Zurück zu Unendliche Reihen
In der Identität Li 2 ( z ) + Li 2 ( 1 − z ) = π 2 6 − log ( z ) log ( 1 − z ) {\displaystyle {\text{Li}}_{2}(z)+{\text{Li}}_{2}(1-z)={\frac {\pi ^{2}}{6}}-\log(z)\,\log(1-z)} setze z = 1 2 {\displaystyle z={\frac {1}{2}}} .
In der Identität Li 3 ( z ) + Li 3 ( 1 − z ) + Li 3 ( 1 − 1 z ) = ζ ( 3 ) + 1 6 log 3 z + π 2 6 log z − 1 2 log 2 ( z ) log ( 1 − z ) {\displaystyle {\text{Li}}_{3}(z)+{\text{Li}}_{3}(1-z)+{\text{Li}}_{3}\left(1-{\frac {1}{z}}\right)=\zeta (3)+{\frac {1}{6}}\log ^{3}z+{\frac {\pi ^{2}}{6}}\log z-{\frac {1}{2}}\log ^{2}(z)\,\log(1-z)} setze z = 1 2 {\displaystyle z={\frac {1}{2}}} . 2 Li 3 ( 1 2 ) + Li 3 ( − 1 ) ⏟ − 3 4 ζ ( 3 ) = ζ ( 3 ) − π 2 6 log 2 + 1 3 log 3 2 {\displaystyle 2\,{\text{Li}}_{3}\left({\frac {1}{2}}\right)+\underbrace {{\text{Li}}_{3}(-1)} _{-{\frac {3}{4}}\zeta (3)}=\zeta (3)-{\frac {\pi ^{2}}{6}}\log 2+{\frac {1}{3}}\log ^{3}2}
Bei den Identitäten ( 1 ) Li 2 ( z ) + Li 2 ( − z ) = 1 2 Li 2 ( z 2 ) {\displaystyle (1)\quad {\text{Li}}_{2}(z)+{\text{Li}}_{2}(-z)={\frac {1}{2}}\,{\text{Li}}_{2}(z^{2})} ( 2 ) Li 2 ( z ) + Li 2 ( 1 − z ) = π 2 6 − log ( z ) log ( 1 − z ) {\displaystyle (2)\quad {\text{Li}}_{2}(z)+{\text{Li}}_{2}(1-z)={\frac {\pi ^{2}}{6}}-\log(z)\,\log(1-z)} ( 3 ) Li 2 ( 1 − 1 z ) + Li 2 ( 1 − z ) = − 1 2 log 2 z {\displaystyle (3)\quad {\text{Li}}_{2}\left(1-{\frac {1}{z}}\right)+{\text{Li}}_{2}(1-z)=-{\frac {1}{2}}\log ^{2}z} setze jeweils z = 1 ϕ {\displaystyle z={\frac {1}{\phi }}} . ( 1 ) Li 2 ( 1 ϕ ) + Li 2 ( − 1 ϕ ) = 1 2 Li 2 ( 1 ϕ 2 ) {\displaystyle (1)\quad {\text{Li}}_{2}\left({\frac {1}{\phi }}\right)+{\text{Li}}_{2}\left(-{\frac {1}{\phi }}\right)={\frac {1}{2}}\,{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)} ( 2 ) Li 2 ( 1 ϕ ) + Li 2 ( 1 ϕ 2 ) = π 2 6 − 2 log ϕ {\displaystyle (2)\quad {\text{Li}}_{2}\left({\frac {1}{\phi }}\right)+{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)={\frac {\pi ^{2}}{6}}-2\log \phi } ( 3 ) Li 2 ( − 1 ϕ ) + Li 2 ( 1 ϕ 2 ) = − 1 2 log 2 ϕ {\displaystyle (3)\quad {\text{Li}}_{2}\left(-{\frac {1}{\phi }}\right)+{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)=-{\frac {1}{2}}\log ^{2}\phi } Bildet man ( 2 ) + ( 3 ) − ( 1 ) {\displaystyle (2)+(3)-(1)\,} , so ist 2 Li 2 ( 1 ϕ 2 ) = π 2 6 − 5 2 log 2 ϕ − 1 2 Li 2 ( 1 ϕ 2 ) ⇒ Li 2 ( 1 ϕ 2 ) = π 2 15 − log 2 ϕ {\displaystyle 2\,{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)={\frac {\pi ^{2}}{6}}-{\frac {5}{2}}\log ^{2}\phi -{\frac {1}{2}}{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)\,\Rightarrow \,{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)={\frac {\pi ^{2}}{15}}-\log ^{2}\phi } . Aus ( 2 ) {\displaystyle (2)\,} folgt damit Li 2 ( 1 ϕ ) = π 2 6 − 2 log 2 ϕ − Li 2 ( 1 ϕ 2 ) = π 2 10 − log 2 ϕ {\displaystyle {\text{Li}}_{2}\left({\frac {1}{\phi }}\right)={\frac {\pi ^{2}}{6}}-2\log ^{2}\phi -{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)={\frac {\pi ^{2}}{10}}-\log ^{2}\phi } . Und aus ( 3 ) {\displaystyle (3)\,} folgt Li 2 ( − 1 ϕ ) = − 1 2 log 2 ϕ − Li 2 ( 1 ϕ 2 ) = − π 2 15 + 1 2 log 2 ϕ {\displaystyle {\text{Li}}_{2}\left(-{\frac {1}{\phi }}\right)=-{\frac {1}{2}}\log ^{2}\phi -{\text{Li}}_{2}\left({\frac {1}{\phi ^{2}}}\right)=-{\frac {\pi ^{2}}{15}}+{\frac {1}{2}}\log ^{2}\phi } .
Bei der Identität Li 3 ( z ) + Li 3 ( 1 − z ) + Li 3 ( 1 − 1 z ) = ζ ( 3 ) + 1 6 log 3 z + π 2 6 log z − 1 2 log 2 ( z ) log ( 1 − z ) {\displaystyle {\text{Li}}_{3}(z)+{\text{Li}}_{3}(1-z)+{\text{Li}}_{3}\left(1-{\frac {1}{z}}\right)=\zeta (3)+{\frac {1}{6}}\log ^{3}z+{\frac {\pi ^{2}}{6}}\log z-{\frac {1}{2}}\log ^{2}(z)\,\log(1-z)} setze z = 1 ϕ {\displaystyle z={\frac {1}{\phi }}} , dann ist Li 3 ( 1 ϕ ) + Li 3 ( 1 ϕ 2 ) + Li 3 ( − 1 ϕ ) = ζ ( 3 ) − 1 6 log 3 ϕ − π 2 6 log ϕ + log 3 ϕ {\displaystyle {\text{Li}}_{3}\left({\frac {1}{\phi }}\right)+{\text{Li}}_{3}\left({\frac {1}{\phi ^{2}}}\right)+{\text{Li}}_{3}\left(-{\frac {1}{\phi }}\right)=\zeta (3)-{\frac {1}{6}}\log ^{3}\phi -{\frac {\pi ^{2}}{6}}\log \phi +\log ^{3}\phi } . Wegen Li 3 ( 1 ϕ ) + Li 3 ( − 1 ϕ ) = 1 4 Li 3 ( 1 ϕ 2 ) {\displaystyle {\text{Li}}_{3}\left({\frac {1}{\phi }}\right)+{\text{Li}}_{3}\left(-{\frac {1}{\phi }}\right)={\frac {1}{4}}{\text{Li}}_{3}\left({\frac {1}{\phi ^{2}}}\right)} ist damit 5 4 Li 3 ( 1 ϕ 2 ) = ζ ( 3 ) + 5 6 log 3 ϕ − π 2 6 log ϕ {\displaystyle {\frac {5}{4}}{\text{Li}}_{3}\left({\frac {1}{\phi ^{2}}}\right)=\zeta (3)+{\frac {5}{6}}\log ^{3}\phi -{\frac {\pi ^{2}}{6}}\log \phi } .