Analysis: Stetigkeit: Zwischenwertsatz

Aus Wikibooks
Zur Navigation springen Zur Suche springen
Nuvola apps bookcase 1.svg Analysis

Zwischenwertsatz: Ist stetig und surjektiv, wobei , topologische Räume sind und zusammenhängend ist, so ist zusammenhängend.

Beweis: Ist nicht zusammenhängend, so gibt es disjunkte offene Mengen und , so dass . Da stetig ist, sind dann aber auch und offen; außerdem sind sie disjunkt und es gilt . Das heißt aber, dass nicht zusammenhängend ist, im Widerspruch zur Voraussetzung.