Zurück zu Bestimmte Integrale
In der Formel ∫ Ci ( a x ) Ci ( b x ) d x = x Ci ( a x ) Ci ( b x ) − sin a x a Ci ( b x ) − sin b x b Ci ( a x ) + 1 2 a ( Si ( a x + b x ) + Si ( a x − b x ) ) + 1 2 b ( Si ( a x + b x ) − Si ( a x − b x ) ) {\displaystyle \int {\text{Ci}}(ax)\,{\text{Ci}}(bx)\,dx=x\,{\text{Ci}}(ax)\,{\text{Ci}}(bx)-{\frac {\sin ax}{a}}\,{\text{Ci}}(bx)-{\frac {\sin bx}{b}}\,{\text{Ci}}(ax)+{\frac {1}{2a}}{\Big (}{\text{Si}}(ax+bx)+{\text{Si}}(ax-bx){\Big )}+{\frac {1}{2b}}{\Big (}{\text{Si}}(ax+bx)-{\text{Si}}(ax-bx){\Big )}} setze 0 {\displaystyle 0\,} und ∞ {\displaystyle \infty } als Integrationsgrenzen ein. Asymptotisch verhalten sich Ci ( a x ) {\displaystyle {\text{Ci}}(ax)} und Ci ( b x ) {\displaystyle {\text{Ci}}(bx)} für x → 0 + {\displaystyle x\to 0+} wie log x {\displaystyle \log x} und für x → ∞ {\displaystyle x\to \infty \,} wie cos x x {\displaystyle {\frac {\cos x}{x}}} . Also sind [ x Ci ( a x ) Ci ( b x ) ] 0 ∞ , [ sin a x a Ci ( b x ) ] 0 ∞ , [ sin b x b Ci ( a x ) ] 0 ∞ {\displaystyle {\Big [}x\,{\text{Ci}}(ax)\,{\text{Ci}}(bx){\Big ]}_{0}^{\infty }\,\,,\,\,{\Big [}{\frac {\sin ax}{a}}\,{\text{Ci}}(bx){\Big ]}_{0}^{\infty }\,\,,\,\,{\Big [}{\frac {\sin bx}{b}}\,{\text{Ci}}(ax){\Big ]}_{0}^{\infty }} jeweils gleich 0 − 0 = 0 {\displaystyle 0-0=0} . Der übrige Term [ 1 2 a ( Si ( a x + b x ) + Si ( a x − b x ) ) + 1 2 b ( Si ( a x + b x ) − Si ( a x − b x ) ) ] 0 ∞ {\displaystyle \left[{\frac {1}{2a}}{\Big (}{\text{Si}}(ax+bx)+{\text{Si}}(ax-bx){\Big )}+{\frac {1}{2b}}{\Big (}{\text{Si}}(ax+bx)-{\text{Si}}(ax-bx){\Big )}\right]_{0}^{\infty }} verschwindet für x = 0 {\displaystyle x=0} . Für x → ∞ {\displaystyle x\to \infty } geht der Term gegen ∙ 1 2 a ( π 2 + π 2 ) + 1 2 b ( π 2 − π 2 ) = 1 a ⋅ π 2 {\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}+{\frac {\pi }{2}}\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}-{\frac {\pi }{2}}\right)={\frac {1}{a}}\cdot {\frac {\pi }{2}}} falls a > b {\displaystyle a>b} . ∙ 1 2 a ( π 2 + 0 ) + 1 2 b ( π 2 + 0 ) = 1 a ⋅ π 2 = 1 b ⋅ π 2 {\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}+0\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}+0\right)={\frac {1}{a}}\cdot {\frac {\pi }{2}}={\frac {1}{b}}\cdot {\frac {\pi }{2}}} falls a = b {\displaystyle a=b} . ∙ 1 2 a ( π 2 − π 2 ) + 1 2 b ( π 2 + π 2 ) = 1 b ⋅ π 2 {\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}-{\frac {\pi }{2}}\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}+{\frac {\pi }{2}}\right)={\frac {1}{b}}\cdot {\frac {\pi }{2}}} falls a < b {\displaystyle a<b} .