Astronomische Berechnungen für Amateure/ Himmelsmechanik/ Zweikörperproblem

Aus Wikibooks
Situation beim sog. Zweikörperproblem

Wir betrachten die Bewegung eines einzelnen Planeten unter dem Einfluss der Gravitationsanziehung durch die Sonne. Eine erste Feststellung betrifft die Sonne: sie kann entgegen dem 1. Keplergesetz nicht unbewegt im Zentrum des Sonnensystems sitzen. Wenn die Sonne S den Planeten P mit der Gravitationskraft FSP anzieht, dann zieht wegen dem Reaktionsprinzip der Planet die Sonne mit der genau gleich grossen, aber entgegen gesetzt gerichteten Kraft FPS = –FSP an. Wäre die Sonne bewegungslos, dann würde sie auf den Planeten zu beschleunigt und irgend wann würden die beiden Himmelskörper kollidieren. Das System kann nur dann stabil sein, wenn beide Körper gemeinsam einen Punkt O umrunden. Um seine Lage zu berechnen, nehmen wir zur Vereinfachung an, dass beide Körper auf einer Kreisbahn mit Radius r1 (Sonne) bzw. r2 (Planet) um O laufen. Ihr Abstand voneinander beträgt r = r1 + r2. Die Zentralkraft, die zB. die Sonne auf ihrer Bahn hält, ist die Gravitationskraft, die vom Planeten ausgeübt wird:


Analog hält die Gravitationskraft der Sonne als Zentralkraft den Planeten auf seiner Bahn:



Dabei haben wir unterstellt, dass die beiden Umlaufzeiten gleich sind – andernfalls könnte O kein Fixpunkt sein. Dividieren wir nun die beiden Gleichungen durcheinander, so erhalten wir:



M.a.W.: O teilt die Strecke r im umgekehrten Verhältnis der Massen von Sonne und Planet – dies ist gerade die Definition des Schwerpunktes. Es ist also:



Wegen der dominierenden Masse der Sonne ist der Radius r1 immer sehr viel kleiner als r2. Selbst beim massereichen Jupiter liegt der Schwerpunkt des Paares Sonne – Jupiter knapp oberhalb der Sonnenoberfläche. Die Zeichnung übertreibt also.

Wenden wir diese Erkenntnis nochmals auf die Kreisbewegung des Planeten an, so erhält man:


Kürzen wir und formulieren entsprechend um, so erhalten wir:



Dies ist die präzisere Fassung des dritten Keplergesetzes: das Verhältnis von dritter Potenz des Bahnradius r (bzw. der grossen Halbachse a im allgemeinen Fall) zum Quadrat der Umlaufzeit T ist proportional zur Summe der beiden Massen. Wiederum gilt: wegen der dominierenden Sonnenmasse konnte der Unterschied zu Keplers Zeit noch gar nicht bemerkt werden.

Die Gravitationskraft ruft eine ebene Bewegung hervor. Die Geraden S1P1 und S2P2 haben O als Schnittpunkt. Sie definieren eine Ebene. In dieser Ebene liegen einerseits die Geschwindigkeitsvektoren tangential zur Bahn (gilt auch für nicht kreisförmige Bahnen), andererseits die Gravitationskräfte zwischen Sonne und Planet. Dann können die Kräfte nach dem Aktionsprinzip die Geschwindigkeitsvektoren nur so verändern, dass sie in der Ebene bleiben – m.a.W.: die Ebene, in der die Bewegung abläuft, bleibt immer die gleiche.

Mit etwas mehr mathematischem Aufwand als wir hier treiben wollen konnte Newton zeigen, dass unter dem Einfluss der Gravitationskraft allgemein Kegelschnitte als Bahnformen resultieren können, also Kreis, Ellipse, Parabel oder Hyperbel. Die ersten beiden Bahnformen sind geschlossen, ein Körper auf einer solchen Bahn bleibt im Sonnensystem. Die letzten beiden sind offene Bahnformen, dh. ein Körper auf einer solchen Bahn stattet der Sonne einen einmaligen Besuch ab, dann verschwindet er für immer in den Tiefen des Weltalls. Parabel- und Hyperbelbahnen findet man unter den nicht periodischen Kometen und gewissen Meteoriden.

Zur Herleitung des Flächensatzes

Bleibt als Letztes die Frage nach der Gültigkeit des zweiten Keplergesetzes oder des sog. Flächensatzes im Rahmen der Newtonschen Gravitation. Hier konnte Newton zeigen, dass jede Bewegung, die durch eine Zentralkraft hervorgerufen wird, den Flächensatz erfüllt. Der Beweis sei mit Hilfe der nebenstehenden Figur geführt: P1, P2 und P3 sind drei Punkte der Bahn, wobei die Zeit t für die Bewegung von P1 nach P2 gleich lang ist wie die Zeit t von P2 nach P3. Würde im Punkt P1 keine Kraft wirken, so würde der Körper sich nach dem Trägheitssatz geradlinig-gleichförmig weiter bewegen und in der Zeit t die Strecke s0 zurücklegen. Stünde er umgekehrt in P1 still, so würde er nach dem Aktionsprinzip durch die Gravitationskraft auf das Zentrum M zu beschleunigt und in der Zeit t die Strecke s'1 zurücklegen. In Wirklichkeit vollführt er nach dem Unabhängigkeitsprinzip eine Bewegung, die durch die vektorielle Addition beschrieben wird: s1 = s0 + s'1. So gelangt er in der Zeit t von P1 nach P2. Hier nochmals die gleichen Überlegungen: nach Trägheitssatz würde er sich in der Zeit t um die Strecke s1 weiter bewegen und nach Q gelangen. Unter Einfluss der Gravitationskraft fällt er in dieser Zeit um s'2 auf das Zentrum, und in Wirklichkeit bewegt er sich um die Strecke s2 und gelangt zum Punkt P3. Zu zeigen ist nun: der Flächeninhalt des Dreiecks MP1P2 ist gleich gross wie der Flächeninhalt des Dreiecks MP2P3. Als Zwischenschritt zeigen wir, dass MP1P2 und MP2Q den gleichen Flächeninhalt haben: die Basis s1 beider Dreiecke liegt auf der gleichen Geraden und sie haben die gleiche Länge. Ihre Höhen sind gleich, da sie in M eine gemeinsame Ecke haben. Folglich haben nach der Formel zur Berechnung des Flächeninhalts die beiden Dreiecksflächen gleichen Inhalt. Aber auch die Dreiecke MP2Q und MP2P3 haben den gleichen Flächeninhalt: sie haben mit MP2 eine gemeinsame Basis, die dritte Ecke Q bzw. P3 liegt nach Konstruktion auf einer Parallelen zur Basis, folglich haben die beiden Dreiecke ebenfalls den gleichen Flächeninhalt. Damit ist der geforderte Beweis erbracht. Wie eingangs erwähnt machten wir nur von der Tatsache Gebrauch, dass die wirkende Kraft stets auf ein festes Zentrum zeigt – im Zweikörperproblem ist dies der Schwerpunkt, wie weiter oben gezeigt. Der Flächensatz gilt für jede solche Bewegung.