Proportionalität vor (z.B. mehr Arbeiter brauchen weniger Zeit, um die gleiche Arbeit zu erledigen). So kann man verstehen, ob man direkte oder indirekte Proportionalität benutzen soll. Beim nächsten Kapitel allerdings (Prozentrechnung) kommt nur die direkte Proportionalität vor!

Prozentrechnung[Bearbeiten]

Definitionen[Bearbeiten]

Das Wort „Prozent“ kommt aus dem lateinischen und bedeutet pro Hundert. Ein Prozent IST ein Hundertstel.

In diesem Sinn ist z.B.:

Bei Aufgaben, die mit Prozentrechnung zu tun haben, ist der Wert am Anfang immer 100%.

100% ist gleich 1, also das „Ganze“:

100%=1

Diesen Anfangswert nennt man Grundwert. Es gibt dazu auch den Prozentwert (oder Prozentanteil) und den Prozentsatz. Um zu verstehen, was die Begriffe bedeuten, nehmen wir folgendes Beispiel:

Wie viel % von 55 Personen sind 11 Personen?

Wir wollen einen Teil von den 55 Personen in Prozent (in Hundertstel) berechnen. Dieser Teil sind die 11 Personen. Die 11 Personen sind der Prozentanteil oder Prozentwert.

Das Ganze (100%, Anfangswert) sind die 55 Personen. Der Grundwert ist "55 Personen".

Herauszufinden welcher Wert der Grundwert ist, ist in der Prozentrechnung eine entscheidende Aufgabe. Um den Grundwert im Satz zu erkennen, schaut man in der Regel, welches Wort im Genitiv steht. Wenn man sagt "des Gewichts", "der Bevölkerung", "von 55 Personen", dann sind diese Ausdrücke der Grundwert (100%). Der andere Wert ist der Prozentanteil.

Es kann aber sein, dass kein Wort in der Aufgabe im Genitiv steht, sondern, dass eine zeitliche Reihenfolge vorkommt. Wenn nichts anderes angegeben wird, ist der Wert in der früheren Zeit der Wert am Anfang, der Grundwert (100%). Beispielsweise, wenn ein Baum wächst, ist der Wert am zeitlichen Anfang der Grundwert, der Prozentwert kann dann variieren, je nachdem was gefragt ist: Er kann die Höhe am Ende sein oder der Höhenunterschied.

Wenn beides vorkommt (zeitliche Folge und Genitiv), dann ist der Genitiv der Grundwert. Im Beispiel mit dem Baum kann gefragt werden, wie viel Prozent der Höhe am Ende die Höhe am Anfang ist. In diesem Fall ist die Höhe am Ende der Anfangswert (Genitiv ist "stärker" als die zeitliche Reihenfolge).

Der Prozentsatz beschreibt, wie viele Hundertstel des Ganzen der Prozentanteil ist. In unserem Beispiel:

Grundaufgaben[Bearbeiten]

Nicht vergessen: Der Wert am Anfang (das „Ganze“) ist immer 100%

  • Wie viel % von 55 Personen sind 11 Personen?

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier ist der Prozentsatz eines Teils von 55 Personen gefragt. 55 Personen sind 100%. (Nach dem Wort „von“ steht der Wert, der 100% ist). Wir schreiben das so auf, wie wir es in der Schlussrechnung (genauer in der direkten Proportionalität) gelernt haben:

      .

  • Wie viele Personen sind 11% von 55 Personen?

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier ist ein Prozentsatz von 55 Personen gefragt, also haben wir am Anfang 55 Personen, die dann 100% sind! (Also nach dem Wort „von“ steht der Wert, der 100% ist). Wir schreiben das auf, wie wir es in der Schlussrechnung (genauer in der direkten Proportionalität) gelernt haben:

      .

  • Wie viel % von 23 kg sind 5329kg?

Hier steht nach „von“ 23 kg, also sind 23kg 100%

      .

  • Wie viel ist 0,3% von 0,26 Liter?

      .


  • Von wie vielen Personen sind 55 Personen 11%?

Hier steht nach dem Wort „von“ eine Frage. Das Gefragte schreibt man in der Mathematik mit x. Daher ist x 100%. Das Gefragte ist 100%.

      .


Vertiefende Aufgaben[Bearbeiten]

Prozentrechnung bei Wachstum oder Zerfall[Bearbeiten]

In diesem Absatz werden wir uns mit Aufgaben beschäftigen, bei denen irgendeine Größe mehr oder weniger wird.

  • Das Gehalt eines Beamten war 1800€ und wurde um 2,5% gekürzt. Berechnen sie das neue Gehalt! Um wie viel € wurde das Gehalt gekürzt?

Es gibt zumindest zwei Wege, um diese Aufgabe zu lösen. Wir werden hier nur den Weg lernen, der für die Umkehraufgaben (die wir im nächsten Absatz lernen werden) notwendig ist.

Zur Erinnerung: der Wert am Anfang (das „Ganze“) ist immer 100%. Das Gehalt am Anfang war 1800€, daher sind 1800€ (der Wert am Anfang) 100%. Das Gehalt wurde gekürzt, also wurde es um 2,5% weniger. Daher bleibt dann 100%-2,5%=97,5% des Gehaltes. Wir wollen wissen, wie viel Geld in € diesen 97,5% ist:

      

Das Gehalt wurde daher um 1800€-1755€= 45€ gekürzt. Diese 45€ sind 2,5% des Gehalts (also 2,5% von 1800€).

Wenn die einzige Frage ist, wie viel das Gehalt gekürzt wurde, dann soll 2,5% bei der Schlussrechnung benutzt werden:

Es ist dann auch möglich, in dieser Weise das Gehalt am Ende zu berechnen: 1800€-45€= 1755€. Diesen Weg kann man aber in den Umkehraufgaben (nächster Absatz) nicht mehr benutzen.

  • Ein Baum ist 5,6m groß und wächst in einem Jahr auf 6m. Um wie viel % ist er gewachsen?

Zur Erinnerung: der Wert am Anfang (das „Ganze“) ist immer 100%. Der Baum war am Anfang 5,6m, daher sind 5,6m (der Wert am Anfang) 100%. Er ist auf 6m gewachsen, also um 6m-5,6m= 0,4m größer geworden. Wir wollen wissen, wie viel % (von 5,6m) diese 0,4m sind:


      .

Umkehraufgaben[Bearbeiten]

  • Man hat in seinem Haus ein neues Zimmer aufgebaut. Die Fläche des Hauses ist dadurch um 15% auf 112,7m² gewachsen. Berechnen Sie die ursprüngliche Fläche!

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier wissen wir nicht, wie groß das Haus am Anfang war, das ist doch gefragt! Das gefragte schreibt man in Mathematik mit x. 100% ist also x. Das Haus ist um 15% gewachsen, also die Fläche am Ende (112,7m²) ist 100%+15%=115%. Daher sind 112,7m² 115%.

Schreiben wir diese Information auf, wie wir das gelernt haben:

      .


  • Ein Tisch wurde um 10% geschnitten. Die neue Länge ist 2,7m. Berechnen Sie die ursprüngliche Länge!

Der Wert am Anfang (das „Ganze“) ist immer 100%. Er ist aber nicht gegeben. Daher ist x 100%. Der Tisch wurde um 10% geschnitten, war am Anfang 100%, daher bleibt noch 100%-10%=90%. 2,7m (der Wert am Ende) sind daher 90%. Schreiben wir das Ganze auf:

      .

Arbeiten mit Termen[Bearbeiten]

Definitionen[Bearbeiten]

Ein Term ist ein mathematischer Ausdruck. ,  ,  ,  ,     sind alles Terme, wobei     aus mehreren Teiltermen besteht.

Potenzen[Bearbeiten]

Definition[Bearbeiten]

Jeder Term der Form mn ist eine Potenz. Was unten steht (hier m) nennt man Basis, was oben rechts (hier n) Hochzahl.

Potenz        Was bedeutet diese Schreibweise?

Wenn man 4+4+4 hat, kann man auch 3·4 schreiben: . Eine Multiplikation zeigt, wie oft man eine Zahl mit sich selbst addiert.

Wenn man 4·4·4 hat, dann kann man 4³ schreiben. Eine Potenzzahl (hier 4³) zeigt, wie oft (so oft, wie die Hochzahl, hier 3) man eine Zahl (die Basis, hier 4) mit sich selbst multipliziert.

Rechenarten[Bearbeiten]

Strichrechnungen unter Potenzzahlen[Bearbeiten]

Wir haben gelernt, dass eine Multiplikation uns zeigt, wie oft man eine Zahl mit sich selbst addiert. Beispielsweise ist . Das bedeutet allerdings auch, dass ist, weil

Eine Potenzzahl zeigt, wie oft eine Zahl mit sich selbst multipliziert wird. Beispielsweise: .

Was ist jetzt, wenn wir Potenzzahlen addieren (oder subtrahieren)?

Eine Vereinfachung einer Strichrechnung zwischen Potenzen ist nur dann möglich, wenn die Potenzzahl die gleiche Basis und die gleiche Hochzahl hat.

Nehmen wir ein Beispiel: .

Bei 3a² und 7a² hat die Potenzzahl a² die gleiche Basis a und die gleiche Hochzahl 2. Diese Potenzen können zusammengerechnet werden:

Entsprechend können wir mit a⁴ arbeiten:

a² und a⁴ können wir hingegen nicht zusammenrechnen, da sie zwar die gleiche Basis a aber nicht die gleiche Hochzahl (2 bzw. 4) haben.

a² und b² können wir auch nicht zusammenrechnen, da sie zwar die gleiche Hochzahl 2 aber nicht die gleiche Basis (a bzw. b) haben.

Daher ist:

Warum ist es so? Wie schon erwähnt, können nur gleiche Summanden durch eine Multiplikation ersetzt werden:

Wenn wir 3⁴ und 3² anstatt 3 haben, sind die Summanden nicht gleich, da 3⁴=3·3·3·3=81 und 3²=3·3=9 ist:

Nur Potenzen, die sowohl die gleiche Basis als auch die gleiche Hochzahl haben, können zusammengerechnet werden.

Noch ein Beispiel:

Multiplikation von zwei Potenzen mit der gleichen Basis[Bearbeiten]

Zwei Potenzzahlen mit der gleichen Basis kann man multiplizieren, indem man die gleiche Basis und als Hochzahl die Summe der Hochzahlen schreibt.

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen addiert man, auch wenn sie negativ sind:

Allgemein kann man daher folgern:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.

Vorischt! Bei einer Addition oder Subtraktion von Potenzen kann man dagegen die Hochzahlen nicht addieren!

Division von zwei Potenzen mit der gleichen Basis[Bearbeiten]

Zwei Potenzzahlen mit der gleichen Basis kann man dividieren, indem man die gleiche Basis und als Hochzahl die Differenz der Hochzahlen (oben minus unten!) schreibt.

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen subtrahiert man (oben minus unten), auch wenn sie negativ sind:

Da ein Bruch (fast) gleichbedeutend mit einer Division ist, kann man auch sagen, dass bei der Division von Potenzzahlen mit gleicher Basis das Ergebnis die gleiche Basis ist, mit einer Hochzahl, die die Differenz aus der Hochzahl des Dividends und der Hochzahl des Divisors ist. Allgemein kann man daher schreiben:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.

Null als Hochzahl[Bearbeiten]

Mit Hilfe des letzten Satzes kann man auch, mit Hilfe eines Beispiels, zeigen, dass und ist. Es gilt:

und nach der Regel gilt auch:

Also ist gleichzeitig gleich 1 und gleich . Daher gilt:

Potenzen mit negativer Hochzahl[Bearbeiten]

In einer ähnlichen Weise zeigen und wieder mit Hilfe eines Beispiels wir, dass ist.

Nach der Regel gilt:

Also ist gleichzeitig und . Daher gilt:

und allgemein:


Es muss auch klar sein: x² ist nicht das Gleiche wie y² (kann ausnahmsweise sein, ist es in der Regel aber nicht!)! Wenn die Basis anders ist, kann man mit den Hochzahlen keine Strichrechnung machen, z.B.:

   oder etwas Ähnliches. Man kann einfach diesen Ausdruck NICHT vereinfachen!

Potenz einer Potenzzahl[Bearbeiten]

Die Potenz einer Potenzzahl wird durch Multiplikation der Hochzahlen vereinfacht.

Warum das so ist, kann man wie im Folgenden erklären:

Kurze Erklärung zum Schritt : . Hier haben wir die eben erklärte Multiplikationsregel benutzt: .


Die Hochzahlen multipliziert man, auch wenn sie negativ sind:

Allgemein kann man daher schreiben:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können.

Potenzen mit Bruchhochzahl[Bearbeiten]

Wenn die Hochzahl ein Bruch ist, wird der Nenner als Wurzelpotenz interpretiert.

Versuchen wir jetzt diesen Zusammenhang zu erklären.

Im Kapitel über Kubikwurzel lernen wir, dass die Gegenrechnung einer Hochzahl die entsprechende Wurzel ist:

und allgemein:

Es gilt allgemein, dass wenn eine Rechnung und ihre Gegenrechnung verwendet werden, das Ergebnis der Anfangswert sein wird:

(Die Gegenrechnung von +6 ist −6)

(Die Gegenrechnung von ⋅5 ist ÷5)

(Die Gegenrechnung von Quadrat ist die Quadratwurzel)

und allgemein für die Gegenrechnung einer Wurzel, wie eben gezeigt:

Benutzten wir jetzt die eben gelernte Regel über Potenz einer Potenz. Wie sollen die Hochzahlen aussehen, damit das Ergebnis der Anfangswert ist?

da ist

Es soll also für die Hochzahlen und gelten:

und daher

Ersetzen wir dann durch im Ausdruck und vergleichen wir folgende zwei Ausdrücke:

Beide Ausdrücke sind gleich a und daher gleich zueinander. Damit die Ausdrücke gleich sind, muss die Basis in beiden Fällen gleich sein:

Allgemeiner gilt also:

und:

Potenz eines Produktes oder eines Bruches[Bearbeiten]

Ein Produkt wird dadurch potenziert, indem seine Faktoren mit der gleichen Hochzahl Potenziert werden. Ein Bruch wird dadurch potenziert, indem sowohl sein Zähler als auch sein Nenner mit der gleichen Hochzahl potenziert werden.

Mit einem Beispiel kann auch dieser Zusammenhang schnell erklärtwerden:

und entsprechend für einen Bruch:

Es gilt also allgemein:

Weitere Beispiele:

Arbeiten mit Potenzen: Die Rechenregel zusammengefasst[Bearbeiten]

Grundaufgaben[Bearbeiten]

Vereinfachen Sie!

3x²+5-7x⁵+11-4x²+3-11x⁵+5x²=?

Diesen Term kann man vereinfachen, indem man Gleiches mit Gleichem addiert bzw. subtrahiert:

Mit Rot sind alle Teilterme (Summanden), die x2 beinhalten, mit Blau alle Teilterme, die x5 beinhalten und mit Schwarz alle einfachen Zahlen markiert. Man summiert die entsprechenden Teilterme. x2 gibt es 3-4+7 also insgesamt 6 mal, x5 (mit Blau) -7-11 also -18 mal und die Zahlen summiert man auch, 5+11+3 ist 19. Das Gesamtergebnis kann man vereinfacht so schreiben:

6x² +19 -18x⁵

Klammer Auflösen[Bearbeiten]

Ziel des Ausmultiplizierens[Bearbeiten]

Lösen Sie die Klammern auf!

Ziel solcher Aufgaben ist, einen Ausdruck ohne Klammern zu schreiben, der gleichwertig zu diesem Ausdruck (mit Klammern) ist. Probieren wir zunächst einmal die Klammern einfach wegzulassen. Zuerst soll man etwas erklären:

Wenn zwischen zwei mathematischen Ausdrücken nichts (keine Rechenart) steht, ist ein "mal" gemeint (Multiplikation) (einzige Ausnahme sind hier die gemischten Zahlen)

Probieren wir jetzt in beiden Ausdrücken eine Zahl an der Stelle von x einzusetzen, beispielsweise 0:

Die beide Ausdrücke sind nicht gleich. Probieren wir es auch mit 1:

Wieder sind die Ausdrücke nicht gleich. Man sagt dann, dass    ist, dass    nicht gleich zu    ist. Obwohl eine Zahl schon ausreichen könnte, stimmt das eigentlich für alle Zahlen, die man für einsetzen kann.

Probieren wir dann beide Summanden in der Klammer mit dem Ausdruck außerhalb der Klammer zu multiplizieren:

Egal mit welcher Zahl wir es jetzt ausprobieren, werden die beide Ausdrücke immer gleich sein! Beispielsweise mit :

Da das immer gilt, kann man schreiben:

Wir haben daher unser Ziel erreicht! Wir haben einen gleichwertigen Ausdruck ohne Klammern!

Klammern werden aufgelöst, indem jeder Summand in Klammern mit dem Ausdruck außerhalb der Klammer multipliziert wird.

Erklärung des Ausmultiplizierens[Bearbeiten]

Denken wir an eine Kiste die 2 Zitronen und 4 Birnen hat:

Emojione 1F34B.svg Emojione 1F34B.svg Exemple de pera maligna.png

Exemple de pera maligna.png Exemple de pera maligna.png Exemple de pera maligna.png

Nehmen wir an, dass wir diese Kiste 3 mal haben:

Emojione 1F34B.svg Emojione 1F34B.svg Exemple de pera maligna.png

Exemple de pera maligna.png Exemple de pera maligna.png Exemple de pera maligna.png

Emojione 1F34B.svg Emojione 1F34B.svg Exemple de pera maligna.png

Exemple de pera maligna.png Exemple de pera maligna.png Exemple de pera maligna.png

Emojione 1F34B.svg Emojione 1F34B.svg Exemple de pera maligna.png

Exemple de pera maligna.png Exemple de pera maligna.png Exemple de pera maligna.png

In diesem Fall haben wir 3 mal 2 also 6 Zitronen und 3 mal 4 also 12 Birnen.

Den Inhalt der Kiste müssen wir mit 3 multiplizieren und zwar muss jede verschiedene Sorte, die in der Kiste ist, mit 3 multipliziert werden.

Ein Klammer ist genau so wie eine Kiste:

Wir haben einfach statt Bilder für die Zitronen den Buchstabe z und für die Birnen den Buchstabe b benutzt.

Es spielt keine Rolle, ob außerhalb der Kiste eine Zahl oder ein Symbol steht:

Zwischen 2z und 4b steht ein Plus. Der Vorgang ist der gleiche bei Minus:

Auch wenn wir Minus haben, können wir die verschiedenen Sorten (hier 2z und 4b) Summanden nennen.

Ein Klammer wird ausmultipliziert, indem jeder Summand in der Klammer mit der Sache außerhalb der Klammer multipliziert wird.

Beispiel:

Aufgaben mit einer Klammer[Bearbeiten]

Lösen Sie die Klammern auf!

Die Aufgabe hier ist, einen gleichwertigen Ausdruck ohne Klammern zu schreiben. Wie eben erklärt, multipliziert man dafür den Term außerhalb der Klammer (  ) mit jedem Summand in den Klammern (also erst mit   , dann mit    und dann mit   ):

Klammer1.jpg

Der Ausdruck am Ende ist immer gleich mit dem Ausdruck am Anfang. Wir haben also die Klammer aufgelöst!

Aufgaben mit 2 Klammern[Bearbeiten]

Lösen Sie die Klammern auf!

Die Aufgabe hier ist wieder, einen gleichwertigen Ausdruck ohne Klammern zu schreiben. Um das zu machen, multipliziert man jeden Summand der ersten Klammer    mit jedem Summand der zweiten Klammer   :

Klammer2.jpg
Hier gilt die Multiplikationsregel der Vorzeichen: plus mal plus ist plus, plus mal minus ist minus, minus mal plus ist minus, minus mal minus ist plus. (Das Gleiche gilt bei durch)

+ · + = +

+ · − = −

− · + = −

− · − = +

Arbeiten mit negativen Zahlen[Bearbeiten]

Wir haben gerade eben die Regeln für die Multiplikation mit Plus und Minus gesehen. Wie kann man diese Regeln mit Zahlen erklären?

Dass ist, ist trivial. ist und ist . ist daher gleichbedeutend wie und, wie Multiplikation definiert wird, ist das 15.

Dass ist, macht eben auch Sinn. Laut Definition der Multiplikation ist , wie man beim Arbeiten mit negativen Zahlen lernt.

Wenn man hat, ist die Erklärung ebenso leicht. In der Multiplikation spielt die Reihenfolge keine Rolle, daher ist .


Warum ist aber Minus mal Minus doch Plus?

Um das zu erklären, kann man folgende Rechnung betrachten:

Macht man nach der Regel erst die Rechnung in Klammern, ist das Ergebnis:

Wenn erst die Klammer aufgelöst wird, wie wir das vorher gelernt haben, dann ergibt sich Folgendes:

ist , wie wir eben gelernt haben.

Wenn Minus mal Minus Plus ist, dann ist und das Ganze ergibt:

Wenn Minus mal Minus Minus wäre, dann wäre und das Ganze ergäbe:

was ein falsches Ergebnis ist, da wir schon gesehen haben, dass das Ergebnis, wenn man erst die Rechnung in Klammern macht, ist. Ähnliche Ergebnisse bekommt man, egal welches Beispiel benutzt wird. Daher ist Minus mal Minus Plus.

Ähnliches gilt, wenn man nur Vorzeichen hat:

Umformen[Bearbeiten]

Die Gegenrechnungen[Bearbeiten]

Nachdem Vassili Lisa drei Äpfel gibt, hat er fünf Äpfel. Wie viele Äpfel hatte er vorher?

Wie kann man diese Aufgabe in der mathematischen Sprache schreiben? Für das Gefragte (wie viele Äpfel) wird in Mathematik irgendein Symbol benutzt, als Stellvertreter für die noch unbekannte Zahl. In der Regel wird als Symbol ein Buchstabe verwendet und nicht allzu selten x.
Mit x sind also die Äpfel gemeint, die Vassili am Anfang hatte. Wir wissen noch nicht, wie viele sie waren, daher schreiben wir ein Symbol dafür, ein Buchstabe, also x.

Wenn Vassili drei Äpfel der Lisa gibt, dann hat er weniger Äpfel als zuvor, es geht um eine Subtraktion. Von den x Äpfeln am Anfang sind drei Äpfel zu subtrahieren. Dass dann noch fünf Äpfel bleiben, wird durch den folgenden mathematischen Ausdruck geschrieben:

x−3=5

Man kann für x verschiedene Zahlen ausprobieren, z.B. 2, 3, 7, 8 oder 9. So kann man schon feststellen, dass nur acht minus drei gleich fünf ist. „x“ muss also 8 sein, damit die Rechnung stimmt. Vassili hatte also 8 Äpfel am Anfang.

Die ganze Zeit ausprobieren ist allerdings nicht gerade geschickt. Besonders bei größeren Zahlen wird es sogar ziemlich schwer. Es gibt in der Mathematik einen geschickteren Weg, die Aufgabe zu lösen. Man benutzt die sogenannte Gegenrechnung. Bei allen Gleichungen gibt es zwei Teile, ein Teil links vom „=“ und ein Teil rechts vom „=“. Bringt man einen Term von einer Seite zur anderen, dann muss man die Gegenrechnung benutzen.

Die Gegenrechnung der Subtraktion ist die Addition und umgekehrt.

Wenn x−3=5 ist, dann kann man die 3 auf die andere Seite vom „=“ bringen und statt minus die Gegenrechnung (plus) benutzen:

x=5+3       also x=8

Bei der Aufgabe c+4452 = 341 bringt man 4452 auf die andere Seite und benutzt die Gegenrechnung von minus. Die Lösung ist daher:

c+4452 = 341 → c= 341−4452 → c = −4111

Die Gegenrechnung der Multiplikation ist die Division und umgekehrt.

3f=114

Zwischen 3 und f steht nichts.

Wenn in Mathematik zwischen zwei Ausdrucken (zum Beispiel einer Zahl und einem Symbol, einer Klammer und einer Zahl und so weiter) nichts steht, dann ist Multiplikation gemeint (einzige Ausnahme: die gemischten Zahlen).

Da zwischen 3 und f nichts steht, ist mal gemeint. f ist ein Symbol und steht für irgendeine Zahl. Die Aufgabe ist herauszufinden, wie viel f sein soll, damit die Rechnung stimmt. In diesem fall soll 3 auf die andere Seite gebracht und die Gegenrechnung von mal (also durch) benutzt werden:

3f=114 (nichts zwischen 3 und f, also mal gemeint):

3·f=114 (3 auf die andere Seite von „=“ bringen und Gegenrechnung, also hier Division, benutzen)

f=114:3 und daher

f = 38.

Man kann auch einen Bruch statt einer Division benutzen:

Entsprechend ist die Gegenrechnung der Division die Multiplikation:

   also k:5 = 11 und daher k = 11 · 5

k = 55

Was ist aber die Gegenrechnung vom Quadrat?

Die Gegenrechnung von Quadrat ist die sogenannte „Wurzel“:

z² = 81 also z =   und daher z=9

9 ist die Zahl, deren Quadrat 81 ist, daher ist die Wurzel von 81 gleich 9. Wenn wir in der Gleichung z² = 81 z durch 9 ersetzen, dann stimmt die Gleichung tatsächlich: 9² = 81

Selbstverständlich ist die Gegenrechnung der Wurzel das Quadrat.

= 13 also m = 13² und daher m=169

Obwohl es für das Niveau dieses Buches nicht absolut notwendig ist, können wir doch auf eine Tatsache aufmerksam machen: Die Gleichung z² = 81 hat noch eine Lösung, wenn z gleich −9 ist. Freilich stimmt die Gleichung (−9)² = 81. (−9)² bedeutet (−9)·(−9). Minus mal minus ist plus und daher:

(−9)² =(−9)·(−9)= + 9·9 = 81 also

(−9)² = 81


Darstellung von Zahlen[Bearbeiten]

Verschiedene Darstellungen einer Zahl[Bearbeiten]

Die gleiche Zahl kann man in verschiedenen Weisen schreiben. Man spricht von unterschiedlichen Darstellungen der Zahl:


Zur Erinnerung: und oder sind Darstellungen einer Zahl (von 0,09 und oder von 8). 9:100 oder 80:10 sind hingegen nicht Darstellungen einer Zahl, sondern Divisionen zwischen zwei Zahlen, auch wenn das Ergebnis der Division doch die gleiche Zahl ist, wie bei den entsprechenden Brüchen (also 0,09 bzw. 8).

Runden[Bearbeiten]

Allgemein[Bearbeiten]

Das Quadrat von 7 ist 49 und daher ist die Wurzel von 49 gleich 7 (sie sind Gegenrechnungen). Was ist aber mit der Wurzel von 7? Wenn man die Rechnung mit einem einfacheren Taschenrechner macht, kommt das folgende Ergebnis vor:

2,6457513110645905905

Das bedeutet, dass das Quadrat von 2,6457513110645905905 (die Gegenrechnung) 7 sein sollte. Wenn man aber mit dem Taschenrechner die Rechnung macht:

2,6457513110645905905² = 2,6457513110645905905 · 2,6457513110645905905

kommt 6,99999999999999999999 als Ergebnis heraus, was zwar fast 7 ist, aber nicht genau 7!

Man spricht in diesem Fall vom Runden. Der Taschenrechner gibt beim Wurzelziehen ein Ergebnis an, das nicht genau ist. Das genaue Ergebnis hat unendlich viele Nachkommastellen. Es ist unmöglich die Wurzel von 7 mit einer Kommazahl ganz genau zu bestimmen. Die einzige Weise die Wurzel von 7 genau anzugeben, ist    zu schreiben!

Wie genau das Ergebnis mit Kommastellen ist, hängt vom Taschenrechner ab. Jeder Taschenrechner kann eine bestimmte Anzahl von Nachkommastellen berechnen. Die Wurzel aus 7 mit einer Kommazahl genau anzugeben ist aber nicht möglich.

Der Taschenrechner gibt ein Ergebnis an, das so nah wie möglich zum tatsächlichen Wert von ist und so viele Nachkommastellen hat, wie der Taschenrechner berechnen kann. In der Anzeige des Taschenrechners stehen sogar oft weniger Stellen (wieder gerundet) als die Stellen, die der Taschenrechner berechnen kann[3].

Das Runden ist in solchen Fällen unvermeidbar und oft notwendig und sinnvoll. Stellen wir uns vor, dass ein Produkt 6€ kostet. In einer Sonderaktion wird allerdings ein Rabatt 17% gewährt. In diesem Fall ist der Preis nach dem Rabatt:

6 ⋅ 0,83 = 4,938€

Hier muss man wieder runden. Die Münze mit dem kleinsten Wert ist 1¢ (0,01€). So was wie 0,008€ kann man nicht in Bar bezahlen. Man kann auch nicht genau 4.938€ bezahlen. Man muss auf zwei Nachkommastellen runden:

4,938€ ≈ 4,94€

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Warum haben wir hier 4,94 und nicht 4,93 geschrieben?

4,938 liegt näher bei 4,94 als bei 4,93.

Wenn man rundet, rundet man auf (also eins nach oben), wenn die nächste Ziffer 5 oder mehr ist. Man rundet ab (also die Ziffer bleibt die gleiche), wenn die nächste Ziffer weniger als 5 ist:

5,6873729 ≈ 5,69      5,6873729 ≈ 5,687373

5,6873729 ≈ 5,68737     5,6873729 ≈ 5,687     8,785 ≈ 8,79

Man muss allerdings sagen: es gibt auch andere Regeln, wie man rundet, wenn die nächste Stelle eine einzige 5 ist. Dieses Thema wird später in diesem Kapitel erklärt.

Wie viele Nachkommastellen muss man schreiben? Das ist vom Problem abhängig.

Die Ziffern ohne die Nullen zu Beginn oder am Ende der Zahl nennt man gültige Ziffern.

Es kann sein, dass bei einer Aufgabe festgelegt wird, auf wie viele Stellen gerundet wird:

Aufgabe: Runden auf drei (gültige) Stellen (oder in diesem Beispiel auf zwei Nachkommastellen)

5,6873729 ≈ 5,69

Aufgabe: Runden auf sieben Stellen (oder in diesem Beispiel auf sechs Nachkommastellen)

5,6873729 ≈ 5,687373

Aufgabe: Runden auf sechs Stellen (oder in diesem Beispiel auf fünf Nachkommastellen)

5,6873729 ≈ 5,68737

Aufgabe: Runden auf vier Stellen (oder in diesem Beispiel auf drei Nachkommastellen)

5,6873729 ≈ 5,687

Aufgabe: Runden auf zwei (gültige) Stellen[4] (oder in diesem Beispiel auf vier Nachkommastellen)

0,002356 ≈ 0,0024

Wenn es keine Angabe über die gültigen Ziffern gibt, schreibt man nicht mehr als 5 oder 6 gültigen Ziffern insgesamt (also samt Ziffer vor dem Komma), beispielsweise:

895,76038≈895,760    0,007854309826≈0,00785   9874086973≈9874100000

In manchen Fällen sollte es von der Aufgabe klar sein, wie vielen gültige Stellen zu erwarten sind. Ein solchen Beispiel haben wir schon mit dem € gesehen.

Ein anderes Beispiel ist, wenn man ein Messband benutzt, um einen Abstand zu messen. Ein Messband kann nur bis mm messen und nichts kleineres. Wenn der gemessene Abstand 145cm ist und ihn in 7 teilt, kann das Ergebnis nur eine Nachkommastelle haben (mm).

Wenn man die Zeit mit einem elektronischen Stoppuhr misst, zeigt diese oft Nachkkommastellen nach der Sekunde, z.B. 6,463s. Das ist wieder völlig daneben, da die Reaktionszeit des Menschen mehr als 0,1s ist. Man kann also mit einer Stoppuhr, die mit der Hand betrieben wird, nicht genauer als eine Nachkommastelle nach der Sekunde messen. Die restlichen Nachkommastellen führen zum falschen Eindruck, dass man doch so genau (mit drei Nachkommastellen) messen kann.

Hier kann man auch erklären: Eine Zahl ändert sich nicht, wenn man eine oder mehrere Nullen vor der ersten Ziffer oder nach der letzten Nachkommastelle hinzufügt:

7,34 = 007,34 = 7,340 = 7,34000 = 000007,34000000

8888 = 8888,0000 = 0008888

Aufrunden von 9[Bearbeiten]

Wenn die Ziffer, die gerundet werden muss, 9 ist, gibt es beim Aufrunden eine gewisse Schwierigkeit. Die Ziffer sollte um 1 erhöht werden, es gibt aber keine Ziffer, die mehr als 9 ist. In diesem Fall wird wie bei der Division, also auch mit der vorherigen Ziffer gearbeitet. Runden wir folgende Beispiele auf drei gültigen Stellen:

  • 8,695408

Wir wollen hier drei Stellen benutzen, die letzte Stelle ist 9. Nach der 9 folgt 5, wie müssen also aufrunden. 9 muss um 1 erhöht werden. Das geht nicht. Dann nimmt man zwei Ziffern (also hier die Ziffern nach dem Komma 69) und erhöht sie um 1 (69 wird zu 70). Also:

8,695408≈8,70

  • 0,039995

Wir wollen wieder drei Stellen benutzen, die letzte Stelle ist 9. Nach der 9 folgt 9, wie müssen also aufrunden. 9 muss um 1 erhöht werden. Das geht nicht. Dann nimmt man zwei Ziffern (also hier die Ziffern 99) und versucht sie um 1 zu erhöhen. Das geht auch nicht, 99 ist die größte zweistellige Zahl. In diesem Fall nehmen alle drei Stellen (399) und erhöhen wir sie um 1:

0,039995≈0,0400

Die zwei Nullen nach dem 4 müssen geschrieben werden, um zu zeigen, dass es auf drei gültigen Stellen gerundet wurde.

  • 999,73

In diesem Beispiel muss man wieder alle drei Stellen benutzen, das Runden findet aber doch davor statt!

999,73≈1000

Runden mit 5 als nächste Stelle[Bearbeiten]

Der Fall der 5 ist nicht so ganz einfach, folgen noch weitere, von 0 verschiedene Ziffern, wird aufgerundet.

Kommen wir nun zum problematischen Fall, dem Fall 5 ohne weitere Ziffern danach:

Bei der sogenannten kaufmännischen Rundung wird auch bei 5 aufgerundet, was insbesondere bei Verkaufsgeschäften mit kleinen Beträgen dem Händler zugute kommt, wenn dieser viele ähnliche Geschäfte macht, daher vermutlich auch der Name.

Um das zu verstehen, stelle man sich viele zufällige Zahlen vor, die gerundet werden sollen. Einmal wird die Summe aller Zahlen vor der Rundung berechnet, nennen wir diese Summe V (vor der Rundung). Anschließend wird die Summe aller Zahlen nach der Rundung berechnet, nennen wir diese Summe N (nach der Rundung).

Man wird feststellen, dass N größer oder gleich V sein wird, was daran liegt, dass bei dieser Methode bei 5 immer aufgerundet wird.

Um das zu vermeiden, gibt es ein besseres Rundungsverfahren, bei dem es zwei Möglichkeiten gibt. Im Falle von 5 wird bei der einen Möglichkeit immer so gerundet, dass die letzte Ziffer gerade ist. Bei der anderen Möglichkeit wird bei 5 immer so gerundet, dass die letzte Ziffer ungerade ist. Man entscheidet sich bei einer Aufgabe der Rundung vieler Zahlen anfangs einmalig für eine der beiden Möglichkeiten und bleibt daraufhin dabei.

Bildet man wieder die Summenprobe, wird man feststellen, dass es Zufall ist, ob V oder N größer ist oder beide sogar gleich sind.

Man sagt: Das Verfahren ergibt keine systematischen Abweichungen.

Beispiel zur Rundung hin zur geraden Ziffer:

8,775 ergibt auf drei Stellen gerundet 8,78

8,765 ergibt auf drei Stellen gerundet 8,76

8,755 ergibt auf drei Stellen gerundet 8,76

0,125 ergibt auf zwei Stellen gerundet 0,12

0,135 ergibt auf zwei Stellen gerundet 0,14

0,145 ergibt auf zwei Stellen gerundet 0,14

Entsprechend zur Rundung hin zu ungeraden Ziffern:

8,775 ergibt auf drei Stellen gerundet 8,77

8,765 ergibt auf drei Stellen gerundet 8,77

8,755 ergibt auf drei Stellen gerundet 8,75

0,125 ergibt auf zwei Stellen gerundet 0,13

0,135 ergibt auf zwei Stellen gerundet 0,13

0,145 ergibt auf zwei Stellen gerundet 0,15

Welches Rundungsverfahren anzuwenden ist, hängt davon ab, in welchem Zusammenhang gerechnet wird (kaufmännisch, wissenschaftlich, statistisch). Weitere Details und weitere Möglichkeiten zu runden: Rundung


Einheiten[Bearbeiten]

Definitionen[Bearbeiten]

Unsere Umgebung, die Natur, wir selber haben viele Eigenschaften: ein Wald kann schön sein, ein Berg kann groß oder klein sein, das Meer blau usw. Manche Eigenschaften, die man messen kann, sind für die Physik wichtig. Solche Eigenschaften sind z.B. die Länge (oder der Abstand, der Weg usw.), die Masse (grob gesagt: das Gewicht), die Zeit, die Geschwindigkeit, die Kraft, die elektrische Ladung usw. Alle diese Eigenschaften, die für die Physik wichtig sind und die man messen kann, nennt man physikalische Größen.

Jede Größe kann man mit verschiedenen Einheiten messen. Für den Abstand z.B. benutzt man Meter (oder auch Zolle, Kilometer, Millimeter usw.), für die Zeit Sekunde (oder Stunden, Tagen, Minuten usw.) für die Masse Kilogramm (oder Gramm, Tonne usw.), für die Kraft Newton usw..

Vorsätze[Bearbeiten]

Für jede Einheit gibt es verschiedene Vorsätze, also kleine Wörter, die einen gewissen Anteil der Einheit zeigen:

Milli (m) bedeutet ein Tausendstel, Zenti (c) ein Hundertstel, Deci (d) ein Zehntel, Kilo (k) bedeutet Tausend. Ein Milligramm (mg) bedeutet daher ein Tausendstel eines Gramms, ein Zentimeter (cm) bedeutet ein Hundertstel eines Meters, ein Kilogramm (kg) Tausend Gramms, ein Decivolt (dV) ein Zehntel eines Volts, ein Zentiliter (cL) ein Hundertstel eines Liters, ein Kilowatt (kW) Tausent Watts.

Einheiten Umwandeln[Bearbeiten]

Abstand[Bearbeiten]

Für die Umrechnungen eines Abstandes benutzt man folgendes Schema:

EinheitenWeg.png

In diesem Bild:

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT
  • Wenn ein Abstand z.B. in km gegeben ist und in dm umgerechnet werden soll (von links nach rechts, vom größten zum kleinsten) muss man multiplizieren, in diesem Beispiel einmal mit 1000 und einmal mit 10:
2,35km= 2,35 ·1000 ·10 dm = 23500 dm
  • wenn ein Abstand z.B. in cm gegeben ist und in m umgerechnet werden soll (von rechts nach links, vom kleinsten zum größten) muss man dividieren, in diesem Beispiel zwei mal durch 10:
0,054cm= 0,054:10:10 m = 0,00054m

Masse[Bearbeiten]

Für die Umrechnungen einer Masse benutzt man folgendes Schema:

EinheitenMas.png

In diesem Bild:

  • wenn eine Masse z.B. in kg gegeben ist und in mg umgerechnet werden soll (von links nach rechts, vom größten zum kleinsten) muss man multiplizieren, in diesem Beispiel zwei mal mit 1000:
0,087kg= 0,087 ·1000 ·1000 mg = 87000mg
  • wenn eine Masse z.B. in g gegeben ist und in Tonnen (t) umgerechnet werden soll (von rechts nach links, vom kleinsten zum größten) muss man dividieren, in diesem Beispiel zwei mal durch 1000:
36530g= 36530:1000:1000 t = 0,03653t

Zeit[Bearbeiten]

Für die Umrechnungen der Zeit benutzt man folgendes Schema:

EinheitenZeit.png

In diesem Bild:

  • wenn eine Zeit z.B. in Minuten gegeben ist und in Sekunden umgerechnet werden soll (von links nach rechts, vom größten zum kleinsten) muss man multiplizieren, in diesem Beispiel einmal mit 60:
0,08min= 0,08·60 s = 4,8s
  • wenn eine Zeit z.B. in Minuten gegeben ist und in Tage umgerechnet werden soll (von rechts nach links, vom kleinsten zum größten) muss man dividieren, in diesem Beispiel einmal durch 60 und einmal durch 24:
36630 min= 36630:60:24 Tage = 25,4375 Tage


Mittelwerte[Bearbeiten]

Einführung[Bearbeiten]

In der Mathematik, besonders im Bereich der Statistik, gibt es viele sogenannten Mittelwerte. Was ist ein Mittelwert? Wenn man viele Werte (viele Zahlen, die irgendwas messen) hat, dann gibt es eine Zahl, die sich irgendwie in der Mitte dieser Werte befindet. Das ist ein Mittelwert. Es gibt aber verschiedene „Mitten“, also verschiedene Wege um diese Mitte zu berechnen, je nachdem wie das Problem ist. Zwei von diesen Wegen werden wir hier lernen, den Durchschnitt (auch arithmetisches Mittel genannt) und den Median (auch Zentralwert genannt). Wir werden auch den sogenannten Modalwert (Modus) kennenlernen, der zwar kein Mittelwert aber für die Beschreibung von Daten oft hilfreich ist.

Durchschnitt[Bearbeiten]

Fangen wir mit einem Beispiel an:

  • Die Familien eines kleinen Dorfes haben Kirschen geerntet. Die Ernte für die verschiedenen Familien war: 54kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg. Sie haben allerdings vereinbart, dass jede Familie doch gleich so viele Kirschen bekommt. Wie viel bekommt jede Familie?

Um diese Frage zu beantworten, soll man erst die ganze Ernte berechnen, also die Teilernten addieren. Dann wird die ganze Ernte auf die Anzahl der Familien geteilt. So wird jede Familie gleich so viele Kirschen bekommen. Das Ergebnis nennt man Durchschnitt.

  (das sind kg)

Jede Familie bekommt dann ca. 57,86 kg.


Den Durchschnitt (auch arithmetisches Mittel genannt) mehrerer Werte berechnet man, indem man ihre Summe durch ihre Anzahl (wie viele Werte wir haben) dividiert:

Median[Bearbeiten]

Den Median (auch Zentralwert genannt) mehrerer Werte findet man, indem man die Werte zuerst der Größe nach ordnet (z.B. vom kleineren zum größeren) und dann den Wert in der Mitte der Reihe wählt.

Ein Beispiel!

  • Das Gewicht der Schüler in einer Klasse ist: 54kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg. Wie viel ist der Median?

Zuerst der Größe nach ordnen!

45, 48, 52, 54, 65, 65, 76

(ALLE Werte schreiben, also zwei oder mehr mal schreiben, wenn der Wert mehrmals vorkommt; jeden Wert muss man schreiben, so oft wie er vorkommt)

Der Wert in der Mitte ist 54. Es gibt 3 Werte links und 3 Werte rechts. Also 54 ist genau in der Mitte. Daher ist 54kg der Median!



Was ist aber, wenn die Anzahl der Werte eine gerade Zahl ist, wenn wir z.B. 12 Werte haben (12 ist eine gerade Zahl) und nicht 7 wie vorher (7 ist eine ungerade Zahl). Wenn man 7 Werte hat (oder irgendeine andere ungerade Zahl) dann gibt es genau eine Zahl in der Mitte. Bei gerader Anzahl der Werte gibt es doch 2 Zahlen in der Mitte. In diesem Fall wird als Median der Wert definiert, der genau zwischen den beiden Zahlen in der Mitte steht, also der Durchschnitt der beide Zahlen. Schauen wir ein Beispiel an!

  • Das Gewicht der Schüler in einer Klasse ist: 52kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg, 65kg, 45 kg, 45kg, 78kg, 69kg. Wie viel ist der Median?

Zuerst der Größe nach ordnen!

45, 45, 45, 48, 52, 52, 65, 65, 65, 69, 76, 78

(ALLE Werte schreiben, also jeden Wert schreiben, so oft wie er vorkommt)

Hier gibt es zwei Werte in der Mitte, 52 und 65. Der Median ist genau in der Mitte also die beide Werte addieren und durch 2 dividieren:

Modus[Bearbeiten]

Der Modus (auch Modalwert genannt) von mehreren Werten ist der Wert, der am häufigsten vorkommt.

Ein Beispiel!

  • Das Gewicht der Schüler in einer Klasse ist: 54kg, 63kg, 48kg, 76kg, 52kg, 63kg, 45kg. Wie viel ist der Modalwert?

Hier kommt 63 zwei mal vor, alle andere Werte kommen nur einmal vor. Daher ist 63kg der Modus.



Was ist aber, wenn mehrere Werte öfters vorkommen? Noch ein Beispiel!

  • Das Gewicht der Schüler in einer Klasse ist: 52kg, 65kg, 48kg, 76kg, 52kg, 65kg, 45kg, 65kg, 45 kg, 45kg, 78kg, 69kg.

Hier kommt 45 drei mal vor, 65 drei mal vor, 52 zwei mal vor und die restlichen Werte nur ein mal vor. 45 und 65 kommen am öftesten vor. Daher sind sie beide Modalwerte. 52 hingegen kommt nicht so oft vor wie 45 und 65 (also „nur“ zwei mal), daher ist 52 kein Modalwert. Es gilt also:

Modalwerte (Modi): 45kg und 65kg


Dreieckskonstruktionen[Bearbeiten]

Theorie[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Ein Dreieck ist eine geschlossene ebene Figur mit drei Strecken als Seiten. Die Dreieckkonstruktion ist von selber aus eine Herausforderung und ein Weg, einige Fertigkeiten zu üben. Sie gilt als Vorbereitung und Einführung allgemein für die Geometrie. Ziel ist ein Dreieck mit drei vorgegebenen Größen nur mit Hilfe eines Zirkels und eines Lineals zu konstruieren. Solche Konstruktionen waren sehr beliebt schon in der Antike. Wichtig ist zu wissen, dass die Summe aller Winkel genau 180° und jeder Winkel kleiner als 180° ist und dass keine Seite größer als die Summe der anderen zwei sein darf.

Es gibt vier verschiedenen Aufgabensorten, je nachdem, was gegeben ist. Wenn drei Seiten gegeben sind, dann spricht man von der SSS (Seite-Seite-Seite) Konstruktion. Wenn zwei Seiten und der dazwischen liegender Winkel gegeben sind, spricht man von der SWS (Seite-Winkel-Seite) Konstruktion. Wenn zwei Seiten und ein Winkel, der nicht zwischen den Seiten liegt, gegeben sind, dann spricht man von der SSW Konstruktion (Seite-Seite-Winkel). Wenn zwei Winkel und eine Seite gegeben sind, dann spricht man von der WSW Konstruktion (Winkel-Seite-Winkel).

Konventionen

Die Seiten jedes Dreiecks werden klein geschrieben (mit a, b und c). Die gegenüber liegenden Eckpunkte werden entsprechend groß geschrieben mit (A, B und C). Für die entsprechenden Winkel werden die griechischen klein Buchstaben α, β und γ benutzt (Alpha, Beta und Gamma). Also, wenn A der Eckpunkt ist, ist der Winkel an diesem Punkt α und die gegenüberliegende Seite a. Man zeichnet die Seiten nacheinander im Gegenuhrzeigersinn. Unten zeichnet man i.d.R. die Seite a[5].

  1. Ziffer sind sozusagen die Buchstaben einer Zahl
  2. in der Physik soll man Masse sagen
  3. Ferner rechnet ein Taschenrechner auch anders als ein typischer Heimcomputer oder ein Notebook. So kann sich zwischen derartigen Geräten ebenfalls ein Unterschied ergeben. Zudem kann es bei solchen Geräten Optionen geben, selbst festzulegen, auf wie viele Stellen ein Ergebnis berechnet werden soll.
  4. (0 zählt hier am Anfang der Zahl bei der Anzahl gültiger Stellen nicht mit)
  5. Diese Konventionen werden i.d.R. in den Schulbüchern verwendet (und oft von Lehrern erwartet). Selbstverständlich darf (und kann) man irgendwelche andere (mehr oder weniger kongruenten) Symbole benutzen (außer wenn die Lehrperson das nicht erlaubt; so eine Haltung werde ich allerdings hier nicht kommentieren...).

SSS Konstruktion[Bearbeiten]

Wenn drei Seiten gegeben sind, geht man wie in den folgenden Bildern vor. Die Schritte sieht man am Rand jedes Bildes.

01-Dreieck-SSS-1.svg
01-Dreieck-SSS-2.svg
01-Dreieck-SSS-3.svg
01-Dreieck-SSS-4.svg
Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT
01-Dreieck-SSS-5.svg
01-Dreieck-SSS-6.svg
01-Dreieck-SSS-7.svg

Die ganzen Schritten kann man in der folgenden Animation sehen:

01-Dreieck-SSS.gif

SWS Konstruktion[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Wenn zwei Seiten und der Winkel dazwischen gegeben sind, geht man wie in den folgenden Bildern vor. Die Schritte sieht man am Rand jedes Bildes.

01-Dreieck-SWS-1.svg
01-Dreieck-SWS-2.svg
01-Dreieck-SWS-3.svg
01-Dreieck-SWS-4.svg
01-Dreieck-SWS-5.svg
01-Dreieck-SWS-6.svg

Die ganzen Schritten kann man in der folgenden Animation sehen:

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT
01-Dreieck-SWS.gif

SSW Konstruktion[Bearbeiten]

Wenn zwei Seiten und ein Winkel, der nicht zwischen diesen Seiten steht, gegeben sind, geht man wie in den folgenden Bildern vor. Die Schritte sieht man am Rand jedes Bildes.

01-Dreieck-SSW-1.svg
01-Dreieck-SSW-2.svg
01-Dreieck-SSW-3.svg