Zum Inhalt springen

Praktikum Organische Chemie/ Trennung und Isolierung niedermolekularer organischer Verbindungen/ Trennungen durch Verteilungs-Schichtchromatographie

Aus Wikibooks

Durch systematische Wiederholung von Verteilungsschritten lassen sich auch Substanzen trennen, die sich in ihren Verteilungskoeffizienten bzw. Trennfaktoren weniger unterscheiden.

Ein apparativ aufwendiges Verfahren ist die Gegenstromverteilung, welche jedoch in Praktika der Organischen Chemie keine Rolle spielt. Systematisch wiederholte Verteilungsschritte lassen sich mit einfacheren Mitteln durch die Methoden der Verteilungschromatographie realisieren, insbesondere in der Variante der Schichtchromatographie.

Verteilungs-Schichtchromatographie

[Bearbeiten]

Prinzip der Trennung

[Bearbeiten]

Die Anordnung zur Schichtchromatographie basiert auf einem Träger (Glasplatte, Aluminium- oder Kunststoff-Folie), der mit einem Sorbens beschichtet wird. Dieses dient dazu, die stationäre flüssige Phase aufzunehmen, d.h. es wird mit dieser imprägniert. Die Imprägnierung kann vor der Chromatographie oder auch während des Trennvorganges (kontinuierlich) erfolgen. Die mobile Phase, welche in der Schichtchromatographie auch als Fließmittel oder Laufmittel bezeichnet wird, strömt über die stationäre Phase.

Zur Trennung wird die zu analysierende Lösung des Stoffgemisches mit einer Mikropipette tropfenweise („Auftüpfeln“) oder als kurzer "Strich“ auf die Schicht aufgetragen. Nachdem das Lösungsmittel verdunstet ist, bringt man die Platte bzw. Folie in eine Trennkammer, die vorher mit einem für die "Entwicklung" geeigneten Lösungsmittel(gemisch) beschickt wurde. Der aufgebrachte Fleck (engl. Spot) bzw. die strichförmige Zone wandert nun langsam durch die Schicht; Kapillarkräfte bewirken die Wanderung, bei der eine Trennung der Komponenten erfolgen kann.

Die am Start aufgetragene Substanzmischung (A und B, Bild 5-1) setzt sich mit stationärer und mobiler Phase ins Verteilungsgleichgewicht. Eine bestimmte Wegstrecke entspricht einer theoretischen Trennstufe. Je weiter die mobile Phase fortschreitet, desto mehr Trennstufen lassen sich realisieren.

Prinzip der Verteilungs-Chromatographie in einer Schicht

Bild 5-1. Prinzip der Verteilungs-Chromatographie in einer Schicht. Auf dem Träger befindet sich die stationäre Phase (blau). Die mobile Phase (grün) in einem Vorratsgefäß wandert über die stationäre Phase. Die Verteilung der Analysensubstanz wird durch die (Halb)kreise symbolisiert.


Unterscheiden sich die Substanzen A und B in ihren intermolekularen Wechselwirkungskräften, so werden sie durch das Fließmittel mit verschiedenen Geschwindigkeiten weiter transportiert. Moleküle mit hoher Affinität zur stationären Phase werden stärker festgehalten ("retentiert"). Die Konzentrationen der Substanzen bilden im Idealfall ein kegelförmiges Profil (Berge), welche in Seitenansicht Glockenkurven entsprechen. In Aufsicht ("von oben") erscheinen die Berge als kreisrunde Flecken, im Idealfall. In der Realität sind sie jedoch häufig zu einer Ellipse "verzogen" oder bilden "Schwänze" aus (engl. tailing).

Schichtchromatographie im Verteilungsmodus

Bild 5-2. Schichtchromatographie im Verteilungsmodus.


Man beschreibt das chromatographische Verhalten der Substanzen durch den Retentionsparameter Rf. Dazu misst man die Laufstrecke, welche das Fließmittel zurückgelegt hat, die Front der mobilen Phase (c), und die Strecken, welche die Substanzen zurückgelegt haben (a bzw. b). Der Rf-Wert ist definiert als


Rf = a/c bzw. Rf = b/c.


Im Gegensatz zu Schmelz- und Siedepunkten lassen sich die Rf-Werte jedoch nicht sehr genau definieren, da sie von verschiedenen, schwierig zu reproduzierenden Faktoren abhängen. Daher tüpfelt man meistens in einigem Abstand zum Startfleck von (A+B) oft eine Standard-Substanz auf, deren Rf-Wert ebenfalls vermessen wird. In vielen Fällen wählt man als Standard die im Gemisch nachzuweisende Substanz, z.B. Substanz A in reiner Form.

Wollte man beispielsweise Coffein in Getränken (Coca-Cola) oder "Schmerztabletten" nachweisen (Versuch #), so würde man reines Coffein als Standard auftüpfeln. Sind dann die Laufstrecken, d.h. die Rf-Werte gleich, ist die Wahrscheinlichkeit hoch, dass Standard und Analysensubstanz identisch sind. Die gleichen Rf-Werte könnten jedoch Zufall sein! Daher sollten mindestens zwei Versuche mit verschiedenen Fließmitteln gemacht und/oder die Substanzflecke mittels Nachweisreagentien (Sprühreagentien) weiter identifiziert werden.


Arbeitstechniken

[Bearbeiten]
  • Horizontale Entwicklung

Die im Modell dargestellte horizontale Entwicklung wird im organischen Praktikum selten angewandt (Sandwich-Technik). Eine Ausnahme ist die Cirkular-Technik, bei der die Substanzmischung im Zentrum einer Schicht auf einem quadratischen Träger aufgebracht wird. Die mobile Phase wird kontinuierlich im Zentrum zugeführt. Bei der Entwicklung bilden die Moleküle dann kreisförmige Zonen um den Mittelpunkt (Bild 5-3).

Prinzip der Circularchromatographie

Bild 5-3. Prinzip der Circularchromatographie

  • Aufsteigende Entwicklung

Diese Methode wird am meisten verwendet. Man benötigt dazu eine Trennkammer, welche zylindrisch oder quaderförmig sein kann. Am Boden der Trennkammer befindet sich die mobile Phase (Trennflüssigkeit). Der Träger (Folie, Glasplatte) mit der Trennschicht wird vertikal in der Kammer aufgestellt.

Zylindrische Trennkammer zur Schichtchromatographie

Bild 5-4. Zylindrische Trennkammer.

Bei der zweidimensionalen Entwicklung verwendet man eine Platte oder Folie von quadratischem Format. Die Lösung der zu analysierenden Substanzmischung muss punktförmig in der Nähe eines Ecks aufgetragen werden. Nach Beendigung der ’eindimensionalen‘ Entwicklung lässt man das Fließmittel im Abzug verdampfen. Dann dreht man die Platte (Folie) um 90° und lässt in der Trennkammer ein zweites Mal entwickeln, wobei evt. ein anderes Fließmittel gewählt wird. Die Flecke der getrennten Komponenten haben sich dann über die quadratische Schicht verteilt. Zum Beispiel wurden Gemische von Aminosäuren auf diese Weise getrennt.

Dünnschichtchromatographie in zwei Dimensionen, schematisch
Dünnschichtchromatographie in zwei Dimensionen, schematisch

Bild 5-5. Zweidimensionale Dünnschichtchromatographie (schematisch). Grün: Startlinie, Rot: Front der mobilen Phase.

Stationäre Phasen

[Bearbeiten]

Wie eingangs beschrieben, sollte ein Sorbens nur die stationäre Phase fixieren und im Übrigen inert sein. Allerdings ist dieses Bild vereinfacht; denn in der Praxis ist das Sorbens selbst nicht ohne Wirkung beim Trennprozess. Die Oberfläche des Sorbens spielt ebenfalls eine Rolle. Daher ist es realistischer, das ganze "System Sorbens + stationäre Phase“ als Einheit ("Sorptionsmilieu“) zu betrachten.

Da beim Chromatographieren im Verteilungsmodus in der Regel wasserhaltige mobile Phasen verwendet werden (s.u.) sollte eine Wasserschicht auf dem Träger haften. Daraus folgt, dass in diesem Falle Sorbentien mit polarem, hydrophilem Charakter geeignet sind: Kieselgel und Cellulose adsorbieren Wasser sehr gut.

Der umgekehrte Fall, eine unpolare stationäre Phase mit einer polaren mobilen Phase, d. h. ein Solvens, das mit Wasser mischbar ist, wurde u.a. durch "Imprägnierung" des Sorbens mit schwerfüchtigen Kohlenwasserstoffen versucht. Diese Technik hat sich jedoch nicht durchgesetzt, da die Imprägnierung schlecht haftete und durch die mobile Phase ausgewaschen werden konnte. Erst mit der Methode der Umkehrphasen-Chromatographie (Reversed Phase Chromatography) wurde das Ziel erreicht. Sie ist jedoch keine Flüssig-Flüssig-Verteilung im strengen Sinn und wird daher im Kapitel "Adsorptions-Schichtchromatographie" behandelt.

  • Kieselgel

Für die Schichtchromatographie wird spezielles Kieselgel benötigt, worauf im Kapitel "Adsorptions-Schichtchromatographie" eingegangen wird.

  • Cellulosepulver

Cellulose adsorbiert bekanntlich Wasser bereits an feuchter Luft. Dafür sind die zahlreichen HO-Gruppen dieses Makromoleküls verantwortlich.

Bild 5-6. Formel eines Ausschnitts einer Cellulosefaser.

Historisch gesehen wurde Cellulose erstmals mit der Methode der Papierchromatographie zu Trennungen eingesetzt. Nachdem Cellulosepulver kommerziell verfügbar geworden war, konnte man aus diesem Material einen Brei anrühren und Glasplatten oder Folien damit beschichten. Diese Trennschichten zeigten eine höhere Trennleistung als Papier, sind allerdings teurer.

Fließmittel

[Bearbeiten]

Als mobile Phasen wählt man meistens Gemische von Wasser mit Lösungsmitteln, die teilweise mit Wasser mischbar sind. Ein Standard-Fließmittel ist das System Butanol-Essigsäure-Wasser. Zur Chromatographie basischer Verbindungen wird u.a. eine Mischung von Butanol mit verdünnter wässrige Ammoniak-Lösung verwendet.