PSA Mathematik/ Lineare Funktion

Aus Wikibooks
Zur Navigation springen Zur Suche springen
INDEX
zum vorherigen V-Niveau Thema ZUM VORHERIGEN V-NIVEAU THEMA ANFANG DES Alle V-Niveau Themen V-ABSCHNITTS ZUM NÄCHSTEN V-NIVEAU THEMA zum nächsten V-Niveau Thema


Grundlagen[Bearbeiten]

Funktion allgemein[Bearbeiten]

Wenn man z.B. die Temperaturen um gewissen Uhrzeiten an einem Tag misst, dann hat man schon eine Art von Funktion. Man sagt, dass die Temperatur die abhängige Variable ist und die Uhrzeit die unabhängige. Für jeden Wert der unabhängigen Variable gibt es einen Wert der abhängigen Variable aber für jeden Wert der abhängigen Variable kann es keine, eine oder mehrere Werte der unabhängigen Variable geben.

FunkAllgTab.png
FunkAllg.png

In unserem Beispiel: für jede Uhrzeit gibt es genau eine Temperatur (es kann nicht mehrere geben), eine Temperatur aber kann nie, einmal oder mehrmals vorkommen. Man kann die ganze Information in einer Tabelle schreiben und mit Hilfe der Tabelle, kann man auch ein Diagramm erstellen:

Wie man im Diagramm ablesen kann, es gibt nur eine Temperatur für jede Uhrzeit (z.B. um 10 Uhr ist die Temperatur 14°C und nicht gleichzeitig 18°C) aber für jede Temperatur kann es keine (z.B. 5°C gibt es nicht), eine (z.B. 10° C gibt es nur um 6 Uhr) oder mehrere Zeiten (z.B. 15°C kommt 2 mal vor, man kann sogar raten, dass es die gleiche Temperatur irgendwann zwischen 10 Uhr und 12 Uhr gab!).

Lineare Funktion[Bearbeiten]

Wenn das Diagramm einer Funktion eine Gerade ist, dann geht es um eine sogenannte lineare Funktion. Ein lineare Funktion hat die allgemeine Form:

y=s x +A

wo y die abhängige Variable ist, x die unabhängige Variable und s und A irgendwelche Konstanten (Zahlen, die sich nicht ändern, wie die Variablen). So sind die folgende Funktionen linear:

y=3x – 2 y=-0,5x+130 y= ¾ x – 2,3 y=-√3 x -5

In der ersten Funktion y=3x – 2 ist s=3 und A=-2.

In der zweiten Funktion y=-0,5x+130 ist s=-0,5 und A=130.

In der dritten Funktion y= ¾ x – 2,3 ist s= ¾ und A=-2,3.

In der vierten Funktion y=-√3 x -5 ist s=-√3 und A=-5.

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT


Selbstverständlich kann man statt x und y andere Symbole benutzen:

y=3x – 2, a=3b – 2 und V=3h – 2 sind Darstellungen der gleichen Funktion, es werden nur andere Symbole für x und y benutzt. y= ¾ x – 2,3 ist doch eine andere Funktion, weil s und A (die Konstanten) anders sind. Wenn allein s oder allein A oder beide s und A in zwei Funktionen anders sind, dann haben wir zwei unterschiedlichen linearen Funktion. Wenn s und A in zwei Funktionen gleich sind, dann haben wir die gleiche Funktion, egal welche Symbole wir für x und y benutzen.

In einer lineare Funktion    wird die Konstante, mit der x multipliziert wird (hier mit s bezeichnet), Steigung der Funktion genannt. Die Steigung ist ein sehr wichtiger Begriff in der höheren Mathematik. Die Konstante, die dann addiert wird (hier mit A bezeichnet) nennt man y-Achsenabschnitt. Man muss auch sagen: in verschiedenen Staaten benutzt man unterschiedliche Symbole für s und A, z.B.

Hier ist dann m die Steigung und n der y-Achsenabschnitt (Gebrauch in Deutschland) .

Hier ist dann k die Steigung und d der y-Achsenabschnitt (Gebrauch in Österreich) .

Hier ist dann m die Steigung und q der y-Achsenabschnitt (Gebrauch in der Schweiz) .

Hier ist dann m die Steigung und b der y-Achsenabschnitt (Gebrauch in Spanien) .

Hier ist dann a die Steigung und b der y-Achsenabschnitt (Gebrauch in Frankreich und auf Englisch) .

Tabelle für eine lineare Funktion erstellen[Bearbeiten]

Für jede Funktion kann man eine Tabelle machen. Diese Tabelle kann man dann als Punkte in einem Diagramm darstellen. Als Beispiel benutzen wir die Funktion y=3x – 2:

LinFunkTab.png

Diagramm einer linearen Funktion mit Hilfe von zwei Punkten erstellen[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Um diese Funktion in einem Diagramm darzustellen braucht man nur zwei Punkte. Einen Punkt schreibt man mit einem Wertepaar P:(x|y), wobei erst immer der x-Wert geschrieben wird und dann der y-Wert (innerhalb von Klammern). Benutzen wird beispielsweise PA:(-1|-5) und PB:(2|4) (erstes Bild). Mit Hilfe dieser Punkte kann man eine Gerade ziehen (zweites Bild). Wie man dann feststellen kann, liegen alle Wertepaare der Tabelle auf dieser Gerade! (Drittes Bild)

Das ist genau die Sache. Alle Wertepaare einer linearen Funktion liegen auf der gleichen Gerade! Die Darstellung einer linearen Funktion auf einem Koordinatensystem ist eine Gerade!

Lösung einer Funktion[Bearbeiten]

In Mathematik nennt man Stelle der Funktion den Wert von x und Wert der Funktion den Wert von y. Lösung einer Funktion ist dann die Stelle (also der x-Wert) der Funktion, an der der Wert der Funktion (also y) null ist.

Nehmen wir die lineare Funktion  . Wie viel ist der Wert der Funktion an der Stelle 3? Stelle bedeutet x-Wert. Wenn ist, dann ist der Wert der Funktion also . Der Wert der Funktion an der Stelle ist . Wie viel ist die Lösung der Funktion? Lösung der Funktion bedeutet, dass der Wert der Funktion y null ist: daher und


zum vorherigen V-Niveau Thema ZUM VORHERIGEN V-NIVEAU THEMA ENDE DES Alle V-Niveau Themen V-ABSCHNITTS ZUM NÄCHSTEN V-NIVEAU THEMA zum nächsten V-Niveau Thema


zum vorherigen E1-Niveau Thema ZUM VORHERIGEN E1-NIVEAU THEMA ANFANG DES Alle E1-Niveau Themen E1-ABSCHNITTS ZUM NÄCHSTEN E1-NIVEAU THEMA zum nächsten E1-Niveau Thema


Eine lineare Funktion mit Hilfe von zwei Punkten finden[Bearbeiten]

Wenn man zwei Punkte einer linearen Funktion hat, kann man nicht nur die entsprechende Gerade im Diagramm zeichnen, sondern auch die Funktion selber finden, wenn man sie nicht kennt. Nehmen wir an, dass die folgende zwei Punkte P und Q gegeben sind:

P:(2|4), Q:(5|-2)

Mit Hilfe der beide Punkten kann man die Funktion in einem Koordinatensystem darstellen, wie im Bild. Wie viel ist aber die Steigung dieser Funktion und wie viel der y-Achsenabschnitt?

Die allgemeine Gleichung einer linearen Funktion ist:

y=s x + A

Setzen wir die Wertepaare für die zwei Punkten in diese Gleichung ein:

P(x|y)   x   y y=sx+A
P(2|4) 2 4    4=s·2+A   
  Q(5| − 2)   5   − 2    − 2=s·5+A 

Wir haben hier zwei Gleichungen mit zwei Variablen (k und d). Wir haben also ein Gleichungssystem. So was können wir schon lösen. Schreiben wir die Gleichungen auf:

4=s · 2 + A

− 2=s · 5 + A	
Lineare Funktion

Formen wir die erste Gleichung (4=s · 2 + A) auf A um:

4=s · 2 + A | − s · 2 (also − 2s)

4 − 2s = A    also A ist 4 − 2s:

A=4 − 2s

Setzen wir A in die zweite Gleichung ein:

− 2=s · 5 + A     (wobei d=4 − 2s)
− 2= 5s + (4 − 2s)
− 2=5s + 4  −  2s    | − 4  (und alle s zusammenrechnen)
− 6=3s    | :3
− 2=s     also 

s= − 2

Wir können jetzt auch d berechnen:

A=4 − 2s= 4 − 2 · ( − 2) = 4 + 4 = 8 also

A=8

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT

Damit haben wir das Gleichungssystem gelöst. In der allgemeinen Gleichung der linearen Funktion y= sx+A können wir jetzt s und A ersetzen (s= − 2, A=8).

y= − 2 x + 8

Die lineare Funktion, die durch die Punkte P:(2|4) und Q:(5|-2) definiert wird, lautet:

y= − 2 x + 8

Das Diagramm dafür kann man leicht zeichnen (siehe Bild). Wenn man die Gerade verlängert, dann trifft sie die y-Achse tatsächlich bei y=8 (y-Achsenabschnitt also A).

Die Steigung s kann man auch direkt von den Punkten berechnen. Es gilt:

wobei Δy die Differenz der y-Werte der zwei Punkte ist und Δx die Differenz der x-Werte.

In unserem Beispiel sind die Punkte P:(2|4) und Q:(5|-2), also die y-Werte 4 und -2 und die x-Werte 2 und 5. Die entsprechenden Differenzen sind: Δy=4 − ( − 2)=6 und Δx=2-5=-3. Daher ist die Steigung der abgebildeten linearen Funktion, die durch die Punkte P und Q geht:


zum vorherigen E1-Niveau Thema ZUM VORHERIGEN E1-NIVEAU THEMA ENDE DES Alle E1-Niveau Themen E1-ABSCHNITTS ZUM NÄCHSTEN E1-NIVEAU THEMA zum nächsten E1-Niveau Thema


zum vorherigen E2-Niveau Thema ZUM VORHERIGEN E2-NIVEAU THEMA ANFANG DES Alle E2-Niveau Themen E2-ABSCHNITTS ZUM NÄCHSTEN E2-NIVEAU THEMA zum nächsten E2-Niveau Thema


Textaufgaben zu den linearen Funktionen[Bearbeiten]

Bei den Textaufgaben über lineare Funktionen wird es normalerweise zwei Konstanten geben (also zwei Zahlen). Die Einheit einer der Zahlen wird normalerweise durch eine Änderungsrate (ein Verhältnis, einen Quotient von zwei anderen Einheiten) ausgedrückt. Diese Konstante (diese Zahl mit der Einheit "etwas" pro "etwas anderes") wird die Steigung sein, also der Koeffizient der unabhängigen Variable (i.d.R ). Die Einheit der Steigung wird die Form Einheit A durch Einheit B haben. Die Einheit B (z.B. Sekunde oder Meter) ist die Einheit der unabhängigen Variablen (i.d.R. ).

Die andere Konstante wird dann der y-Achsenabschnitt sein. Die Einheit des y-Achsenabschnitts ist auch die Einheit der abhängigen Variable und auch die erwähnte Einheit A bei der Steigung. Damit haben wir alle Elemente in einem mathematischen Zusammenhang „übersetzt“.


  • Beim Taxifahren ist die Grundgebühr 4€ und jede Minute kostet dann 0,5€. Stelle diesen Zusammenhang als lineare Funktion dar.

Lösung:

Hier sind zwei Zahlen angegeben: 4€ und 0,5€. Über 0,5€ ist aber auch gesagt, dass man "jede Minute" 0,5€ zahlt. Anders ausgedrückt sind es 0,5€ pro Minute. Einheit A (€) durch Einheit B (min). Das heißt, es geht um eine Änderungsrate. 0,5 soll also unsere Steigung sein. Dann ist die Grundgebühr der y-Achsenabschnitt. Die abhängige Variable wird also in € ausgedrückt (wie die Grundgebühr und die Einheit A oben in der Steigung), die unabhängige in Minuten (wie die Einheit B, die Einheit, die in der Steigung unten steht). Für beide Variablen kann man frei irgendwelche Symbole auswählen, gewöhnlich sollen sie auch sinnvoll sein, z.B. hier K für die Kosten und t für die Zeit (Englisch: time):

K(t)= 0,5 t + 4 (t in Minuten, K in €)

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT


Man soll auch eine Entscheidung über das Vorzeichen der Steigung treffen. Das ist eher einfach. Wenn es klar ist, dass die abhängige Variable (z.B. y, hier die Kosten K) auch größer wird, wenn die unabhängige (z.B. x, hier die Zeit t) größer wird, dann ist die Steigung positiv. Bei den Kosten ist es klar, dass sie immer mehr werden, wenn die Fahrt länger dauert. Also ist die Steigung positiv.

Wenn aber es klar ist, dass die unabhängige Variable kleiner wird, wenn die unabhängige größer wird, dann ist die Steigung negativ. Schauen wir ein entsprechendes Beispiel.


  • Eine Kerze mit einer Länge von 1,8 dm wird angezündet. Dabei brennt sie stündlich um ca. 0,9 cm ab. Stelle diesen Zusammenhang als lineare Funktion dar.

Hier ist 0,9 cm eine Änderungsrate, also 0,9 cm pro Stunde. 0,9 ist also die Steigung. Die Kerze wird aber immer kürzer, also wird die Steigung negativ sein. 1,8 dm wird unserer y-Achsenabschnitt sein. Wir wählen L für die Länge und t für die Zeit aus:

L(t)= - 0,9 t + 18 (t in Stunden, L in cm)

Vorsicht!

Man soll immer die Einheiten schreiben und die richtigen Einheiten benutzen.

Wenn man beispielsweise für den Abstand die Einheit Meter benutzt, muss man alle angegebene Abstände in Meter umwandeln, wenn sie nicht schon in Meter angegeben sind. Der vorsichtige Leser hat vielleicht gemerkt, dass der y-Achsenabschnitt in der Funktion 18 und nicht 1,8 ist. Wir haben erst die 1,8dm in 18cm umgewandelt! Das ist notwendig, weil die Steigung in cm (und nicht dm) pro Stunde gegeben ist. Ähnlich, wenn der Wert für die Zeit in Minuten gegeben ist, muss man sie erst in Stunden umwandeln (die Steigung ist ja pro Stunden). Darauf muss man also immer aufpassen!


Schauen wir ein etwas komplexeres Beispiel.

  • Der Druck in der Atmosphäre eines Planeten ist durch eine lineare Funktion angegeben. Auf 50km Höhe ist er 3 Atm, auf 200 km 1,8 Atm. Wie viel ist der Druck
  1. auf der Oberfläche des Planeten?
  2. auf 300 km Höhe?
  3. 50 km unterhalb der Oberfläche?

In diesem Fall muss man erst die lineare Funktion mit Hilfe der beiden Punkte finden. Der aufmerksame Leser hat vielleicht schon gesehen, dass die gegebenen Punkte hier sind. Wie im vorherigen Teil gezeigt, man kann die Funktion in zwei verschiedenen Weisen finden:

Man kann das lineare Gleichungssystem lösen:

P(x|y)   x   y y=mx+n
P(50|3) 50 3    3=m·50+n   
  Q(200|1,8)   200  1,8    −1,8=m·200+n 

oder man kann direkt die Formel für die Steigung benutzen:

und dann den y-Achsenabschnitt finden.

Selbstverständlich bekommt man in beiden Fällen die gleiche Antwort:

m=-0,008 und n=3,4 also

Mit Hilfe der Funktion kann man jetzt die Fragen beantworten.

  • Auf der Oberfläche ist die Höhe (also der x-Wert) Null. Das ist der y-Achsenabschnitt, also 3,4 Atm
  • In der zweiten Frage setzt man die 300 km für den x-Wert ein: , also 1 Atm.
  • In der dritten Frage muss man denken, dass unterhalb der Oberfläche die Höhe negativ sein wird: also 3,8 Atm.


zum vorherigen E2-Niveau Thema ZUM VORHERIGEN E2-NIVEAU THEMA ANFANG DES Alle E2-Niveau Themen E2-ABSCHNITTS ZUM NÄCHSTEN E2-NIVEAU THEMA zum nächsten E2-Niveau Thema