PSA Mathematik/ Zahlenmengen

Aus Wikibooks
Zur Navigation springen Zur Suche springen
INDEX

Einführung[Bearbeiten]

Einfach gesagt ist eine Menge eine Sammlung von mehreren Sachen. Viele Bücher zusammen sind eine Menge von Bücher, viele Blumen zusammen sind eine Menge von Blumen, viele Ziegen und Schafen und Kühe zusammen sind eine Menge von Tieren. Man kann sogar von einer Menge sprechen auch, wenn man eine Sache hat (z.B. ein Buch) oder keine Sache (die leere Menge). Ein Bereich der Mathematik, die Mengentheorie, beschäftigt sich mit den Mengen. In dieser Theorie spricht man auch von Zahlenmengen.

Natürliche Zahlen[Bearbeiten]

Die einfachste Zahlenmenge ist die Menge der natürlichen Zahlen   :

1, 2, 3, 4, 5 .....

Die Menge der natürlichen Zahlen schreibt man mit  . Null kann auch zur Menge der natürlichen Zahlen gehören. Wie man die Menge mit oder ohne Null schreibt, unterscheidet sich zwischen Sprachen und Kulturen.

Ganze Zahlen[Bearbeiten]

Die Menge der natürlichen Zahlen kann man mit den negativen Zahlen erweitern. Dann entsteht die Menge der ganzen Zahlen   :

.... −3, −2, −1, 0, 1, 2, 3 ....

Alle natürliche Zahlen sind auch ganze Zahlen. Andererseits sind NUR die positive ganze Zahlen (oder die nicht negativen) auch natürliche Zahlen!

Rationale Zahlen[Bearbeiten]

Wenn man natürliche oder ganze Zahlen dividiert, bekommt man oft Zahlen mit Nachkommastellen:

Diese Zahl ist keine ganze (und daher auch keine natürliche) Zahl. Sie ist eine sogenannte rationale Zahl. Die Menge alle Zahlen, die man als Brüche von ganzen Zahlen schreiben kann, ist die Menge der rationalen Zahlen. Man soll aufpassen. 11 durch 7 (11:7) ist eine Division zwischen zwei ganzen Zahlen. Der Bruch    hingegen ist eine Zahl (eine rationale Zahl), die gleich so viel ist, wie das Ergebnis (Quotient) der Division 11:7.

Wenn man zwei ganze Zahlen dividiert, kann man wieder eine ganze Zahle bekommen (wie z.B. 26:2=13) oder eine Zahl mit Nachkommastellen. Wenn das Ergebnis Nachkommastellen hat, dann ist sie keine ganze Zahl mehr.

Alle ganze Zahlen (und daher auch alle natürliche) sind auch rationale Zahlen (z.B.  ). NUR die rationalen Zahlen OHNE Nachkommastellen sind auch ganze Zahlen.

Für die Zahlen mit Nachkommastellen gibt es zwei Möglichkeiten: sie können endlich viele Nachkommastellen haben (z.B.  ) oder unendlich viele Nachkommastellen (wie  ). Im letzten Fall gibt es in den Nachkommastellen eine Wiederholung von der gleichen Zahlenfolge:

Diese wiederholte Zahlenfolge (hier die Zahlenfolge ) nennt man Periode.

Die erweiterte Zahlenmenge (ganze Zahlen und dazu Zahlen mit endlich viele oder unendlich viele aber periodischen Nachkommastellen) nennt man Menge der rationalen Zahlen  .

Reelle Zahlen[Bearbeiten]

Es gibt aber auch Zahlen, die zwar unendlich viele Nachkommastellen haben aber keine Periode.    z.B. ist eine solche Zahl. Es gibt einen Beweis dafür, der zeigt, dass man    NICHT als Bruch von zwei ganzen Zahlen ausdrücken kann.    ist eine sogenannte irrationale Zahl. Die irrationale Zahlen (wie  ) zusammen mit den rationalen (wie    oder −6) bilden zusammen die Menge der reellen Zahlen  .

ALLE rationale Zahlen sind auch reelle Zahlen. NICHT alle reelle Zahlen sind auch rationale Zahlen (z.B.    ist eine Reelle aber keine Rationale Zahl).

Zahlenmengen

Man kann also sagen: 5 ist eine natürliche aber auch eine ganze, eine rationale und eine reelle Zahl.   ist eine rationale, eine reelle aber auch eine ganze Zahl (warum? Weil −14:7 = −2 ist und −2 eine ganze Zahl ist). Sie ist aber keine natürliche Zahl (weil −2 eine negative Zahl ist).    ist nur eine reelle Zahl und keine rationale, ganze oder natürliche Zahl.    ist eine reelle, aber auch eine rationale, eine ganze und eine natürliche Zahl (weil    ist).

Eine Darstellung der Beziehungen zwischen den Mengen kann man im Bild sehen. Die reelle Zahlen beinhalten alle anderen Mengen, sie sind sozusagen die „größte“ Menge, die natürlichen Zahlen hingegen sind in allen anderen Mengen drinnen, beinhalten aber selber keine andere Menge (zumindest nicht in diesem Bild, also, wenn wir über diese 4 Mengen sprechen). Die natürliche Zahlen sind sozusagen die „kleinste“ Menge von diesen 4 Mengen.