Zurück zu Unendliche Reihen
∑ k = 1 ∞ n ! k ( k + 1 ) ⋯ ( k + n ) = ∑ k = 1 ∞ ( k − 1 ) ! n ! ( k + n ) ! = ∑ k = 1 ∞ B ( k , n + 1 ) = B ( 1 , n ) = 1 n {\displaystyle \sum _{k=1}^{\infty }{\frac {n!}{k\,(k+1)\cdots (k+n)}}=\sum _{k=1}^{\infty }{\frac {(k-1)!\,n!}{(k+n)!}}=\sum _{k=1}^{\infty }B(k,n+1)=B(1,n)={\frac {1}{n}}}
Definiert man S n = ∑ k = 1 n 1 k ( k + 1 ) ⋯ ( k + n ) {\displaystyle S_{n}=\sum _{k=1}^{n}{\frac {1}{k\,(k+1)\cdots (k+n)}}} , so ist S n − 1 = ∑ k = 1 n k + n k ( k + 1 ) ⋯ ( k + n ) = ∑ k = 1 n 1 ( k + 1 ) ⋯ ( k + n ) + n S n {\displaystyle S_{n-1}=\sum _{k=1}^{n}{\frac {k+n}{k\,(k+1)\cdots (k+n)}}=\sum _{k=1}^{n}{\frac {1}{(k+1)\cdots (k+n)}}+n\,S_{n}} . Also ist S n − 1 − n S n = ∑ k = 0 n 1 ( k + 1 ) ⋯ ( k + n ) − 1 n ! = S n − 1 − 1 n ! {\displaystyle S_{n-1}-n\,S_{n}=\sum _{k=0}^{n}{\frac {1}{(k+1)\cdots (k+n)}}-{\frac {1}{n!}}=S_{n-1}-{\frac {1}{n!}}} . Daraus folgt S n = 1 n ⋅ n ! {\displaystyle S_{n}={\frac {1}{n\cdot n!}}} .