Einführung in die Astronomie: Astronomische Beobachtungsinstrumente

Aus Wikibooks
Zur Navigation springen Zur Suche springen


Teleskope[Bearbeiten]

Linsen- und Spiegelteleskope basieren auf unterschiedlichen Arbeitsprinzipien. Jeder Teleskoptyp hat unterschiedliche Stärken und Schwächen.

Linsenteleskop[Bearbeiten]

Linsenteleskop (Refraktor)

Das Linsenteleskop, auch Refraktor genannt, geht auf eine Entdeckung des Engländers Roger Bacon zurück, der entdeckte, dass sich Lichtstrahlen durch Linsen bündeln lassen. Das erste Linsenteleskop wurde von dem Holländer Hans Lipperhey um 1608 gebaut. Als Galileo Galilei davon erfuhr, baute er sich sofort eines nach. Die moderne Astronomie war geboren. Das erste Teleskop des Galileo Galilei hatte eine Vergrößerung von einem Faktor 9, was es mit einem modernen Fernglas vergleichbar macht. Erst spätere Konstruktionen wie die von Johannes Kepler erreichten eine bis zu dreißigfache Vergrößerung. Das Linsenteleskop besteht mindestens aus einem Objektiv, welches das Licht bündelt und einem Okular in der Nähe des Brennpunkts.

Spiegelteleskop[Bearbeiten]

Newton Spiegelteleskop

Das Spiegelteleskop, auch Reflektor genannt, ist eine etwas modernere Erfindung als das Linsenteleskop und hat ein anderes Wirkungsprinzip. Bei dem Spiegelteleskop wird das Licht mit einem großen Parabolspiegel aufgefangen und über mindestens einen weiteren Spiegel aus dem Strahlengang herausgeleitet, um das eingefangene Licht dann mit einem Okular betrachten zu können.

Vergleich von Linsen- und Spiegelteleskopen[Bearbeiten]

Linsen brechen Licht unterschiedlicher Wellenlängen verschieden stark, so dass Licht unterschiedlicher Farbe jeweils einen anderen Brennpunkt hat. Farbsäume sind die Folge davon, da blaues Licht von Linsen stärker gebrochen wird als grünes, gelbes und rotes Licht. Deshalb liegt der blaue Brennpunkt ein Stück weiter zur Linse hin, als der rote Brennpunkt. Im Vergleich zu dem Teleskop, welches von Galileo Galilei benutzt wurde, sind moderne Teleskope jedoch um Klassen besser.

Spiegelteleskope haben diesen Farbfehler nicht. Aber sie haben einen anderen Mangel: Durch die parabolische Form des Spiegels besitzen sie die unangenehme Eigenschaft, an den äußeren Ecken des Bildes einen runden Lichtstrahl zur Tropfenform zu verzerren. Je nach Brennweite und Qualität des Teleskopes sind diese Effekte unterschiedlich stark zu sehen. Je größer die Brennweite ist, desto weniger ist dieser Effekt ausgeprägt.


Die Montierung[Bearbeiten]

Den „Ständer“ des Teleskops bezeichnen die Astronomen als Montierung. Im Unterschied zu einem Stativ muss sie sehr stabil und schwingungsfrei sein. Zudem muss sie dem Beobachter ermöglichen, den Sichtbereich des Fernrohrs immer wieder an das zu beobachtende Objekt anzupassen (nachzuführen). Dies kann mit modernen, motorbetriebenen Montierungen auch vollautomatisch erfolgen. Einige Steuerungen der Montierung haben sogar einen Computer, in dem die Positionen der wichtigsten Objekte eingespeichert sind.

Äquatorialmontierung[Bearbeiten]

Teleskop mit äquatorialer Montierung
Teleskop mit äquatorialer Montierung

Die bessere Montierung für Astrofotografie ist die Äquatorialmontierung, auch deutsche Montierung genannt. Die Achse wird schräg gestellt und auf den Polarstern (genauer: auf den Himmelspol) ausgerichtet. Die Schräglage ist abhängig von der geographischen Breite des Teleskopstandortes. In diesem Fall genügt für die Sternbeobachtung ein einziger Elektromotor, der die Rektaszensionsachse (Stundenachse) entgegen der Erdrotation mit der gleichen Geschwindigkeit dreht. Die Drehung der Erde wird ausgeglichen, so dass ein einmal eingestellter Stern immer im Blickfeld des Beobachters bleibt.

Die Planeten, der Mond und Kometen bewegen sich mit einer anderen Geschwindigkeit am Himmel als die Sterne. Für diese Beobachtungen reicht der eine Motorantrieb der Äquatorialmontierung nicht aus. Das Teleskop muss entweder in der Deklination von Hand nachgeführt werden oder mit einem zweiten Motor ausgestattet werden.

Azimutalmontierung[Bearbeiten]

Teleskop mit azimutaler Montierung

Die Azimutalmontierung ist einfacher aufgebaut als die Äquatorialmontierung, da sie nicht auf den Himmelsäquator ausgerichtet wird. Es kann damit die Höhe zum Horizont und der Azimut eingestellt werden. Um einem Stern in seiner Bahn zu folgen, müssen immer beide Achsen verstellt werden. Für den Amateur reicht das zur Beobachtung mit dem Auge aus, aber für photografische Aufnahmen ist die Azimutalmontierung nur schlecht geeignet, da bei ihr eine Bildfelddrehung bedingt durch die abweichenden Achsen festzustellen ist. Große optische Teleskope und Radioteleskope benutzen trotzdem meistens die Azimutalmontierung, weil sie in dieser Baugröße kostengünstiger herzustellen ist als eine Äquatorialmontierung.



Raumflugkörper[Bearbeiten]

Es gibt viele verschiedene Satelliten, welche zu astronomischen Forschungen im Weltraum eingesetzt werden. Der Berühmteste davon ist das Weltraumteleskop Hubble, welches am 25. April 1990 gestartet wurde. Satelliten werden eingesetzt, um die Atmosphäre zu überwinden, welche die meisten Lichtstrahlen absorbiert und verzerrt. Im Weltall können die Bilder ungehindert von Störungen aufgenommen werden. Auf der Erde schlecht empfangbare Spektralbereiche wie Infrarot-, Ultraviolett- und Röntgenstrahlen werden heute von Spezialsatelliten aufgefangen. Früher hat man für solche Beobachtungen auch Flugzeuge und Ballons verwendet. Es gibt zu viele Satelliten, um hier alle aufzulisten.

Hubble-Teleskop[Bearbeiten]

Hubble Teleskop

Hubble ist ein Satellit 600 km über der Erdoberfläche, der hauptsächlich im sichtbaren Wellenlängenbereich Aufnahmen von Sternen und Galaxien anfertigt. In seiner mittlerweile mehr als 15 jährigen Betriebszeit hat Hubble Tausende von sehr beeindruckenden Bildern unseres Universums geschossen und so manches Geheimnis zu lüften geholfen. Ursprünglich war gar nicht geplant, Hubble so lange einzusetzen, da ein Nachfolger ihn nach ca. 10 Jahren ablösen sollte. Hubble mit seinem Spiegelteleskop von etwa 2,4 Metern Durchmesser wurde schon mehrfach im All repariert und erweitert, was allerdings nach der Katastrophe der Columbia und einigen weiteren Rückschlägen der NASA stark vermindert wurde, da weitere Reparaturen zu kostenaufwändig wären. Deshalb wäre es nur noch eine Frage der Zeit, wann die Elektronik von Hubble endgültig ausfallen würde. Um das zu vermeiden, hat die NASA entschieden, 2009 Hubble noch einmal auf den neuesten Stand der Technik zu bringen, da sonst eines der wichtigsten Fernrohre für die Wissenschaft verloren wäre.

Soho[Bearbeiten]

Bilder der Sonne aufgenommen durch den Soho Satelliten
Lagrangepunkte des Erde-Sonne Systems

Soho ist ein Satellit, der 1,5 Millionen Kilometer von der Erde entfernt alle sechs Monate den Lagrangepunkt L1 zwischen der Erde und der Sonne umkreist. An diesem Punkt sind die Anziehungskräfte der Erde und der Sonne so gut wie aufgehoben, weshalb er sich dort mit sehr geringem Energieaufwand halten kann.

Soho untersucht täglich die Emissionen der Sonne mit verschiedenen Sensoren und sendet die Daten anschließend zur Erde. Dort werden die Daten zu Fotos umgewandelt und dann im Internet veröffentlicht. Die Sonne wird unter anderem im UV-Bereich fotografiert, womit die magnetischen Stürme innerhalb der Photosphäre der Sonne besonders gut zu beobachten sind.


Weblinks[Bearbeiten]

Teleskop- & Okularrechner