Zum Inhalt springen

Mathematrix: Werkzeuge/ Abstellraum/ PSA/ Grundrechenarten G2A

Aus Wikibooks

Division

[Bearbeiten]

Definition der Division

[Bearbeiten]
Rechenart Ausgedrückt als Symbol Namen der Teile Name des Ergebnisses
Division durch :  (÷, /)     84      :      7      =   12
(dividieren, teilen) Dividend : Divisor = Quotient

Einfache Division mit Hilfe der Einmaleins-Tabelle

[Bearbeiten]

Mit diesem Vorgang kann man Divisionen durchführen, wenn der Divisor höchstens (also kleiner oder gleich) 10 ist und der Dividend höchsten das 10-fache des Divisors (also wenn der Divisor 4 ist, höchsten 40, wenn der Divisor 7 ist, höchstens 70 und so weiter.)

Zum Beispiel 17 : 5
Zeile des Divisors wählen
 
 
17 liegt zwischen 15 und 20
Beide Spalten wählen
 
Schauen, welche Zahlen
oben in den Spalten stehen
 
 
Von beiden Zahlen (3 und 4)
die kleinste wählen.
Das ist das Ergebnis
17 : 5 = 3
Aber 3 mal 5 ist
doch nicht 17
Es gibt einen Rest. Diesen
berechnen wir dann:
3 mal 5 = 15 und 17−15=2
also 17 : 5 = 3 mit Rest 2
Man schreibt:
17:5=3 R 2
Hier als Animation

Der Haupt(vor)gang

[Bearbeiten]

Der Vorgang der Division, wenn der Dividend eine größere Zahl ist, kann durch vier Schritte beschrieben werden:

  1. ↓ Ziffer runter (ganz links anfangen)
  2. ÷ was runter steht durch den Divisor dividieren (mit Hilfe der Einmaleinstabelle)
  3. × das Ergebnis der Division mit dem Divisor multiplizieren
  4. − dieses Produkt von dem, was "runter steht" subtrahieren. So berechnet man den Rest der Division (Schritt 2)

So einen Vorgang nennt man in Mathematik (und nicht nur) Algorithmus. Die vier Schritte (↓ ÷ × –) werden wiederholt (so was nennt man Iteration). Wenn der Rest null ist und es kein Ziffer mehr am Dividend gibt, dann hört man auf. Es gibt aber auch die Möglichkeit, dass der Rest nie Null wird. Dieser Fall wird später erklärt.

Am besten versteht man den Vorgang durch ein Beispiel (um ihn zu lernen, muss man selbstverständlich üben...). Probieren wir 792:3 zu berechnen:

Jetzt wird der Vorgang wiederholt!
Jetzt wird der Vorgang noch mal wiederholt!

Das ganze in einer Animation:

Was aber man in der Tat schreibt, sieht doch anders aus! Man schreibt nur gewisse Schritte, der Rest macht man im Kopf oder als Nebenrechnung am Rand. Hier die Schritte, wie sie tatsächlich geschrieben werden:

und die entsprechende Animation:

Ein letztes Beispiel:

und die entsprechende Animation:

In diesem Fall sagt man, dass 842 durch 5 gleich 168 mit Rest 2 ist. Man schreibt 842:5=168 R 2. Der Rest muss allerdings immer kleiner als der Divisor sein (auch in den Zwischenschritten), sonst hat etwas nicht richtig geklappt. Die Division kann man allerdings weiterführen, wie wir bald lernen werden.

Dividend mit Nullen am Ende

[Bearbeiten]

Wenn der Dividend Nullen am Ende hat, kann man sich ein paar Schritte sparen. Schauen wir ein Beispiel:

Schauen wir jetzt, wie die richtige Regel lautet:

Man kann also die Division aufhören und die restlichen Nullen erst dann schreiben, wenn der Rest zum ersten Mal Null ist!

Wenn der Divisor auch Nullen am Ende hat, kann man vom beiden Divisor und Dividend so viele Nullen streichen, wie die Nullen des Divisors und erst dann die Division durchführen. Beispielsweise ist 7910000:400=79100:4 (in beiden Fällen ist das Ergebnis 19775). Warum das so ist, kann man erst verstehen, wenn man das Kürzen von Brüchen gelernt hat, daher lernen wir es hier zunächst einmal einfach so, als Regel...

Null in der Mitte des Ergebnisses

[Bearbeiten]
Division Erklärung Ein Fehler, der oft vorkommt, ist die Nullen in der Mitte des Ergebnisses auszulassen.
Im ersten Bild sieht man den richtigen Vorgang.
 
Für jede Ziffer des Dividenden, die runtergebracht wird,
muss ein Ziffer im Ergebnis geschrieben werden!

 
Das richtige Ergebnis ist daher 2008. Im zweiten Bild sieht man den falschen Vorgang.
Selbstverständlich ist 28 nicht gleich 2008 und daher ein falsches Ergebnis!

Null am Anfang des Ergebnisses

[Bearbeiten]
Was ist aber, wenn die Null (oder die Nullen) ganz am Anfang des Ergebnisses stehen? In diesem Fall spielt es keine Rolle, ob die Null da steht oder nicht. 059 bedeutet genau die gleiche Zahl wie 59 (allerdings auch genau wie 59,000 und 00059, auf gar keinen Fall aber wie 590 oder 59000...).
 
Wenn man Nullen vor dem Anfang einer Zahl oder nach der letzten Nachkommastelle schreibt, ändert sich die Zahl nicht.
 
47,03=00047,03=47,030000=0047,03000.
 
Das gilt allerdings nur für den Anfang der Zahl oder nach der letzten Nachkommastelle. Wenn man Nullen irgendwo in der Mitte der Zahl schreibt, dann hat man nicht mehr die gleiche Zahl.
47,03 ≠ 407,03 ≠ 470,03 ≠ 47,003    Alle diese Zahlen sind nicht gleich!
Aus diesem Grund kann man am Anfang (und nur am Anfang) der Division mit den ersten zwei (oder drei und so weiter) Ziffern anfangen, wenn die erste kleiner als der Divisor ist. Dieser Vorgang wird im zweiten Bild dargestellt.

Dividend mit Komma (einfach)

[Bearbeiten]
Was ist, wenn der Divident schon Nachkommastellen hat? In diesem Fall wird die Division, wie wir sie bisher gelernt haben, mit einer Änderung durchgeführt:
 
Wenn zur nächsten Ziffer nach dem Komma gesprungen werden muss, dann muss man erst ein Komma im Ergebnis schreiben.
 
In unserem Fall ist es nicht wenn man die Ziffer 9 im Dividend erreicht. Das Komma muss geschrieben werden, erst bevor man die nächste Ziffer nach dem Komma (hier die Ziffer 2) runter bringen muss. Erst dann schreibt man das Komma und dann macht man die Rechnung (12:3) und dann schreibt man das Ergebnis dieser Rechnung (4) nach dem Komma. Es gibt kein anderes Komma in der Zahl (also auf gar keinen Fall irgendwo ein zweites Komma schreiben).
Eine Bemerkung noch: Den letzten Rest haben wird hier mit (R) in Klammern geschrieben. Den Begriff Rest benutzt man eigentlich bei ganzzahligen Divisionen (mit Zahlen ohne Nachkommastellen)[1]. 0 ist hier der Teilrest der letzten Teildivision (12:4=3 R 0). Wenn bei einer Division mit Nachkommastellen im Ergebnis Teilrest 0 hat, kann man mit der Division aufhören. Das ist allerdings nur selten der Fall, wie wir gleich lernen werden.
  1. Der genaue Begriff ist allerdings in diesem Fall Modulo

Divisor mit Komma (einfach)

[Bearbeiten]

Was ist, wenn der Divisor Nachkommastellen hat, wie zum Beispiel in 236,2875:0,5? In diesem Fall wird das Komma sowohl im Divisor als auch im Dividenden so oft nach rechts verschoben, bis der Divisor keine (notwendige) Kommastelle mehr hat. In unserem Beispiel, wenn das Komma im Divisor (0,5) ein Mal nach rechts verschoben wird, bekommt man die Zahl 5, die keine Nachkommastellen hat. Das Komma wird dann auch im Dividenden (236,2875) ein Mal nach rechts verschoben (also der neue Dividend wird 2362,875 sein). Mit diesen neuen Zahlen kann man die Division ganz normal fortführen, wie im Bild am Rand. Der Prozess ist also:

  • Komma in Divisor verschieben, bis er keine Nachkommastelle hat:
  • Komma genauso oft (hier einmal) im Divident verschieben:
  • Division mit den neuen Zahlen durchführen (siehe Bild)

Was ist, wenn der Dividend keine Nachkommastellen hat, beispielsweise 205:0,04?

In diesem Fall denkt man, dass ein Komma am Ende des Dividenden steht, und schreibt so viele Nullen wie notwendig nach dem Komma: 205=205,00 (allerdings gilt auch 205=205,00000 und so weiter). Dann wird der Vorgang wie vorher durchgeführt:

  • Komma im Divisor verschieben:
  • Komma genauso oft (hier zweimal) im Dividenden verschieben, bis er keine Nachkommastelle hat:
  • Division mit den neuen Zahlen durchführen (siehe Bild)

Ein letztes Beispiel: 205:0,0004. Hier muss man das Komma sogar viermal verschieben:

  • Komma im Divisor verschieben: \ →
  • Komma genauso oft (hier zweimal) im Dividenden verschieben, bis er keine Nachkommastelle hat:
  • Division mit den neuen Zahlen durchführen (siehe Bild)

Dividend ohne Komma, Ergebnis mit Komma (nicht periodisch)

[Bearbeiten]
Was ist, wenn die Division nicht genau aufgeht. wie zum Beispiel in 935:4?
In diesem Beispiel ist es klar, dass ein Rest geben wird. Die Division kann man aber doch weiter fortsetzen, wie wir bei Zahlen mit Nachkommastellen schon gelernt haben. In diesem Beispiel können wir 935 als Zahl mit Nachkommastellen schreiben (freilich alle Nullen), wie wir schon gelernt haben: 935=935,00... Dann führen wir die Division in der gewöhnlichen Weise durch (siehe Bild). Allerdings kann man in diesem Fall die Nullen im Dividenden gar nicht schreiben, wie im Bild links unten zu sehen ist. In diesem Fall werden Nullen weiter unten geschrieben, bis der Teilrest irgendwann Null wird. Vorsicht aber: Wenn der Dividend zu Ende ist und die erste Null dazu benutzt wird, muss man ein Komma im Ergebnis schreiben!
  Diesen Prozess (weiter Nullen schreiben) kann man auch benutzen, wenn der Dividend zwar schon Nachkommastellen hat, der Teilrest am Ende aber doch nicht Null ist. In diesem Fall schreibt man Nullen weiter, selbstverständlich ohne ein zweites Komma im Ergebnis zu schreiben!

Dividend ohne Komma, Ergebnis mit Komma (periodisch)

[Bearbeiten]

Bisher war es fast immer in den Beispielen so, dass der Teilrest am Ende Null war. Das war kein Zufall, die Beispiele wurden einfach so gewählt, damit sie verständlicher sind. In der Regel ist der Teilrest keine genaue Zahl. Probieren wir es mit dem folgenden Beispiel:

Wie wir schon gelernt haben, wenn man das Ende der Zahl erreicht und keine Ziffer mehr hat, kann man doch die Division weiterführen: erst eine Null im Ergebnis schreiben und dann eine Null jedes Mal dazuschreiben, bis irgendwann der Teilrest Null wird. In unserem Fall hier passiert so etwas aber nicht. Wie man sieht, wiederholen sich die Zahlen 2 und 7 immer wieder und, wie man hoffentlich versteht, das wird immer so bleiben. Wir haben hier diese Wiederholung mit verschiedenen Farben dargestellt. Die wiederholte Zifferreihenfolge nennt man Periode. Man sagt, dass das Ergebnis von 938 durch 11 gleich 85 Komma 27 periodisch ist. Man bezeichnet die Periode mit einem Strich über der Zifferreihenfolge (oder mit einem Punkt, wenn es nur eine Ziffer ist). Man schreibt also:
Man braucht die Division nicht weiterführen. Wann kann man aber genau damit aufhören? Wenn man schon mit Null hinzufügen angefangen hat (passiert hier bei der letzten Ziffer der Zahl 938) und der gleiche Teildividend vorkommt, dann kann man aufhören, wie im Bild hier

Kombinationen

[Bearbeiten]

Hier finden wir ein paar weiterführende Beispiele zur Vertiefung der Kenntnissen.

Probieren wir erst die Division 3706,1:0,00007. Wenn der Divisor ein Komma hat (wie hier 0,00007), dann muss man das Komma sowohl im Divisor also auch im Dividenden so oft nach rechts verstellen, bis der Divisor keine Nachkommastellen mehr hat. Falls der Dividend dann nicht genügende Nachkommastellen hat, werden sie mit Nullen nachgefüllt. Daher ist 3706,1:0,00007 gleich so viel wie 370610000:7

3706,1:0,00007=370610000:7

Letztere Division führen wir auch im Bild durch. Wir fangen dann mit dem Hauptvorgang (in verkürzter Darstellung) an. Da die erste Stelle des Dividenden (3) kleiner als der Divisor ist, kann man weitere Ziffer des Dividenden benutzen (also 37), weil Nullen am Anfang des Ergebnisses (und nur dort) keine Rolle spielen. Diese zwei Stellen wurden mit Hellblau markiert. Da, wo die rote Stelle und der rote rechts-Pfeil im Bild ist, kann man weitere Nullen einführen, nachdem erst ein Komma im Ergebnis geschrieben wird (roter nach-oben-Pfeil und Komma im Ergebnis). Mit Lila (um dem Teildividenden 30) wird darauf aufmerksam gemacht, dass das Ergebnis doch periodisch ist (also der Teildividend 30 und alle andere Teildividenten, die nach ihm kommen, in der gleichen Reihe immer wiederholt vorkommen). Die Periode, wie im Ergebnis wieder mit Lila notiert, ist die Zifferfolge 428591.

Da man aber die Periode im Ergebnis erst nach dem Komma notiert wird, schreibt man nicht

(falsch), sondern

(richtig).

Im vorherigen Beispiel haben wir eine Division durch 11 gesehen. Da bestand die Periode aus zwei Ziffern (27). Im letzten Beispiel (Division durch 7) bestand die Periode aus sechs Ziffern (914285). Bei einer anderer Division (durch 4), gab es wieder keine Periode. Es kann also eine Periode geben oder nicht, und sie kann lang oder kurz sein. Im folgenden Beispiel (938:23) haben wir die Periode nicht mal angegeben, da sie schon aus 22 Ziffern(!) besteht. Es gibt einen Beweis dafür, dass wenn der Divisor und der Dividend ganze Zahlen sind (oder sein können), immer eine Periode entsteht (also eine wiederholte Reihenfolge von Ziffern nach dem Komma) oder ein Teilrest Null (also die Division kann aufhören). Diese Periode kann sehr lang sein, es gibt sie aber in diesem Fall immer.

Im folgenden Beispiel lernen wir allerdings auch dazu genauer, wie man die Division durchführt, wenn der Divisor größer als 10 ist. Wir haben schon eine solche Division gesehen, aber noch nicht erklärt, wie das funktioniert.

Grundsätzlich gibt es hier nichts Neues. Man soll wieder die Grundschritten durchführen:

Ziffer runter (ganz links anfangen)
÷ was runter Steht durch den Divisor dividieren ("wie oft der Divisor in den Teildividenden hineinpasst")
× das Ergebnis der Division mit dem Divisor multiplizieren
dieses Produkt von dem, was "runter steht" subtrahieren.

Nun aber werden diese Schritte irgendwo am Rand durchgeführt und jeweils unter dem Teildividenden das Ergebnis der Subtraktion am Ende geschrieben.

Schritt Ziffer runter: Weil die erste Ziffer im Dividend (9) kleiner als der Divisor (23) ist, nehmen wir am Anfang die ersten zwei Ziffer des Dividenden (93)
Schritt ÷ dividieren: 23 passt in 93 viermal hinein (das kann man allerdings bei größeren Zahlen nur raten und ausprobieren). Wie erste Ziffer des Ergebnisses wird daher 4 sein.
Schritt × multiplizieren: Die letzte Ziffer des Ergebnisse (4) wird mit dem Divisor multipliziert: 4×23=92.
Schritt subtrahieren: Das Ergebnis der Multiplikation (92) wird aus dem vorläufigen Teildividenden (93) subtrahiert (93−92=1). Allein das Ergebnis der Subtraktion (hier 1) wird dann unter den Teildividenden geschrieben. Im Bild haben wir allerdings die zwei letzten Schritten am Rand links zusammengefasst (93−4×23=1).

Diese Schritte werden dann wiederholt, bis man irgendwann die Periode entdeckt. Hier haben wir allerdings schon ziemlich bald aufgehört (wie schon erwähnt, ist die Periode in diesem Beispiel sehr lang...).

Im folgenden Beispiel ist der Divisor wieder größer als 10, wir haben aber hier die Teilschritte des Hauptvorgangs (↓ ÷ × −) nicht am Rand geschrieben. Die Division lautet 4,52:1,3, man soll also erst das Komma verschieben: 4,52:1,3=45,2:13. Letztere Division wird im Bild gezeigt. Wieder muss man mit zwei Ziffern anfangen. Sofort nach der ersten Ziffer im Ergebnis muss man ein Komma schreiben (roter Pfeil). Und wieder gibt es eine Periode (wenn der Teildividend 100 wiederholt wird), die Ziffernfolge 769230. Die Periode besteht hier (wie bei der Division durch 7 am Anfang dieses Teilkapitels) aus sechs Ziffern. Also . Hier ist zu beachten, dass nicht alle Ziffern nach dem Komma die Periode sind! Die Periode fängt in diesem Fall erst nach der ersten Nachkommastelle an.

Wenn allerdings die Division 0,0452:13 durchgeführt wird, muss man im Ergebnis schon mit Null und Komma anfangen (Bild links)! Der Rest des Vorgangs bleibt unverändert. Vorsicht aber: in diesem Fall (wenn Komma schon am Anfang steht), darf man Nullen nicht auslassen! Die Periode allerdings fängt in diesem Fall noch weitere Stellen nach dem Komma an: .

Bei der Division 330,103:11 (links) finden wir noch ein paar Neuigkeiten. Die Periode besteht zwar wieder aus zwei Ziffern wie in der vorherigen Division durch 11, diesmal sind es aber die Ziffern 36 (und nicht 27). Es gibt in dieser Division einige Nullen dazwischen, die man selbstverständlich NICHT auslassen darf und dazu ein Komma unter diesen Nullen.

Bei der Division 391,204:11 (rechts) stellt man fest, dass die Division durch 11 sogar auch genau ausgehen kann (das stimmt ja für alle Divisoren, die ganzzahlig, also ohne Komma, sind). Wenn der Teilrest Null ist, ist der Vorgang fertig. Wann die Division durch bestimmte Zahlen genau aufgeht, lernt man im Kapitel über Teilbarkeit.

Im letzten Beispiel können wir sehen, dass die Periode auch nur eine Ziffer sein kann (hier 6). In diesem Beispiel fängt die Periode wieder erst an der dritten Nachkommastelle an. Man schreibt:

Punktrechnungen mit 10, 100, 1000 und so weiter

[Bearbeiten]
  • Wenn man eine Zahl mit 10, 100, 1000 und so weiter multipliziert, dann verschiebt sich das Komma der Zahl einfach nach rechts (die Zahl wird größer), so oft, wie es Nullen gibt:
3,45 · 10 = 34,5    (Mal 10; in 10 gibt es eine Null, Komma wird einmal nach rechts verschoben)
54 · 10000 = 54,0000 · 10000 = 540000    (Mal 10000; in 10000 gibt es vier Nullen, Komma wird 4 Mal nach rechts verschoben; Allerdings gibt es kein Komma am Ende der Zahl 54; man schreibt ein Komma am Ende der Zahl und dazu nach dem Komma so viele Nullen, wie man will, und schiebt dann das Komma)
0,008 · 100 = 0,8    (Mal 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach rechts verschoben)
  • Wenn man eine Zahl mit 10, 100, 1000 und so weiter dividiert, dann verschiebt sich das Komma der Zahl einfach nach links (die Zahl wird kleiner), so oft, wie es Nullen gibt:
3,45:10 = 0,345    (Durch 10; in 10 gibt es eine Null, Komma wird einmal nach links verschoben; allerdings gibt es links vor 3,4 keine Null, man schreibt also links von der Zahl so viele Nullen, wie man will, und schiebt dann das Komma)
54:10000 = 0,0054    (Durch 10000; in 10000 gibt es 4 Nullen, Komma wird 4 Mal nach links verschoben; allerdings gibt es links vor 54 kein Komma, man schreibt also links von der Zahl ein Komma und so viele Nullen, wie man will, und schiebt dann das Komma)
0,008:100 = 0,00008    (Durch 10; in 10 gibt es eine Null, Komma wird 1 Mal nach links verschoben; allerdings muss man zuerst am Ende der Kommazahl weitere Nullen schreiben)
900000:100 = 9000,00 = 9000    (Durch 100; in 100 gibt es 2 Nullen, Komma wird 2 Mal nach links verschoben; da es kein Komma am Ende der Zahl gibt, muss man erst das Komma schreiben)