Dies ist eine Arbeitsversion!
Funktion: y = e x {\displaystyle y=e^{x}}
Methode1: y ′ = d y d x = lim x → x 0 y − y 0 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {y-y_{0}}{x-x_{0}}}} y ′ = d y d x = lim x → x 0 e x − e x 0 x − x 0 {\displaystyle y'={\frac {dy}{dx}}=\lim _{x\rightarrow x_{0}}{\frac {e^{x}-e^{x_{0}}}{x-x_{0}}}}
Methode2: y ′ = d y d x = lim δ x → 0 f ( x + δ x ) − f ( x ) δ x = lim δ x → 0 f ( x ) − f ( x − δ x ) δ x {\displaystyle y'={\frac {dy}{dx}}=\lim _{\delta x\rightarrow 0}{\frac {f(x+\delta x)-f(x)}{\delta x}}=\lim _{\delta x\rightarrow 0}{\frac {f(x)-f(x-\delta x)}{\delta x}}} d d x f ( x ) = lim h → 0 e x + h − e x h = d d x f ( x ) = lim h → 0 e x ∗ e h − e x h {\displaystyle {\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {e^{x+h}-e^{x}}{h}}={\frac {d}{dx}}f(x)=\lim _{h\rightarrow 0}{\frac {e^{x}*e^{h}-e^{x}}{h}}}