Natur und Technik für den Pflichtschulabschluss: Wärmelehre

Aus Wikibooks
zum Inhaltsverzeichnis
Hoch zum Anfang
Inhalt
Ein-Aus-
klappen

Wärmeausdehnung und Anomalie des Wassers[Bearbeiten]

Eisberg

In der Regel dehnen sich die Stoffe bei steigender Temperatur aus. Das kann bei technischen Konstruktionen zu Schaden führen, wie man im Bild sehen kann. In diesen Fällen hat man die Konstruktion bei einer niedrigeren Temperatur ohne Lücken zwischen den Baustoffen aufgebaut. Als die Temperatur am Ort höher wurde, haben sich die Stoffe ausgedehnt. Dadurch ist der Schaden (Bruch, Beugung) entstanden.

Wenn wir Wasser kochen, dehnt es sich auch aus. Wenn wir einen Topf bis am Rand voll mit Wasser erhitzen, wird Wasser bald überlaufen, bevor es zu kochen anfängt. Je wärmer das Wasser ist, desto mehr Volumen braucht es. Seine Dichte wird in diesem Fall dadurch kleiner. Wasser hat allerdings eine Besonderheit („Anomalie“ auf Griechisch).[1] Ab 4°C dehnt es sich wie die anderen Stoffe bei steigender Temperatur aus, wie schon beschrieben. Zwischen 0 und 4°C dehnt es sich aber bei fallender Temperatur aus. Wenn flüssiges Wasser bei 0°C Eis wird, dehnt es sich verhältnismäßig sehr stark aus. Das bedeutet, dass flüssiges Wasser bei 4°C seine größte Dichte und Eis immer eine kleinere Dichte als flüssiges Wasser hat. Das ist auch die Erklärung dafür, dass Eisberge schwimmen oder dass die Tiefe der Seen nur selten Eis wird. Aus diesem Grund können See- und Meeresorganismen im Winter im Wasser überleben. Wasser mit der größten Dichte (bei 4°C) ist flüssig und bleibt immer unterhalb vom kälteren Wasser und Eis. Die Organismen in den Seen erfrieren daher nicht.

Eis hat also eine kleinere Dichte und daher mehr Volumen als flüssiges Wasser mit der gleichen Masse. Das kann man im Alltag leicht feststellen. Wenn man eine geschlossene (Glas-)Flasche ganz voll mit Wasser in den Gefrierschrank stellt, wird die Flasche bald brechen. Das passiert, weil unter 4°C (und während das Wasser Eis wird) das Volumen des Wassers bei sinkender Temperatur mehr wird! Das Wasser in der Flasche dehnt sich aus und die Flasche bricht unter dem erhöhten inneren Druck.

  1. „Anomalie“ bedeutet auf Griechisch Unregelmäßigkeit

Wärmetransport[Bearbeiten]

Wärmetransport:
  • Im kochenden Wasser findet Wärmeströmung statt: Warmes Wasser strömt nach oben und kaltes Wasser nach unten.
  • Wenn man die Hände relativ nah hält, spürt man die Wärme aus der Ferne. Das ist Wärmestrahlung, wie bei der Sonnenstrahlung.
  • Wenn man das Glas mit der Hand berührt, spürt man die Wärme direkt, man kann sich sogar verbrennen. Das ist Wärmeleitung.

In jeder Jahreszeit, können wir die Wärme der Sonne spüren, solang sie scheint und nicht von Wolken bedeckt wird. Die Sonnenstrahlung wärmt uns, auch wenn die Luft kalt ist und obwohl wir keinen direkten Kontakt zur Sonne haben. Die Sonnenstrahlung überträgt die Wärme der Sonne zu uns. Sie ist daher eine Art von Wärmestrahlung. Die Übertragung von Wärme ist eine Eigenschaft der elektromagnetischen Wellen. Eine relativ bekannte Art von Wärmestrahlung ist die Infrarotstrahlung (IR), die bei Wärmelampen, Mikrowellenherden und bei elektronischen Geräten angewandt wird. Die Wärmestrahlung ist die einzige Art von Wärmetransport, die sich in Vakuum ausbreitet. Wärmestrahlung ist also der Transport von Wärme aus der Ferne, auch in Vakuum, wie bei der Sonnenstrahlung.

Wenn wir andererseits ein Objekt anfassen, können wir spüren wie warm oder kalt es ist. Diese Form der Übertragung von Wärme, wenn zwei Körper in Berührung sind, wird „Wärmeleitung“ genannt. In diesem Fall bewegen sich die Teilchen des wärmeren Körpers schneller als die des kälteren. Durch Stöße werden dann die Teilchen des kälteren Körpers schneller (und des wärmeren langsamer). Der Transport von Wärme bei direktem Kontakt wird also Wärmeleitung genannt.

Wenn wir Wasser kochen, merken wir, dass das Wasser erst unten im Topf warm wird. Dieses warme Wasser hat eine kleinere Dichte und steigt daher auf. Dadurch wird das Wasser oben auch wärmer. Diese Art von Wärmetransport wird Wärmeströmung genannt. Sie kann bei sogenannten „Fluiden“ stattfinden, also bei Flüssigkeiten und Gasen. Wenn die Luft bspw. durch die Heizung wärmer wird, strömt sie nach oben und gleichzeitig kommt kältere Luft nach unten (wo sie dann von der Heizung durch Wärmeleitung auch aufgewärmt wird).

Wir haben also hier drei Formen des Wärmetransports (der Wärmeübertragung) erwähnt: die Wärmestrahlung, die Wärmeleitung und die Wärmeströmung.

Temperatur und Wärmeenergie[Bearbeiten]

Temperatur ist nicht gleich Wärme. Die Wärmeenergie eines physikalischen Körpers hängt von der Menge des Körpers ab, seine Temperatur allerdings nicht. 5000 Liter warmes Wasser können viel mehrere Personen als 2 Liter Wasser mit der gleichen Temperatur aufwärmen. Die Temperatur ist gleich, die Wärmeenergie nicht. Sowohl Temperatur als auch Wärmeenergie haben mit der mittleren Geschwindigkeit der Teilchen zu tun. Die Temperatur zeigt uns wie schnell sich die Teilchen in einem Stoff bewegen. Je schneller die Teilchen sind, desto höher ist die Temperatur.

Die Wärmeenergie eines Körpers ist, genau wie die Temperatur, mehr, wenn die mittlere Geschwindigkeit der Teilchen größer ist. Allerdings hängt sie auch mit der Menge der Teilchen zusammen. Die Wärmeenergie hängt dazu auch von der Zusammensetzung des Körpers ab, also von der Art der Teilchen in diesem Körper. Um die Wärmeenergie eines Körpers zu messen, wird daher seine Temperatur, seine Masse und seine Zusammensetzung benötigt.

Elektronisches (digitales) Thermometer. Für seine Funktion werden Halbleiter benutzt.
Bimetallisches Thermometer. Zwei Metallstreifen hier sind in einer Spirale zusammengeklebt. Ein Metall dehnt sich mit steigender Temperatur schneller als das andere aus. Dadurch ändert sich die Größe der Spirale und wird der Zeiger bewegt.
Flüssigkeits- bzw. Quecksilberthermometer. Mit steigender Temperatur dehnt sich die Flüssigkeit (z. B. Quecksilber) im Glasrohr aus und steigt sie im Rohr auf. Bemerkung: Das Körperthermometer im Bild ("Quecksilber-Basalthermometer") hat eine kleinere Temperaturskala. Dadurch wird die Genauigkeit größer.

Thermodynamisches Gleichgewicht[Bearbeiten]

Wenn das Kochherd sehr warm ist, dann spüren wir seine Wärme auch aus der Ferne. Wenn es aber kalt ist, dann spüren wir keine Wärme. Körper strahlen also desto mehr Wärmeenergie aus, je wärmer sie selbst sind. Diese Tatsache spielt beim sogenannten „thermodynamischen Gleichgewicht“ eine entscheidende Rolle.

Wenn Körper mehr Wärme aufnehmen als ausstrahlen, dann werden sie wärmer. Wenn sie mehr Wärme abgeben, dann werden sie kälter. Das thermodynamische Gleichgewicht entsteht, wenn ein Körper so viel Wärmeenergie ausstrahlt wie er aufnimmt. Dann wird die Temperatur des Körpers konstant bleiben.

Nehmen wir als Beispiel ein Zimmer im Winter, das geheizt wird. Wenn wir die Fenster weit offen lassen, dann wird es nicht viel wärmer. Das Zimmer verliert Wärme sowohl durch Wärmeströmung, als auch durch Wärmeleitung und Wärmestrahlung. Wenn wir die Fenster nur gekippt halten, dann wird der Verlust durch Wärmeströmung viel weniger. Dann wird das Zimmer etwas wärmer. Noch weniger Verlust findet statt, wenn wir die Fenster ganz zu machen. Dann wird das Zimmer noch wärmer. Wenn das Zimmer aber wärmer wird, verliert es mehr Wärmeenergie durch Wärmestrahlung, wie beim Beispiel mit dem Kochherd. Wenn die Fenster zu sind, verliert zwar das Zimmer weniger Energie durch Wärmeströmung, mehr aber durch Wärmestrahlung, genau weil es wärmer wird. Bleibt erreicht das Zimmer ein neues thermodynamisches Gleichgewicht, allerdings bei einer höheren Temperatur. Die Temperatur in diesem Zustand ist zwar höher, sie bleibt aber stabil. Das Zimmer wird nicht mehr wärmer, außer wenn wir dicke Vorhänge vor den Fenstern zuziehen. Dann wird die Temperatur noch mehr steigen, denn der Verlust durch Wärmestrahlung wird am Anfang mit den undurchsichtigen Vorhängen zu niedriger sein. Die Temperatur wird aber wieder nicht ewig steigen. Ein neues thermodynamisches Gleichgewicht wird bei einer noch höheren Temperatur erreicht. Ein thermodynamisches Gleichgewicht entsteht also, wenn ein Körper so viel Wärmeenergie aufnimmt wie er ausstrahlt. In diesem Fall bleibt die Temperatur des Körpers stabil.

Thermodynamisches Gleichgewicht und Treibhauseffekt[Bearbeiten]

Zwischen Erde und dem Weltall gibt es ein thermodynamisches Gleichgewicht. Die Erde nimmt von der Sonne Wärme auf und gibt dem Rest des Weltalls gleich so viel Wärme ab. Ohne Atmosphäre wäre die mittlere Temperatur auf der Erde ca. −18°C. Die Atmosphäre wirkt für die Erde, wie die Fenster für ein Zimmer. Genauso wie bei einem Zimmer, wenn die Fenster zu sind, verliert die Erde dank der Atmosphäre ihre Wärme langsamer. Dadurch wird die Erde wärmer. Andererseits verliert ein Objekt schneller Wärme, wenn es wärmer wird. Also bei einer höheren Temperatur wird die Erde genau so viel Wärme verlieren, wie sie bekommt. Dann entsteht wieder ein Gleichgewicht, allerdings bei einer höheren Temperatur. Das ist der sogenannte Treibhauseffekt. Mit den menschlichen Aktivitäten wird der Treibhauseffekt stärker. Das ist, als ob wir am Fenster eines Zimmers noch ganz dicke Vorhänge zuziehen. Das ist zwar für ein Zimmer im Winter gut, für das Überleben der Menschen aber sind zu hohen Temperaturen nicht geeignet. Eine grundsätzliche Änderung, was unseres Konsumverhalten und die Ausbeutung der Erde und anderer Menschen betrifft, ist notwendig, wenn wir länger auf unserem Planeten leben wollen.

Reibung[Bearbeiten]

Die Reibung ist eine Art von Kleben zwischen Oberflächen, das gegen das Gleiten wirkt. Wenn man eine Oberfläche mit einem starken Mikroskop beobachtet, sieht sie unregelmäßig aus. Auch Flächen, die mit bloßem Aug sehr glatt aussehen, wie ein Spiegel, sehen beim Mikroskop unregelmäßig aus, mit „Bergen“ und „Tälern“, etwa wie in unseren Bildern. Zwischen „Bergen“ einer Fläche und „Täler“ der anderen entstehen sogar Verbindungskräfte. Diese Tatsache führt dazu, dass eine externe Kraft notwendig ist, um das Gleiten eines Objektes erst einmal zu bewirken (Haftreibung). Eine Kraft ist auch notwendig, um einen Körper, der gleitet, auf Bewegung zu halten (Gleitreibung). Die Haftreibung ist also die Kraft, die gegen das Anfangen einer Bewegung wirkt, wenn wir einen Körper zu schieben versuchen. Die Haftreibung beschreibt also die Kraft bei einem bewegungslosen Objekt. Die Gleitreibung wirkt gegen das Gleiten des Objektes, also sie beschreibt die Kraft gegen die Bewegung, wenn ein Körper sich schon im Gleiten befindet.

Obwohl die Reibung als eine Kraft beschrieben wird, die gegen Bewegung (genauer: gegen das Gleiten) wirkt, ist sie für fast alle Bewegungen notwendig. Beispielsweise wären weder das Gehen noch das Rollen ohne Reibung möglich. Beim Rollen z.B. eines Fahrradrads gibt es erst einmal eine Haftreibung. Wenn diese zu niedrig ist, wie bei einer steilen Auffahrt bei relativ glatten Reifen, rollt das Rad „in der Luft“ und das Fahrrad bewegt sich nicht mehr vor- bzw. aufwärts. Die Rollreibung allerdings ist eine Kraft, die doch gegen das Rollen wirkt. Grob gesagt ist sie eine Art von „Kleben“ zwischen den Oberflächen, das das Rollen erschwert.

Spoiler

Die Reibung hängt von der senkrechten Kraft zwischen den Gleitflächen und von der Art der Oberflächen ab.

  • Je stärker die Kraft ist, desto größer ist auch die Reibung. Wenn wir bei der Auffahrt mit dem Fahrrad mehr Gewicht auf das treibende Hinterrad stellen, dann sind die Chancen, dass dieses frei „spinnt“ geringer. Bei Rennautos benutzt man Spoilers, die diese Kraft erhöhen.
  • Die Wirkung der Art der Oberflächen wird durch den sogenannten „Reibungskoeffizienten“ beschrieben. Dieser hat keine Einheiten (ist eine „Dimensionslose“ Zahl) und ist größer für die Haftreibung und kleiner für die Rollreibung.
Fahrradkurbel

Durch die Reibung entsteht Wärme. Das nutzen wir Menschen jedes mal aus, wenn es uns kalt wird. Dann reiben wir z.B. die Handflächen gegeneinander, um dadurch Wärme zu erzeugen. Bei vielen Tätigkeiten allerdings ist die Reibung und die dadurch entstehende Wärme nicht erwünscht, wie z.B. beim Kugellager eines Fahrrads. Wenn weniger Reibung erwünscht ist, benutzt man  Schmier- bzw.  Gleitmittel.

Das entsprechende der Reibung bei Bewegungen in Fluiden (also Gase und Flüssigkeiten) ist der Luftwiderstand und die Viskosität. Die Rolle des Luftwiderstands wird klar, wenn der Fall eines Blatts Papier und eines zusammengeknüllten Blatts Papier verglichen werden. Die Viskosität hat damit zu tun, wie „dickflüssig“ ein Fluid ist. Öl ist dickflüssiger als Wasser und daher ist das Fließen von Öl schwieriger als das Fließen von Wasser.