Praktikum Organische Chemie/ Trennung und Isolierung niedermolekularer organischer Verbindungen/ Trennungen durch Kristallisation

Aus Wikibooks

Trennungen durch Kristallisation[Bearbeiten]

Allgemeines[Bearbeiten]

Die Kristallisation aus Lösungen ist die klassische Reinigungsmethode der organischen Chemie. Sie ist apparativ außerordentlich einfach durchzuführen. Auch hier werden Lösungsmittel als Hilfsphase benutzt. Voraussetzung für eine Trennung bzw. Reinigung durch Umkristallisation ist eine möglichst ausgeprägte Temperaturabhängigkeit der Löslichkeit. Die zu reinigende Substanz soll in heißem Lösungsmittel leichter löslich sein als in kaltem, was im allgemeinen zutrifft. Eine Trennung von Substanzen kann naturgemäß nur dann erfolgen, wenn sich ihre Löslichkeiten im selben Solvens stark unterscheiden. Die schwerer lösliche Substanz kristallisiert dann aus, die leichter löslichen (z. B. die Verunreinigungen) sollen in der Mutterlauge bleiben. Das Kristallisieren wird so lange wiederholt, bis das Kristallisat rein ist. Zur Kontrolle der Reinheit dient meistens die Bestimmung des Schmelzpunktes. Verunreinigungen setzen ihn herab (Schmelzpunktsdepression). Man kristallisiert so lange um, bis der Schmelzpunkt sich nicht mehr ändert. Entscheidend für das Gelingen einer Kristallisation ist die Wahl des richtigen Lösungsmittels; sie erfolgt empirisch, d.h. durch Probieren. Lösungsmittel zur Kristallisation sollen nicht zu gut lösen. Dies gilt besonders, wenn kleine Substanzmengen kristallisiert werden sollen. Findet man kein geeignetes Lösungsmittel, so ist es oft möglich, aus Lösungsmittelgemischen umzukristallisieren (Umlösen). Das Lösungsmittelgemisch ist so beschaffen, dass eine der Lösungsmittelkomponenten gut löst, die andere schlecht. Man löst dann die umzukristallisierende Substanz in dem gut lösenden Solvens, meist in der Hitze, und tropft langsam das schlecht lösende Solvens zu. Typische Beispiele sind Umkristallisation aus dem Paar Chloroform/Petrolether oder Ethanol/ Wasser. Die durch Filtration (Absaugen mit dem Hirsch- oder Büchner-Trichter) abgetrennten Kristalle müssen mit demselben (reinen!) Lösungsmittel bzw. Lösungsmittelgemisch gewaschen werden, damit Verunreinigungen aus der Mutterlauge nicht beim Trocknen an den Kristallen haften bleiben. Auch das zum Waschen der Kristalle verwendete Lösungsmittel muss entfernt werden. Dies geschieht durch Trocknen der Kristalle an der Luft (Abzug). Meist werden jedoch die Lösungsmittel durch Abpumpen der Dämpfe im Vakuumexsikkator entfernt. Der Trocknungseffekt im Exsikkator oder in der Trockenpistole kann durch sog. Trockenmittel, das sind Stoffe, welche die Lösungsmitteldämpfe absorbieren, unterstützt und beschleunigt werden. Gebräuchliche Trockenmittel sind Kieselgel (Blaugel, für Wasser und Alkohole), Calciumchlorid, Phosphorpentoxid, vorzugsweise in Granulatform (z. B. Siccapent). Säuredämpfe, wie z. B. Essigsäure, können durch Beschickung des Exsikkators mit festen Kaliumhydroxid-Plätzchen absorbiert werden. Unpolare Lösungsmittel - wie Petrolether - werden von Hartparaffin-Schnitzeln absorbiert, die man als Exsikkatorfüllung verwendet.

Kristalline Derivate zur Charakterisierung organischer Verbindungen[Bearbeiten]

Der "klassische" Weg zur Charakterisierung organischer Verbindungen mittels Schmelzpunkt ist bei flüssigen Substanzen nicht möglich. In diesen Fällen kann man durch Umsetzung mit bestimmten Reagentien kristalline Derivate herstellen, deren Schmelzpunkt bestimmt wird. Der Schmelzpunkt ist dann ein Charakteristikum der betreffenden Substanz. Außerdem lassen sich auf diese Weise funktionelle Gruppen im Molekül feststellen. Die Derivatisierungs-Technik hat an Bedeutung stark verloren, seit organische Verbindungen in erster Linie durch Spektren charakterisiert werden, die entweder nur winzige Substanzmengen benötigen, z. B. Massenspektren, oder die Substanz nicht zerstören, wie NMR, IR, UV. Eine gewisse Bedeutung haben Derivatisierungen auch heute noch zur Charakterisierung von Aminen, vor allem Alkaloiden, die verschiedene gut kristallisierende Salze (z. B. Pikrate) liefern, und zur Charakterisierung von Carbonylverbindungen, vor allem Ketonen. Diese bilden in rascher Reaktion 2,4-Dinitrophenylhydrazone und Semicarbazone (Versuch 3).

Dinitrophenylhydrazone und Semicarbazone werden nach folgenden Reaktionsgleichungen gebildet:


Bildung von 2,4-Dinitrophenylhydrazonen aus Carbonylverbindungen


Bildung von Semicarbazonen aus Carbonylverbindungen


Versuche[Bearbeiten]

In organisch-chemischen Praktika wird die Herstellung von Semicarbazonen, 4-Nitrophenylhydrazonen und 2,4-Dinitrophenylhydrazonen seit langem zur Identifizierung von Aldehyden und Ketonen geübt. Es gibt verschiedene Vorschriften für diese analytischen Reaktionen. Schon in der vermutlich ersten deutschsprachigen Praktikumsanleitung zur organischen qualitativen Analyse von Hermann Staudinger (1923) wird eine kurze Vorschrift zur Herstellung von Semicarbazonen gegeben.[1] Ausführlichere Vorschriften findet man u.a. in

  • Ralph L. Shriner und Reynold C. Fuson, The systematic identification of organic compounds, 3.Aufl., S.171, Wiley, New York u.a.O, 1948, und spätere Auflagen (1. Auflage 1935).
  • Houben-Weyl, Methoden der organischen Chemie, 4. Aufl. Bd. 2, S. 446, 448, 449, Thieme, Stuttgart, 1953.
  • Organikum, Organische-chemisches Grundpraktikum, 7. Aufl. VEB Deutscher Verlag der Wissenschften, Berlin, 1967 und spätere Auflagen.
  • Hartmut Laatsch, Die Technik der organischen Trennungsanalyse, Thieme, Stuttgart, 1988.

Kaye und Yuska machten den Vorschlag, 2,4-Dinitrophenylhydrazone und Semicarbazone als Übungen für das Umkristallisieren und Identifizieren in organisch-chemischen Praktika herzustellen.[2]

Einzelnachweise[Bearbeiten]

  1. Hermann Staudinger, Anleitung zur organischen qualitativen Analyse, 1. Aufl. S. 62-63, Springer, Berlin 1923. Siehe auch die späteren Auflagen (mit W. Kern als Coautor).
  2. Irving Allan Kaye, Henry Yuska, Recrystallization and Melting Point Determination. An introductory organic exercise. J. Chemical Education 47, 703-704 (1970).