PSA Mathematik/ Primfaktorzerlegung

Aus Wikibooks
Zur Navigation springen Zur Suche springen
INDEX
zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ANFANG DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


Definitionen[Bearbeiten]

Primzahlen sind die natürlichen Zahlen (Zahlen ohne Komma und Minus), die nur durch 1 und sich selbst geteilt werden können. (teilbar: dividieren, ohne dass eine Kommazahl entsteht)

2 3 4 5 6 7 8 9 10 11 12 13
geht
auch
durch
2 2
3
2
4
3 2
5
2
3
4
6
Prim-
zahl
 ✔   ✔  ✘   ✔   ✘   ✔   ✘   ✘   ✘   ✔   ✘   ✔

Z.B.:

2 ist nur durch 2 und 1 teilbar und daher eine Primzahl.

3 ist nur durch 3 und 1 teilbar und daher eine Primzahl.

4 ist nur durch 4 und 1, aber auch durch 2 teilbar und daher keine Primzahl.

5 ist nur durch 5 und 1 teilbar und daher eine Primzahl.

6 ist nur durch 6 und 1, aber auch durch 2 und 3 teilbar und daher keine Primzahl.

usw.


Was bedeutet in diesen Sätzen "teilbar"? Eine Zahl ist durch eine andere Zahl teilbar, wenn das Ergebnis der Division kein Nachkommastellen enthält.

Nehmen wir die Zahl 5.

 

Dividiert man 5 durch jede größere natürlich Zahl (also: 6,7,8…), erhält man als Ergebnis eine Kommazahl kleiner als 1 (also Null-Komma-irgendwas). Beispielsweise:

Teilbar ist die Zahl 5 also nur durch eins (5:1=5) und sich selbst (5:5=1). Da bei unserem Beispiel alle anderen Ergebnisse ein Komma enthalten ist die Zahl 5 eine Primzahl.

Für 6 hingegen ist das nicht der Fall. 6 ist selbstverständlich durch 1 und 6 teilbar, aber eben auch durch 2 (6:2=3) und durch 3 (6:3=2). Daher ist 6 KEINE Primzahl.


Die ersten Primzahlen sind also 2, 3, 5, 7, 11, 13, 17, 19, 23 ...

Faktor ist ein Teil einer Multiplikation.

Primfaktorzerlegung (PFZ) bedeutet daher, eine Zahl als Produkt von Primzahlen auszudrücken (die dann Faktoren sind; Primzahlen die auch Faktoren sind, nennt man Primfaktoren; wenn man eine Zahl in Primfaktoren zerlegt, hat man die PFZ).

Vorgangsweise[Bearbeiten]

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT


Nehmen wir die Zahl 7800. Wir versuchen sie durch die Primzahlen der Reihe nach und soweit es jedes Mal geht zu dividieren. Die erste Primzahl ist 2 7800 : 2 = 3900. Geht es weiter durch 2? Ja! 3900 : 2 = 1950. Geht es noch weiter? Ja! 1950:2=975. Weiter durch 2 geht es aber nicht.

Probieren wir dann durch 3. Geht es? Ja! 975:3=325. Geht es weiter durch 3? Nein! (325:3 = 108,33

Probieren wir die nächste Primzahl: 325:5=65. Das geht nochmal: 65:5=13.

Die nächsten Primzahlen sind 7 und 11, da geht es nicht. Es geht wieder durch 13 13:13=1.

Hier sind wir fertig. Wir haben 7800 drei mal durch 2, ein mal durch 3, zwei mal durch 5 und ein mal durch 13 dividiert und dann war das Ergebnis 1. Es gilt daher: 7800:2:2:2:3:5:5:13=1 und umgekehrt (Gegenrechnung) 7800=2·2·2·3·5·5·13.

Schreibweise[Bearbeiten]

Den ganzen Prozess Schritt zum Schritt kann man so darstellen:

7800   
 
 
 
 
 
 
 
7800     2
3900   
 
 
 
 
 
 
7800     2
3900     2
1950   
 
 
 
 
 
7800     2
3900     2
1950     2
975     3
325     
 
 
 
7800     2
3900     2
1950     2
975     3
325     5
65     
 
 
7800     2
3900     2
1950     2
975     3
325     5
65     5
13     
 
7800     2
3900     2
1950     2
975     3
325     5
65     5
13     13
1   

Anwendungen[Bearbeiten]

Brüche kürzen[Bearbeiten]

Wir haben schon das Kürzen von Brüchen gesehen:

Hier sieht man sofort, dass man sowohl den Zähler als auch den Nenner durch 5 teilen kann. Was ist aber, wenn man große Zahlen hat. In diesem Fall ist es besser, die PFZ der Zahlen erst durchzuführen:

 
?
6664     2
3332     2
119     7
17     17
1   
8820     2
4410     2
2205     3
735     3
245     5
49     7
7     7
1   
Man schreibt Zähler und Nenner als
Produkt von Primzahlen und kürzt
den Bruch (also Primzahlen, die oben
und unten vorkommen, werden gestrichen)
 


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ENDE DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


zum vorherigen V-Niveau Thema ZUM VORHERIGEN V-NIVEAU THEMA ANFANG DES Alle V-Niveau Themen V-ABSCHNITTS ZUM NÄCHSTEN V-NIVEAU THEMA zum nächsten V-Niveau Thema


Strichrechnungen von mehreren Brüchen[Bearbeiten]

Wir haben schon gesehen, wie man zwei Brüche addiert oder subtrahiert. Was ist aber, wenn man mehrere Brüche hat? Man könnte selbstverständlich erst die zwei Brüche machen, das Ergebnis mit dem nächsten Bruch usw., es gibt aber in diesem Fall eine Methode, die schneller ist und die PFZ benutzt: Hier macht man zuerst die PFZ der Nenner:

       Hier macht man zuerst die PFZ der Nenner:

120     2
60     2
30     2
15     3
5     5
1   
36     2
18     2
9     3
3     3
1   
300     2
150     2
75     3
25     5
5     5
1   
120 = 2·2·2·3·5     Hier kommt 2 drei mal vor
36 = 2·2·3·3     Hier kommt 2 zwei mal vor
300 = 2·2·3·5·5     Hier kommt 2 zwei mal vor
 Am häufigsten kommt die 2 drei mal vor
kgV=2·2·2·3·3·5·5     Also müssen wir 2 in kgV drei mal
benutzen. Das gleiche passiert mit 3 und 5.
(kgV bedeutet kleinstes gemeinsames Vielfaches)    

Das kgV wird der neue gemeinsamer Nenner sein. Das bedeutet wir müssen alle drei Brüche erweitern. Im ersten Bruch () ist der Nenner 120 und muss auf 1800 erweitert werden. Mit welcher Zahl muss man 120 multiplizieren um 1800 zu bekommen? Um das zu finden, dividiert man 1800 durch 120 1800:120=15. Mit dieser Zahl (15) muss man den Nenner (120) multiplizieren. Damit aber der Bruch gleich bleibt, muss man auch den Zähler mit 15 multiplizieren. Den gleichen Prozess wiederholt man bei den anderen Brüchen:




Das ist der beste Weg um mehrere ungleichnamige Brüche zu addieren oder subtrahieren.


zum vorherigen V-Niveau Thema ZUM VORHERIGEN V-NIVEAU THEMA ENDE DES Alle V-Niveau Themen V-ABSCHNITTS ZUM NÄCHSTEN V-NIVEAU THEMA zum nächsten V-Niveau Thema


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ANFANG DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema


Teilbarkeit[Bearbeiten]

Bei der PFZ haben wir immer probiert, eine Zahl durch einer Primzahl zu teilen. Kann man wissen, ob das geht, ohne die Division zu machen? Für viele Primzahlen geht das. Die einfachsten Regel sind für 2, 3 und 5:

Durch 2[Bearbeiten]

Wenn eine Zahl in 0, 2, 4, 6, 8 endet (gerade Zahl), dann ist sie durch 2 teilbar:

2004 und 33338 sind durch 2 teilbar: 2004 endet in 4, 33338 in 8.

2005 oder 486863 sind nicht durch 2 teilbar: 2005 endet in 5 und 486863 in 3.

Durch 5[Bearbeiten]

Wenn eine Zahl in 0 oder 5 endet, dann ist sie durch 5 teilbar:

409 und 85923 sind nicht durch 5 teilbar (sie enden in 9 bzw. in 3).

Navigation
Inhaltsverzeichnis
INDEX
AUFGABENHEFT


490 und 89235 hingegen sind durch 5 teilbar (sie enden in 0 bzw. in 5)

Durch 3 (oder 9)[Bearbeiten]

Wenn die Summe der Ziffer[1] einer Zahl durch 3 (bzw. 9) teilbar ist, dass ist die Zahl auch durch 3 (bzw. 9) teilbar:

135 ist durch 3 teilbar: 1+3+5=9 (9:3=3, die Summe der Ziffer 9 ist durch 3 teilbar, also auch die Zahl 135). Sie ist auch durch 9 teilbar (9 ist durch 9 teilbar)

3564825 ist durch 3 teilbar: 3+5+6+4+8+2+5=33, 33:3=11. 33 ist durch 3 teilbar, daher auch 3564825. 33 ist aber nicht durch 9 teilbar, also 3564825 auch nicht.

3564824 ist nicht durch 3 oder 9 teilbar: 3+5+6+4+8+2+4=32, 32 ist nicht durch 3 oder 9 teilbar.

35644825 ist sowohl durch 3 als auch durch 9 teilbar: 3+5+6+4+4+8+2+4=32, 32 ist durch 3 und 9 teilbar.

Durch 7[Bearbeiten]

Um zu verstehen, wie man herausfindet, ob eine Zahl durch 7 teilbar ist, machen wir ein Beispiel. Nehmen wir die Zahl 4445. Man teilt sie in Teilen am Ende anfangend und jedes mal zwei Ziffer nehmend: 44 | 45. Wenn die Summe vom doppelten des rechten teils und vom linken Teil durch 7 teilbar ist, dann ist auch die ganze Zahl: 2·44+45=133. Wenn man nicht sofort sehen kann, ob 133 durch 7 teilbar ist, kann man den Vorgang wiederholen: 133 in zwei Teilen → 1 | 33 2·1+33=35. 35 ist durch 7 teilbar, daher auch 133 und 4445. Bei größeren Zahlen muss man den Vorgang wiederholen. Probieren wir es mit einer größeren Zahl: 437381 43 | 73 | 81 2·43+73=159 2·159+81=399 → 3 | 99 3·2+99= 105 → 1 | 05 1·2+05=7 7 ist offenbar durch 7 teilbar also auch 105 und 399 und 437381! Man muss sagen: diese Regel kann doch länger dauern, als die eigentliche Division zu machen...

Durch 11[Bearbeiten]

Für die Teilbarkeit durch 11 gibt es eine Regel: wenn die Differenz der alternierenden Summe der Ziffer einer Zahl 0 oder durch 11 teilbar ist, dann ist die Zahl auch durch 11 teilbar. Beispiel: 981607. Man nimmt die Summe der ersten, der dritten und der fünften (alternierend) Ziffer 9+1+0= 10 und die Summe der zweiten, der vierten und der sechsten (alternierend) Ziffer 8+6+7=21. Die Differenz der beiden Summen ist 21-10=11, was durch 11 teilbar ist. Daher ist auch 981607 durch 11 teilbar!


zum vorherigen G2-Niveau Thema ZUM VORHERIGEN G2-NIVEAU THEMA ENDE DES Alle G2-Niveau Themen G2-ABSCHNITTS ZUM NÄCHSTEN G2-NIVEAU THEMA zum nächsten G2-Niveau Thema
  1. Ziffer sind sozusagen die Buchstaben einer Zahl