# Benutzer:Arbol01/Tabelle Fibonacci-Folgen

 (0, 0) = ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1, 1) = ${\displaystyle F_{n}\ }$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 (1, 3) = ${\displaystyle F_{n}+2\cdot F_{n-2}}$ = ... 123 -76 47 -29 18 -11 7 -4 3 -1 2 1 3 4 7 11 18 29 47 76 123 (1, 4) = ${\displaystyle F_{n}+3\cdot F_{n-1}}$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 (2, 5) = (1, 5) = ${\displaystyle F_{n}+4\cdot F_{n-1}}$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 (1, 6) = ${\displaystyle F_{n}+5\cdot F_{n-1}}$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 (1, 7) = ${\displaystyle F_{n}+6\cdot F_{n-1}}$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 (1, 8) = ${\displaystyle F_{n}+7\cdot F_{n-1}}$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 (1, 9) = ${\displaystyle F_{n}+8\cdot F_{n-1}}$ = ... 55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55

|(1, 1) || = ||${\displaystyle F_{n}}$ || = ...

2 1 3 4 7 11 18 29

1 1 2 3  5  8 13
0 2 2

0 1 1 2 3 5 8 13 21 1 1 2 3 5 8 13

0 1 1 2 3 5 8 13 21 34 55 89 144 2 1 3 4 7 11 18 29 3 1 4 5 9 14 23 37 3 2 5 7 12 19 31 40

3 2 5 7 12 19 31 40 71

1 1 2 3 5 8

2 0 2 2