Zum Inhalt springen

# Mathematrix: Vortrag/ Lineare Funktion Diagramm

 Funktion Abhängige (Temperatur) und unabhängige (Uhrzeit) Variable Lineare Funktion: ${\displaystyle y=s\ x+A_{y}}$${\displaystyle s:\ Steigung,\quad A_{y}:\ y{\text{-}}Achsenabschnitt}$ ${\displaystyle y=3x-2\qquad y=130-0{,}5x\qquad y=-2{,}3+{\tfrac {3}{4}}x\qquad y=-{\sqrt {3}}\ x-5}$ ${\displaystyle y=mx+n\ \ (\rightarrow DE)}$${\displaystyle \quad y=kx+d\ \ (\rightarrow AT)}$${\displaystyle \quad y=mx+q\ \ (\rightarrow CH)}$${\displaystyle \quad y=mx+b\ \ (\rightarrow ES)}$${\displaystyle \quad y=ax+b\ \ (\rightarrow FR,\ EN)}$
Tabelle
 Funktion ${\displaystyle \qquad }$ Wertepaare ${\displaystyle x=..}$ ${\displaystyle y=3x-2}$ ${\displaystyle y=..}$ ${\displaystyle x}$ ${\displaystyle y}$ ${\displaystyle -2}$ ${\displaystyle y=3\cdot (-2)-2=-6-2=..}$ ${\displaystyle -8}$ ${\displaystyle -2}$ ${\displaystyle -8}$ ${\displaystyle -1}$ ${\displaystyle 0}$ ${\displaystyle 1}$ ${\displaystyle 2}$ ${\displaystyle 3}$
 Funktion ${\displaystyle \qquad }$ Wertepaare ${\displaystyle x=..}$ ${\displaystyle y=3x-2}$ ${\displaystyle y=..}$ ${\displaystyle x}$ ${\displaystyle y}$ ${\displaystyle -2}$ ${\displaystyle y=3\cdot (-2)-2=-6-2=..}$ ${\displaystyle -8}$ ${\displaystyle -2}$ ${\displaystyle -8}$ ${\displaystyle -1}$ ${\displaystyle y=3\cdot (-1)-2=-3-2=..}$ ${\displaystyle -5}$ ${\displaystyle -1}$ ${\displaystyle -5}$ ${\displaystyle 0}$ ${\displaystyle y=3\cdot (0)-2=0-2=..}$ ${\displaystyle -2}$ ${\displaystyle 0}$ ${\displaystyle -2}$ ${\displaystyle 1}$ ${\displaystyle y=3\cdot (1)-2=3-2=..}$ ${\displaystyle 1}$ ${\displaystyle 1}$ ${\displaystyle 1}$ ${\displaystyle 2}$ ${\displaystyle y=3\cdot (2)-2=6-2=..}$ ${\displaystyle 4}$ ${\displaystyle 2}$ ${\displaystyle 4}$ ${\displaystyle 3}$ ${\displaystyle y=3\cdot (3)-2=9-2=..}$ ${\displaystyle 7}$ ${\displaystyle 3}$ ${\displaystyle 7}$
 Wertepaare ${\displaystyle x}$ ${\displaystyle y}$ ${\displaystyle -2}$ ${\displaystyle -8}$ ${\displaystyle -1}$ ${\displaystyle -5}$ ${\displaystyle 0}$ ${\displaystyle -2}$ ${\displaystyle 1}$ ${\displaystyle 1}$ ${\displaystyle 2}$ ${\displaystyle 4}$ ${\displaystyle 3}$ ${\displaystyle 7}$