Zum Inhalt springen
Hauptmenü
Hauptmenü
In die Seitenleiste verschieben
Verbergen
Navigation
Hauptseite
Aktuelles
Buchkatalog
Alle Bücher
Bücherregale
Zufälliges Kapitel
Datei hochladen
Mitmachen
Wikibooks-Portal
Letzte Änderungen
Hilfe
Verbesserungen
Administratoren
Logbücher
Spenden
Suche
Suchen
Erscheinungsbild
Spenden
Benutzerkonto erstellen
Anmelden
Meine Werkzeuge
Spenden
Benutzerkonto erstellen
Anmelden
Seiten für abgemeldete Benutzer
Weitere Informationen
Beiträge
Diskussionsseite
Inhaltsverzeichnis
In die Seitenleiste verschieben
Verbergen
Anfang
1
Nachfolgende Liste enthält einige Integrale hyperbolischer Funktionen.
2
Siehe auch
Inhaltsverzeichnis umschalten
Formelsammlung Mathematik: Unbestimmte Integrale hyperbolischer Funktionen
Sprachen hinzufügen
Links hinzufügen
Kapitel
Diskussion
Deutsch
Lesen
Bearbeiten
Versionsgeschichte
Werkzeuge
Werkzeuge
In die Seitenleiste verschieben
Verbergen
Aktionen
Lesen
Bearbeiten
Versionsgeschichte
Allgemein
Links auf diese Seite
Änderungen an verlinkten Seiten
Spezialseiten
Permanenter Link
Seiteninformationen
Seite zitieren
Gekürzte URL abrufen
QR-Code runterladen
Drucken/exportieren
Buch erstellen
Als PDF herunterladen
Druckversion
In anderen Projekten
Erscheinungsbild
In die Seitenleiste verschieben
Verbergen
Aus Wikibooks
Zurück zu
Formelsammlung Mathematik
Nachfolgende Liste enthält einige Integrale
hyperbolischer Funktionen
.
[
Bearbeiten
]
∫
sinh
c
x
d
x
=
1
c
cosh
c
x
{\displaystyle \int \sinh cx\,dx={\frac {1}{c}}\cosh cx}
∫
cosh
c
x
d
x
=
1
c
sinh
c
x
{\displaystyle \int \cosh cx\,dx={\frac {1}{c}}\sinh cx}
∫
sinh
2
c
x
d
x
=
1
2
c
sinh
c
x
cosh
c
x
−
x
2
{\displaystyle \int \sinh ^{2}cx\,dx={\frac {1}{2c}}\sinh cx\cosh cx-{\frac {x}{2}}}
∫
cosh
2
c
x
d
x
=
1
2
c
sinh
c
x
cosh
c
x
+
x
2
{\displaystyle \int \cosh ^{2}cx\,dx={\frac {1}{2c}}\sinh cx\cosh cx+{\frac {x}{2}}}
∫
sinh
n
c
x
d
x
=
1
c
n
sinh
n
−
1
c
x
cosh
c
x
−
n
−
1
n
∫
sinh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \sinh ^{n}cx\,dx={\frac {1}{cn}}\sinh ^{n-1}cx\cosh cx-{\frac {n-1}{n}}\int \sinh ^{n-2}cx\,dx\qquad {\mbox{( }}n>0{\mbox{)}}}
oder:
∫
sinh
n
c
x
d
x
=
1
c
(
n
+
1
)
sinh
n
+
1
c
x
cosh
c
x
−
n
+
2
n
+
1
∫
sinh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \sinh ^{n}cx\,dx={\frac {1}{c(n+1)}}\sinh ^{n+1}cx\cosh cx-{\frac {n+2}{n+1}}\int \sinh ^{n+2}cx\,dx\qquad {\mbox{( }}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
cosh
n
c
x
d
x
=
1
c
n
sinh
c
x
cosh
n
−
1
c
x
+
n
−
1
n
∫
cosh
n
−
2
c
x
d
x
(
n
>
0
)
{\displaystyle \int \cosh ^{n}cx\,dx={\frac {1}{cn}}\sinh cx\cosh ^{n-1}cx+{\frac {n-1}{n}}\int \cosh ^{n-2}cx\,dx\qquad {\mbox{( }}n>0{\mbox{)}}}
oder:
∫
cosh
n
c
x
d
x
=
−
1
c
(
n
+
1
)
sinh
c
x
cosh
n
+
1
c
x
+
n
+
2
n
+
1
∫
cosh
n
+
2
c
x
d
x
(
n
<
0
,
n
≠
−
1
)
{\displaystyle \int \cosh ^{n}cx\,dx=-{\frac {1}{c(n+1)}}\sinh cx\cosh ^{n+1}cx+{\frac {n+2}{n+1}}\int \cosh ^{n+2}cx\,dx\qquad {\mbox{( }}n<0{\mbox{, }}n\neq -1{\mbox{)}}}
∫
d
x
sinh
c
x
=
1
c
ln
|
tanh
c
x
2
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|\tanh {\frac {cx}{2}}\right|}
oder:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
sinh
c
x
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\sinh cx}}\right|}
oder:
∫
d
x
sinh
c
x
=
1
c
ln
|
sinh
c
x
cosh
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\sinh cx}{\cosh cx+1}}\right|}
oder:
∫
d
x
sinh
c
x
=
1
c
ln
|
cosh
c
x
−
1
cosh
c
x
+
1
|
{\displaystyle \int {\frac {dx}{\sinh cx}}={\frac {1}{c}}\ln \left|{\frac {\cosh cx-1}{\cosh cx+1}}\right|}
∫
d
x
cosh
c
x
=
2
c
arctan
e
c
x
{\displaystyle \int {\frac {dx}{\cosh cx}}={\frac {2}{c}}\arctan e^{cx}}
∫
d
x
sinh
n
c
x
=
cosh
c
x
c
(
n
−
1
)
sinh
n
−
1
c
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sinh ^{n}cx}}={\frac {\cosh cx}{c(n-1)\sinh ^{n-1}cx}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}cx}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
d
x
cosh
n
c
x
=
sinh
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
c
x
(
n
≠
1
)
{\displaystyle \int {\frac {dx}{\cosh ^{n}cx}}={\frac {\sinh cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}cx}}\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
cosh
n
−
1
c
x
c
(
n
−
m
)
sinh
m
−
1
c
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
c
x
sinh
m
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx={\frac {\cosh ^{n-1}cx}{c(n-m)\sinh ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m}cx}}dx\qquad {\mbox{( }}m\neq n{\mbox{)}}}
oder:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
+
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
c
x
sinh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx=-{\frac {\cosh ^{n+1}cx}{c(m-1)\sinh ^{m-1}cx}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}cx}{\sinh ^{m-2}cx}}dx\qquad {\mbox{( }}m\neq 1{\mbox{)}}}
oder:
∫
cosh
n
c
x
sinh
m
c
x
d
x
=
−
cosh
n
−
1
c
x
c
(
m
−
1
)
sinh
m
−
1
c
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
c
x
sinh
m
−
2
c
x
d
x
(
m
≠
1
)
{\displaystyle \int {\frac {\cosh ^{n}cx}{\sinh ^{m}cx}}dx=-{\frac {\cosh ^{n-1}cx}{c(m-1)\sinh ^{m-1}cx}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}cx}{\sinh ^{m-2}cx}}dx\qquad {\mbox{( }}m\neq 1{\mbox{)}}}
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
−
1
c
x
c
(
m
−
n
)
cosh
n
−
1
c
x
+
m
−
1
m
−
n
∫
sinh
m
−
2
c
x
cosh
n
c
x
d
x
(
m
≠
n
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}dx={\frac {\sinh ^{m-1}cx}{c(m-n)\cosh ^{n-1}cx}}+{\frac {m-1}{m-n}}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n}cx}}dx\qquad {\mbox{( }}m\neq n{\mbox{)}}}
oder:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
sinh
m
+
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
c
x
cosh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}dx={\frac {\sinh ^{m+1}cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}cx}{\cosh ^{n-2}cx}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
oder:
∫
sinh
m
c
x
cosh
n
c
x
d
x
=
−
sinh
m
−
1
c
x
c
(
n
−
1
)
cosh
n
−
1
c
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
c
x
cosh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int {\frac {\sinh ^{m}cx}{\cosh ^{n}cx}}dx=-{\frac {\sinh ^{m-1}cx}{c(n-1)\cosh ^{n-1}cx}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}cx}{\cosh ^{n-2}cx}}dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
x
sinh
c
x
d
x
=
1
c
x
cosh
c
x
−
1
c
2
sinh
c
x
{\displaystyle \int x\sinh cx\,dx={\frac {1}{c}}x\cosh cx-{\frac {1}{c^{2}}}\sinh cx}
∫
x
cosh
c
x
d
x
=
1
c
x
sinh
c
x
−
1
c
2
cosh
c
x
{\displaystyle \int x\cosh cx\,dx={\frac {1}{c}}x\sinh cx-{\frac {1}{c^{2}}}\cosh cx}
∫
tanh
c
x
d
x
=
1
c
ln
|
cosh
c
x
|
{\displaystyle \int \tanh cx\,dx={\frac {1}{c}}\ln |\cosh cx|}
∫
coth
c
x
d
x
=
1
c
ln
|
sinh
c
x
|
{\displaystyle \int \coth cx\,dx={\frac {1}{c}}\ln |\sinh cx|}
∫
tanh
n
c
x
d
x
=
−
1
c
(
n
−
1
)
tanh
n
−
1
c
x
+
∫
tanh
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \tanh ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\tanh ^{n-1}cx+\int \tanh ^{n-2}cx\,dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
coth
n
c
x
d
x
=
−
1
c
(
n
−
1
)
coth
n
−
1
c
x
+
∫
coth
n
−
2
c
x
d
x
(
n
≠
1
)
{\displaystyle \int \coth ^{n}cx\,dx=-{\frac {1}{c(n-1)}}\coth ^{n-1}cx+\int \coth ^{n-2}cx\,dx\qquad {\mbox{( }}n\neq 1{\mbox{)}}}
∫
sinh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
c
x
cosh
b
x
−
c
cosh
c
x
sinh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \sinh bx\sinh cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\sinh cx\cosh bx-c\cosh cx\sinh bx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}
∫
cosh
b
x
cosh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
cosh
c
x
−
c
sinh
c
x
cosh
b
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\cosh cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\sinh bx\cosh cx-c\sinh cx\cosh bx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}
∫
cosh
b
x
sinh
c
x
d
x
=
1
b
2
−
c
2
(
b
sinh
b
x
sinh
c
x
−
c
cosh
b
x
cosh
c
x
)
(
b
2
≠
c
2
)
{\displaystyle \int \cosh bx\sinh cx\,dx={\frac {1}{b^{2}-c^{2}}}(b\sinh bx\sinh cx-c\cosh bx\cosh cx)\qquad {\mbox{( }}b^{2}\neq c^{2}{\mbox{)}}}
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)}
Siehe auch
[
Bearbeiten
]
Englische Wikipedia