Zum Inhalt springen

Formelsammlung Elektrotechnik: Digitaltechnik

Aus Wikibooks

weitere Themengebiete

[Bearbeiten]

Rechnen mit Dualzahlen

[Bearbeiten]

Umrechnung Dezimalzahlen in andere Zahlensysteme

[Bearbeiten]
Dezimalsystem (Basis 10) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dualsystem (Basis 2) 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111
Oktalsystem (Basis 8) 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Hexadezimalsystem (Basis 16) 0 1 2 3 4 5 6 7 8 9 A B C D E F

Umwandlung Dual - Dezimal - Hexadezimal - Oktal

[Bearbeiten]
Dual in Dezimal
Dezimal in Dual

Beispiel mit Dezimalzahl 41

Ergebnis: 101001

Hexadezimal in Dezimal

Dezimal in Hexadezimal

Beispiel mit Dezimalzahl 1278

Ergebnis: 4FE

Oktal in Dezimal
Dezimal in Oktal

Beispiel mit Dezimalzahl 122

Ergebnis: 172

Verknüpfungsbausteine

[Bearbeiten]




A B Y
0 0 0
0 1 0
1 0 0
1 1 1

weitere Bildinformationen über Formelsammlung Elektrotechnik: AND-Glied



A B Y
0 0 0
0 1 1
1 0 1
1 1 1

weitere Bildinformationen über Formelsammlung Elektrotechnik: OR-Glied





A B Y
0 0 1
0 1 1
1 0 1
1 1 0

weitere Bildinformationen über Formelsammlung Elektrotechnik: NAND-Glied





A B Y
0 0 1
0 1 0
1 0 0
1 1 0

weitere Bildinformationen über Formelsammlung Elektrotechnik: NOR-Glied



A B Y
0 0 0
0 1 1
1 0 1
1 1 0

weitere Bildinformationen über Formelsammlung Elektrotechnik: XOR-Glied





A B Y
0 0 1
0 1 0
1 0 0
1 1 1

weitere Bildinformationen über Formelsammlung Elektrotechnik: XNOR-Glied

Schaltalgebra - Rechenregeln für eine Variable

[Bearbeiten]

Kommutativgesetz (Vertauschungsgesetz)

[Bearbeiten]
Beispiel an einer UND-Verknüpfung:
Beispiel an einer ODER-Verknüpfung:

Assoziativgesetz (Verbindungsgesetz)

[Bearbeiten]
Beispiel an einer UND-Verknüpfung:
Beispiel an einer ODER-Verknüpfung:

Distributivgesetz (Verteilungsgesetz)

[Bearbeiten]
Beispiel in konjunktiver Form:
Beispiel in disjunktiver Form:

Schaltalgebra - Rechenregeln für mehrere Variablen

[Bearbeiten]
Umwandlung einer NAND-Verknüpfung in eine ODER-Verknüpfung
Umwandlung einer NOR-Verknüpfung in eine UND-Verknüpfung
Bild 1
Bild 2

Vereinfachung einer Funktion mit einen KV-Diagramm

[Bearbeiten]

Übetrage aus der Wertetabelle alle Kombinationen mit Hilfe der Disjunktive Normalform (DNF) X = 1 oder der Konjunktive Normalform (KNF) X = 0 in das KV-Diagramm

Disjunktive Normalform X = 1
  A     B     C     D     X  
0 1 0 0 1
0 1 0 1 1
0 1 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 1 1
Bild 3

Fasse die benachbarten Felder zu Blöcken zusammen.

Bild 4

Lese bei X = 1 die UND-Terme, bei X = 0 die ODER-Terme ab. Beim Beispiel lautet die Vereinfachung bei X = 1