Fibonacci-Folgen und Lucas-Folgen: Vorwort
Warum Lucas-Folge und Fibonacci-Folge?[Bearbeiten]
In diesem Buch soll es um die Lucas- und die Fibonacci-Folge gehen.
Die ersten beiden Glieder der Fibonacci-Folge sind
und
, die der speziellen Lucas-Folge
und
.
Die Bildungsregel für beide ist
.
Zwischen diesen beiden Arten der Folge gibt es Überschneidungen.
Die Fibonacci-Folge
Unter der Fibonacci-Folge versteht man speziell die Folge mit der Bildungsregel
und den beiden Anfangsgliedern
und
.
Die so definierte Fibonacci-Folge beginnt mit den Gliedern: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Die Entwicklung einer Kaninchen-Population[Bearbeiten]
Um das Wachstum einer Kaninchen-Population zu beschreiben, entwickelte der Mathematiker Leonardo Fibonacci (Leonardo von Pisa) diese Folge. Sie beschreibt allerdings eine Idealiserung, bei der die Kaninchen sich unbegrenzt vermehren können und niemals sterben.
Eigenschaften der Fibonacci-Folge[Bearbeiten]
- Wenn eine natürliche Zahl
eine natürliche Zahl
teilt, wobei
größer als
sein muß, so wird
von
geteilt.

- Aus der vorhergehenden Eigenschaft folgt, für alle natürlichen Zahlen
: Wenn
eine Primzahl ist, dann ist
ebenfalls eine Primzahl.

- In Bezug auf den größten gemeinsamen Teiler
gilt:

Fibonacci-Rechteck und Fibonacci-Spirale[Bearbeiten]
Ein Fibonacci-Rechteck ist ein Rechteck, dessen Seitenlängen zwei aufeinander folgenden Zahlen der Fibonacci-Folge entsprechen. Dabei lässt sich die Fläche eines Fibonacci-Rechtecks als Summe der Quadrate der ersten Zahlen der Fibonacci-Folge darstellen:
- Beispiele:
 |
 |
|
|
|
|
Die Folge der Fibonacci-Rechteckzahlen beginnt: 1, 2, 6, 15, 40, 104, 273, ...
Ein solche Summe aus den Quadraten der Fibonacci-Zahl ist zugleich ein Ausschnitt der Fibonacci-Spirale:
Die Lucas-Folge
Wegen ihrer zur Fibonacci-Folge gleichen Bildungsregel
wird sie mit der Fibonacci-Folge in Zusammenhang gebracht. Sie unterscheidet sich allerdings in den beiden Anfangsgliedern. Statt
und
lauten die beiden Anfangsglieder
und
.
Die Lucas-Folge beginnt mit: 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ...
Jedes Glied der Lucasfolge läßt sich auch über die Summe zweier Fibonacci-Glieder berechnen:
Oder als Potenz des goldenen Schnitts:
Es gibt dann noch eine andere rekursive Bildungsregel:
Und die Formel von Binet:
Eigenschaften der Lucas-Folge[Bearbeiten]
- Bezüglich der Teilbarkeit gilt: Wenn
eine Primzahl ist, dann ist
durch
teilbar.
Die quadratische Gleichung
Unter der quadratischen Gleichung versteht man eine Gleichung der Form
. Dabei ist
die Unbekannte, und der Ausdruck
ein Polynom zweiten Grades. Die Quadratische Gleichung lässt sich in drei Fälle unterscheiden:
- Eine quadratische Gleichung hat zwei Lösungen
- Eine quadratische Gleichung hat eine Lösung
- Eine quadratische Gleichung hat keine reelle Lösung
Graphisch lässt sich das durch eine Parabel und ihre Lage zur x-Achse in einem Koordinatensystem darstellen:
Wie löst man quadratische Gleichungen[Bearbeiten]
Wie so häufig in der Mathematik gilt: „Alle Wege führen nach Rom“ oder besser „Alle Wege führen zum Ziel“. Hier werden also möglichst viele Lösungswege vorgestellt, und die Zusammenhänge zwischen den Lösungswegen gezeigt.
Alle Wege werden an einer quadratischen Gleichung vorgeführt:
Die quadratische Ergänzung[Bearbeiten]
Frischen wir nochmal unser Wissen über die binomischen Formeln auf:


Wie hilft das bei der quadratischen Gleichung? Die quadratische Gleichung lautet:
. Interessant ist dabei der Term
. Wenn
dem Teil
der zweiten Binomischen Formel
entspricht, läßt sich die vollständige zweite binomische Gleichung rekonstruieren:
.
Um die vorliegende quadratische Gleichung also in die gewünschte Form zu bringen, addiert man die Zahl Vier auf beiden Seiten:
 |
 |
|
 |
 |
|
 |
 |
|
 |
 |
|
Wie man feststellen kann, sind auf beiden Seiten quadratische Ausdrücke. Ziehen wir also die Wurzel:
 |
 |
|
 |
 |
|
Es gibt zwei Lösungen, da sich
sowohl als
als auch als
darstellen lässt.
Die Lösungen sind:

- und

Dass sich eine quadratische Gleichung so einfach lösen lässt, ist allerdings die Ausnahme!
Die pq-Formel ist zweiteilig:


Setzen wir ein:
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
Für
wird das Ganze verkürzt:
 |
|
 |
|
 |
|
Die Satzgruppe von Vieta[Bearbeiten]
Die Satzgruppe lässt sich als Test dafür verwenden, ob die quadratische Gleichung richtig gelöst wurde. Bei der Satzgruppe von Vieta handelt es sich um drei Gleichungen:



Die ersten beiden Gleichungen lassen sich aus den pq-Formeln herleiten.
Hier geht es um die beiden allgemeinen Lucas-Folgen
und
, die abhängig von den Parametern
und
definiert sind als Folgen mit den Anfangswerten
und

und der Rekursionsformel
für
(entsprechend für
).
Die Lucas-Folgen sind nach dem französischen Mathematiker Edouard Lucas benannt, der sich als erster mit ihnen beschäftigt hat.
Die allgemeine Lucas-Folge hat zum einen mit quadratischen Gleichungen zu tun, und andererseits ist es zum Verständnis von Vorteil, ableiten (Differentialrechnung) zu können.
Für die expliziten Formeln werden die beiden Lösungen
und
der quadratischen Gleichung
benötigt. Sie sind

und

Die Parameter
und
und die Werte
und
sind von einander abhängig. Es gilt umgekehrt:
(Satzgruppe von Vieta)
Die Formeln für a und b lassen sich, in bezug auf die Potenzen auch verallgemeinern:


Die allgemeinen Lucas-Folgen[Bearbeiten]
Falls
gilt, oder äquivalent dazu: falls die Zahlen
und
verschieden sind, so berechnet sich das Glied der allgemeinen Lucas-Folge
nach folgender Formel:

für alle
. Im Spezialfall
gilt stattdessen

Das Glied der allgemeinen Lucas-Folge
berechnet sich nach folgender Formel:

für alle
Wenn man die ganze Folge meint, und nicht nur das einzelne Glied der Folge, dann läßt sich dieses so ausdrücken:
bzw. 
U0, U1 und V0 sind definiert[Bearbeiten]
und
hängen nicht von
und
, und damit auch nicht von
und
, ab.



nimmt den Wert von
an, da nach der Satzgruppe von Vieta gilt
:

Beziehungen zwischen den Folgegliedern[Bearbeiten]
Es gibt viele Beziehungen zwischen den Gliedern der allgemeinen Lucas-Folgen
und
. Da die Fibonacci-Folge, und auch die Lucas-Folge (2, 1, 3, 4, 7, ...) Teil der allgemeinen Lucas-Folge sind, gelten diese Beziehungen auch für diese beiden Folgen. Gleiches trifft auch auf die Pell-Folge und ihre Companion-Folge zu.
Da man bei diesen Beziehungen davon ausgehen kann, dass die Parameter
und
für alle Glieder der Folgen identisch sind, lässt man sie weg.
Statt
reicht es aus
zu schreiben.




; für alle 
Quelle: Ein großer Teil dieses Kapitels stammt aus dem Artikel Lucas-Folgen von der deutschsprachigen de.wikipedia.org.
Im Gegensatz zu den vorhergehenden Kapitel wird der Bereich der Folgen verlassen.
Folgen in das Negative[Bearbeiten]
Das Bildungsgesetz der Fibonacci-Folgen, und hierbei sind alle Folgen gemeint, die sich durch ein Bildungsgesetz
bilden lassen, läßt im Umkehrschluß die Regel
zu. Das bedeutet, daß man eine Fibonacci-Folge nach beiden Seiten in das Unendliche fortsetzen kann. Eine Fibonacci-Folge mit den Startwerten
und
würde also so dargestellt werden können:

Die als Fibonacci-Folge und die als Lucas-Folge bekannten Folgen fallen beide dadurch auf, daß sie dabei symmetrisch sind:


Damit wurde der Bereich der Folgen verlassen, und das aus wenigstens zwei Gründen:
- Man geht davon aus, daß eine Folge an einer Stelle anfängt
- Dieses Konstrukt ist als Folge nicht mehr eindeutig
- Eine Folge mit den Startwerten
und
wäre etwa identisch mit der Folge mit den Startwerten
und
. Zumindest wären beide "Folgen" durch nichts voneinander zu unterscheiden:


Statt der Darstellungweise als Folge läßt sich das Ganze auch durch 2-Tupel darstellen:
- Der Nachfolger von
ist
, und umgekehrt hat
den Vorgänger 
Der goldene Schnitt
Als goldenen Schnitt bezeichnet man das Teilungsverhältnis, bei welchem sich der große Anteil zum kleinen so verhält, wie die Gesamtheit zum großen Anteil. Wenn man eine Gesamtheit mit dem Maß 1 in zwei Teile mit den Maßen
und
aufteilt, liefert die obige Definition die Bedingung
.
Dies liefert die Bestimmungsgleichung
mit der Lösung
. Allerdings wird auch die Konstante
als goldener Schnitt bezeichnet. Der nummerische Wert des goldenen Schnitts ist
.
- Der goldene Schnitt lässt sich als nicht abbrechender Kettenbruch darstellen:

- Aus der quadratischen Gleichung Φ2 = 1 + Φ lässt sich folgende unendliche Kettenwurzel herleiten:

Beziehungen zu den Fibonacci-Folgen[Bearbeiten]
Wenn man den Quotienten aus zwei aufeinander folgenden Gliedern einer Fibonacci-Folge berechnet, bekommt man eine Näherung an den goldenen Schnitt, die um so genauer ist, je höher die beiden Folgen liegen:
|
Fibonacci-Folge |
Lucas-Folge |
Folge
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
1 |
1 |
1 |
1.00000 |
1 |
3 |
3.00000 |
2 |
7 |
3.50000
|
2 |
1 |
2 |
2.00000 |
3 |
4 |
1.33333 |
7 |
9 |
1.28571
|
3 |
2 |
3 |
1.50000 |
4 |
7 |
1.75000 |
9 |
16 |
1.77777
|
4 |
3 |
5 |
1.66666 |
7 |
11 |
1.57143 |
16 |
25 |
1.56250
|
5 |
5 |
8 |
1.60000 |
11 |
18 |
1.63636 |
25 |
41 |
1.64000
|
6 |
8 |
13 |
1.62500 |
18 |
29 |
1.61111 |
41 |
66 |
1.60976
|
7 |
13 |
21 |
1.61538 |
29 |
47 |
1.62096 |
66 |
107 |
1.62121
|
8 |
21 |
34 |
1.61905 |
47 |
76 |
1.61702 |
107 |
173 |
1.61682
|
9 |
34 |
55 |
1.61765 |
76 |
123 |
1.61842 |
173 |
280 |
1.6185
|
10 |
55 |
89 |
1.61818 |
123 |
199 |
1.61789 |
280 |
453 |
1.61786
|
11 |
89 |
144 |
1.61798 |
199 |
322 |
1.61809 |
453 |
733 |
1.6181
|
12 |
144 |
233 |
1.61806 |
322 |
521 |
1.61801 |
733 |
1186 |
1.61801
|
13 |
233 |
377 |
1.61803 |
521 |
843 |
1.61804 |
1186 |
1919 |
1.61804
|
Die Folge
mit der Bildungsregel
und den Startwerten
und
Dies lässt sich über die Kettenbruchdarstellung der Quotienten zweier aufeinander folgender Fibonacci-Zahlen darstellen:

Analoges gilt auch für alle anderen Folgen mit der Bildungsregel
, egal welche Startwerte diese Folgen besitzen.
- Zeige anhand von
und
, dass
und
gilt.
- Zeige die Gleichheit von
und
.
- Zeige anhand von
und
, das
und
gilt.
- A.





- B.








- Zeige die Gleichheit von
und
.
Noch kein Text vorhanden