Multiplizieren Sie folgende binomische Formeln aus:
{\displaystyle \quad } A) ( a 3 − 4 ) 2 {\displaystyle \ \left(a^{3}-4\right)^{2}\quad } {\displaystyle \quad } B) ( 5 x 2 + 4 z 2 , 5 ) 2 {\displaystyle \ \left(5\ x^{2}+4\ z^{2{,}5}\right)^{2}\quad } {\displaystyle \quad } C) ( 7 w 3 , 5 + 6 w 6 , 5 ) 2 {\displaystyle \ \left(7\ w^{3{,}5}+6\ w^{6{,}5}\right)^{2}\quad } {\displaystyle \quad } D) ( 3 c 3 − 7 b 5 ) ( 3 c 3 + 7 b 5 ) {\displaystyle \ (3\ c^{3}-7\ b^{5})(3\ c^{3}+7\ b^{5})\quad } {\displaystyle \quad } E) ( 5 a 3 + 11 a 1 , 5 ) ( 5 a 3 − 11 a 1 , 5 ) {\displaystyle \ (5\ a^{3}+11\ a^{1{,}5})(5\ a^{3}-11\ a^{1{,}5})\quad }
{\displaystyle \quad } A) ( a 3 − 4 ) 2 = a 6 − 8 a 3 + 16 {\displaystyle \ \left(a^{3}-4\right)^{2}=a^{6}-8\ a^{3}+16} {\displaystyle \quad } B) ( 5 x 2 + 4 z 2 , 5 ) 2 = 25 x 4 + 40 x 2 z 2 , 5 + 16 z 5 {\displaystyle \ \left(5\ x^{2}+4\ z^{2{,}5}\right)^{2}=25\ x^{4}+40\ x^{2}\ z^{2{,}5}+16\ z^{5}\quad } {\displaystyle \quad } C) ( 7 w 3 , 5 + 6 w 6 , 5 ) 2 = 49 w 7 + 84 w 10 + 36 w 13 {\displaystyle \ \left(7\ w^{3{,}5}+6\ w^{6{,}5}\right)^{2}=49\ w^{7}+84\ w^{10}+36\ w^{13}\quad } {\displaystyle \quad } D) ( 3 c 3 − 7 b 5 ) ( 3 c 3 + 7 b 5 ) = 9 c 6 − 49 b 10 {\displaystyle \ (3\ c^{3}-7\ b^{5})(3\ c^{3}+7\ b^{5})=9\ c^{6}-49\ b^{10}\quad } {\displaystyle \quad } E) ( 5 a 3 + 11 a 1 , 5 ) ( 5 a 3 − 11 a 1 , 5 ) = 25 a 6 − 121 a 3 {\displaystyle \ (5\ a^{3}+11\ a^{1{,}5})(5\ a^{3}-11\ a^{1{,}5})=25\ a^{6}-121\ a^{3}\quad }