Aufzählende Angabe
a
∈
{
x
1
,
…
,
x
n
}
:⟺
a
=
x
1
∨
a
=
x
2
∨
…
∨
a
=
x
n
{\displaystyle a\in \{x_{1},\ldots ,x_{n}\}\;\;{:\Longleftrightarrow }\;\;a=x_{1}\lor a=x_{2}\lor \ldots \lor a=x_{n}}
Beschreibende Angabe, unbeschränkt
a
∈
{
x
∣
P
(
x
)
}
:⟺
P
(
a
)
{\displaystyle a\in \{x\mid P(x)\}\;\;{:\Longleftrightarrow }\;\;P(a)}
Beschreibende Angabe, beschränkt
{
x
∈
A
∣
P
(
x
)
}
:=
{
x
∣
x
∈
A
∧
P
(
x
)
}
{\displaystyle \{x\in A\mid P(x)\}:=\{x\mid x\in A\wedge P(x)\}}
Beschreibende Angabe, Kurzschreibweise für Bildmengen
{
f
(
x
)
∣
P
(
x
)
}
:=
{
y
∣
∃
x
(
y
=
f
(
x
)
∧
P
(
x
)
)
}
{\displaystyle \{f(x)\mid P(x)\}:=\{y\mid \exists x(y=f(x)\wedge P(x))\}}
Teilmenge
A
⊆
B
:⟺
∀
x
(
x
∈
A
⟹
x
∈
B
)
{\displaystyle A\subseteq B\;\;{:\Longleftrightarrow }\;\;\forall x\,(x\in A\implies x\in B)}
Gleichheit
A
=
B
:⟺
∀
x
(
x
∈
A
⟺
x
∈
B
)
{\displaystyle A=B\;\;{:\Longleftrightarrow }\;\;\forall x\,(x\in A\iff x\in B)}
Vereinigungsmenge
A
∪
B
:=
{
x
∣
x
∈
A
∨
x
∈
B
}
,
{\displaystyle A\cup B:=\{x\mid x\in A\lor x\in B\},}
⋃
i
∈
I
A
i
:=
{
x
∣
∃
i
∈
I
(
x
∈
A
i
)
}
{\displaystyle \bigcup _{i\in I}A_{i}:=\{x\mid \exists i{\in }I\,(x\in A_{i})\}}
Schnittmenge
A
∩
B
:=
{
x
∣
x
∈
A
∧
x
∈
B
}
,
{\displaystyle A\cap B:=\{x\mid x\in A\land x\in B\},}
⋂
i
∈
I
A
i
:=
{
x
∣
∀
i
∈
I
(
x
∈
A
i
)
}
{\displaystyle \bigcap _{i\in I}A_{i}:=\{x\mid \forall i{\in }I\,(x\in A_{i})\}}
Differenzmenge (relatives Komplement)
A
∖
B
:=
{
x
∣
x
∈
A
∧
x
∉
B
}
{\displaystyle A\setminus B:=\{x\mid x\in A\land x\notin B\}}
Komplementärmenge
A
¯
:=
G
∖
A
{\displaystyle {\overline {A}}:=G\setminus A}
G
{\displaystyle G}
: Grundmenge
Symmetrische Differenz
A
△
B
:=
{
x
∣
x
∈
A
⊕
x
∈
B
}
{\displaystyle A\triangle B:=\{x\mid x\in A\oplus x\in B\}}
Kartesisches Produkt
A
×
B
:=
{
(
x
,
y
)
∣
x
∈
A
∧
y
∈
B
}
{\displaystyle A\times B:=\{(x,y)\mid x\in A\land y\in B\}}
Potenzmenge
P
(
A
)
:=
{
U
∣
U
⊆
A
}
{\displaystyle {\mathcal {P}}(A):=\{U\mid U\subseteq A\}}
Disjunkte Vereinigung
A
⊔
B
:=
(
{
1
}
×
A
)
∪
(
{
2
}
×
B
)
,
{\displaystyle A\sqcup B:=(\{1\}\times A)\cup (\{2\}\times B),}
⨆
i
∈
I
A
i
:=
⋃
i
∈
I
(
{
i
}
×
A
i
)
{\displaystyle \bigsqcup _{i\in I}A_{i}:=\bigcup _{i\in I}\,(\{i\}\times A_{i})}
Schnitt
Vereinigung
A
∩
B
=
B
∩
A
{\displaystyle A\cap B=B\cap A}
A
∪
B
=
B
∪
A
{\displaystyle A\cup B=B\cup A}
Kommutativgesetze
A
∩
(
B
∩
C
)
=
(
A
∩
B
)
∩
C
{\displaystyle A\cap (B\cap C)=(A\cap B)\cap C}
A
∪
(
B
∪
C
)
=
(
A
∪
B
)
∪
C
{\displaystyle A\cup (B\cup C)=(A\cup B)\cup C}
Assoziativgesetze
A
∩
A
=
A
{\displaystyle A\cap A=A}
A
∪
A
=
A
{\displaystyle A\cup A=A}
Idempotenzgesetze
A
∩
G
=
A
{\displaystyle A\cap G=A}
A
∪
{
}
=
A
{\displaystyle A\cup \{\}=A}
Neutralitätsgesetze
A
∩
{
}
=
{
}
{\displaystyle A\cap \{\}=\{\}}
A
∪
G
=
G
{\displaystyle A\cup G=G}
Extremalgesetze
A
∩
A
¯
=
{
}
{\displaystyle A\cap {\overline {A}}=\{\}}
A
∪
A
¯
=
G
{\displaystyle A\cup {\overline {A}}=G}
Komplementärgesetze
A
∩
B
¯
=
A
¯
∪
B
¯
{\displaystyle {\overline {A\cap B}}={\overline {A}}\cup {\overline {B}}}
A
∪
B
¯
=
A
¯
∩
B
¯
{\displaystyle {\overline {A\cup B}}={\overline {A}}\cap {\overline {B}}}
De Morgansche Gesetze
A
∩
(
A
∪
B
)
=
A
{\displaystyle A\cap (A\cup B)=A}
A
∪
(
A
∩
B
)
=
A
{\displaystyle A\cup (A\cap B)=A}
Absorptionsgesetze
G
{\displaystyle G}
: Grundmenge
Distributivgesetze:
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
{\displaystyle A\cap (B\cup C)=(A\cap B)\cup (A\cap C)}
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
{\displaystyle A\cup (B\cap C)=(A\cup B)\cap (A\cup C)}
Involution:
A
¯
¯
=
A
{\displaystyle {\overline {\overline {A}}}=A}
A
B
Wert
0
0
a
0
1
b
1
0
c
1
1
d
Nr.
dcba
Mengenoperation
Venn-Diagramm
logische Funktion
Relation
0
0000
{
}
{\displaystyle \{\}}
(leere Menge)
0
{\displaystyle 0}
(Kontradiktion)
G
=
{
}
{\displaystyle G=\{\}}
1
0001
A
∪
B
¯
{\displaystyle {\overline {A\cup B}}}
A
∨
B
¯
{\displaystyle {\overline {A\lor B}}}
(NOR)
A
∪
B
=
{
}
{\displaystyle A\cup B=\{\}}
2
0010
B
∖
A
{\displaystyle B\setminus A}
B
∧
A
¯
{\displaystyle B\land {\overline {A}}}
B
∖
A
=
G
{\displaystyle B\setminus A=G}
3
0011
A
¯
{\displaystyle {\overline {A}}}
A
¯
{\displaystyle {\overline {A}}}
A
=
{
}
{\displaystyle A=\{\}}
4
0100
A
∖
B
{\displaystyle A\setminus B}
(Differenz)
A
∧
B
¯
{\displaystyle A\land {\overline {B}}}
A
∖
B
=
G
{\displaystyle A\setminus B=G}
5
0101
B
¯
{\displaystyle {\overline {B}}}
B
¯
{\displaystyle {\overline {B}}}
B
=
{
}
{\displaystyle B=\{\}}
6
0110
A
△
B
{\displaystyle A\triangle B}
(symmetrische Differenz)
A
⊕
B
{\displaystyle A\oplus B}
(Kontravalenz)
A
△
B
=
G
{\displaystyle A\triangle B=G}
7
0111
A
∩
B
¯
{\displaystyle {\overline {A\cap B}}}
A
∧
B
¯
{\displaystyle {\overline {A\land B}}}
(NAND)
A
∩
B
=
{
}
{\displaystyle A\cap B=\{\}}
8
1000
A
∩
B
{\displaystyle A\cap B}
(Schnitt)
A
∧
B
{\displaystyle A\land B}
(Konjunktion)
A
∩
B
=
G
{\displaystyle A\cap B=G}
9
1001
A
△
B
¯
{\displaystyle {\overline {A\triangle B}}}
A
⇔
B
{\displaystyle A\Leftrightarrow B}
(Äquivalenz)
A
=
B
{\displaystyle A=B}
10
1010
B
{\displaystyle B}
(Projektion)
B
{\displaystyle B}
(Projektion)
B
=
G
{\displaystyle B=G}
11
1011
A
¯
∪
B
{\displaystyle {\overline {A}}\cup B}
A
⇒
B
{\displaystyle A\Rightarrow B}
(Implikation)
A
⊆
B
{\displaystyle A\subseteq B}
12
1100
A
{\displaystyle A}
(Projektion)
A
{\displaystyle A}
(Projektion)
A
=
G
{\displaystyle A=G}
13
1101
B
¯
∪
A
{\displaystyle {\overline {B}}\cup A}
B
⇒
A
{\displaystyle B\Rightarrow A}
B
⊆
A
{\displaystyle B\subseteq A}
14
1110
A
∪
B
{\displaystyle A\cup B}
(Vereinigung)
A
∨
B
{\displaystyle A\lor B}
(Disjunktion)
A
∪
B
=
G
{\displaystyle A\cup B=G}
15
1111
G
{\displaystyle G}
(Grundmenge)
1
{\displaystyle 1}
(Tautologie)
1
{\displaystyle 1}
Die Spalten dieser Tabelle hängen wie folgt zusammen. Sei
k
∈
{
0
,
1
,
…
,
15
}
{\displaystyle k\in \{0,1,\ldots ,15\}}
die Nr. der Zeile. Es gibt je Zeile eine Mengenoperation
f
k
(
A
,
B
)
{\displaystyle f_{k}(A,B)}
, eine logische Funktion
L
k
(
A
,
B
)
{\displaystyle L_{k}(A,B)}
und eine Relation
R
k
(
A
,
B
)
{\displaystyle R_{k}(A,B)}
. Dabei gilt
f
k
(
A
,
B
)
=
{
x
∣
L
k
(
x
∈
A
,
x
∈
B
)
}
{\displaystyle f_{k}(A,B)=\{x\mid L_{k}(x\in A,x\in B)\}}
und
R
k
(
A
,
B
)
⟺
f
k
(
A
,
B
)
=
G
⟺
G
⊆
f
k
(
A
,
B
)
⟺
∀
x
∈
G
[
L
k
(
x
∈
A
,
x
∈
B
)
]
.
{\displaystyle R_{k}(A,B)\iff f_{k}(A,B)=G\iff G\subseteq f_{k}(A,B)\iff \forall x\in G\,[L_{k}(x\in A,x\in B)].}
Außerdem gilt
f
k
(
A
,
B
)
=
G
⟺
f
k
(
A
,
B
)
¯
=
{
}
.
{\displaystyle f_{k}(A,B)=G\iff {\overline {f_{k}(A,B)}}=\{\}.}
Die Binärzahl kodiert die Wertetabelle der logischen Funktion und kodiert außerdem die Partition von
G
{\displaystyle G}
in die disjunkten Bereiche
(
A
∩
B
,
A
∖
B
,
B
∖
A
,
A
∪
B
¯
)
.
{\displaystyle (A\cap B,\quad A\setminus B,\quad B\setminus A,\quad {\overline {A\cup B}}).}
Eine Stelle der Binärzahl gibt dabei an, ob der dazugehörige Bereich im Venn-Diagramm rot ausgefüllt ist.
Zerlegung der Gleichheit:
A
=
B
⟺
A
⊆
B
∧
B
⊆
A
{\displaystyle A=B\iff A\subseteq B\land B\subseteq A}
Umschreibung der Teilmengenrelation:
A
⊆
B
⟺
A
∩
B
=
A
⟺
A
∪
B
=
B
⟺
A
∖
B
=
{
}
{\displaystyle A\subseteq B\iff A\cap B=A\iff A\cup B=B\iff A\setminus B=\{\}}
Kontraposition:
A
⊆
B
⟺
B
¯
⊆
A
¯
{\displaystyle A\subseteq B\iff {\overline {B}}\subseteq {\overline {A}}}
Kontraposition bei Gleichheit:
A
=
B
⟺
A
¯
=
B
¯
{\displaystyle A=B\iff {\overline {A}}={\overline {B}}}
⋃
(
i
,
j
)
∈
I
×
J
(
A
i
∩
B
j
)
=
(
⋃
i
∈
I
A
i
)
∩
(
⋃
j
∈
J
B
j
)
{\displaystyle \bigcup _{(i,j)\in I\times J}(A_{i}\cap B_{j})={\bigg (}\bigcup _{i\in I}A_{i}{\bigg )}\cap {\bigg (}\bigcup _{j\in J}B_{j}{\bigg )}}
⋂
(
i
,
j
)
∈
I
×
J
(
A
i
∪
B
j
)
=
(
⋂
i
∈
I
A
i
)
∪
(
⋂
j
∈
J
B
j
)
{\displaystyle \bigcap _{(i,j)\in I\times J}(A_{i}\cup B_{j})={\bigg (}\bigcap _{i\in I}A_{i}{\bigg )}\cup {\bigg (}\bigcap _{j\in J}B_{j}{\bigg )}}
⋃
(
i
,
j
)
∈
I
×
J
(
A
i
×
B
j
)
=
(
⋃
i
∈
I
A
i
)
×
(
⋃
j
∈
J
B
j
)
{\displaystyle \bigcup _{(i,j)\in I\times J}(A_{i}\times B_{j})={\bigg (}\bigcup _{i\in I}A_{i}{\bigg )}\times {\bigg (}\bigcup _{j\in J}B_{j}{\bigg )}}
I
×
J
≠
{
}
⟹
⋃
(
i
,
j
)
∈
I
×
J
(
A
i
∪
B
j
)
=
(
⋃
i
∈
I
A
i
)
∪
(
⋃
j
∈
J
B
j
)
{\displaystyle I\times J\neq \{\}\implies \bigcup _{(i,j)\in I\times J}(A_{i}\cup B_{j})={\bigg (}\bigcup _{i\in I}A_{i}{\bigg )}\cup {\bigg (}\bigcup _{j\in J}B_{j}{\bigg )}}
I
×
J
≠
{
}
⟹
⋂
(
i
,
j
)
∈
I
×
J
(
A
i
∩
B
j
)
=
(
⋂
i
∈
I
A
i
)
∩
(
⋂
j
∈
J
B
j
)
{\displaystyle I\times J\neq \{\}\implies \bigcap _{(i,j)\in I\times J}(A_{i}\cap B_{j})={\bigg (}\bigcap _{i\in I}A_{i}{\bigg )}\cap {\bigg (}\bigcap _{j\in J}B_{j}{\bigg )}}
I
×
J
≠
{
}
⟹
⋂
(
i
,
j
)
∈
I
×
J
(
A
i
×
B
j
)
=
(
⋂
i
∈
I
A
i
)
×
(
⋂
j
∈
J
B
j
)
{\displaystyle I\times J\neq \{\}\implies \bigcap _{(i,j)\in I\times J}(A_{i}\times B_{j})={\bigg (}\bigcap _{i\in I}A_{i}{\bigg )}\times {\bigg (}\bigcap _{j\in J}B_{j}{\bigg )}}
⋃
(
i
,
j
)
∈
I
×
I
(
A
i
∪
B
j
)
=
⋃
i
∈
I
(
A
i
∪
B
i
)
{\displaystyle \bigcup _{(i,j)\in I\times I}(A_{i}\cup B_{j})=\bigcup _{i\in I}\,(A_{i}\cup B_{i})}
⋂
(
i
,
j
)
∈
I
×
I
(
A
i
∩
B
j
)
=
⋂
i
∈
I
(
A
i
∩
B
i
)
{\displaystyle \bigcap _{(i,j)\in I\times I}(A_{i}\cap B_{j})=\bigcap _{i\in I}\,(A_{i}\cap B_{i})}
⋃
i
∈
I
(
A
i
∪
B
i
)
=
(
⋃
i
∈
I
A
i
)
∪
(
⋃
i
∈
I
B
i
)
{\displaystyle \bigcup _{i\in I}\,(A_{i}\cup B_{i})={\bigg (}\bigcup _{i\in I}A_{i}{\bigg )}\cup {\bigg (}\bigcup _{i\in I}B_{i}{\bigg )}}
⋂
i
∈
I
(
A
i
∩
B
i
)
=
(
⋂
i
∈
I
A
i
)
∩
(
⋂
i
∈
I
B
i
)
{\displaystyle \bigcap _{i\in I}\,(A_{i}\cap B_{i})={\bigg (}\bigcap _{i\in I}A_{i}{\bigg )}\cap {\bigg (}\bigcap _{i\in I}B_{i}{\bigg )}}
⋃
(
i
,
j
)
∈
I
×
J
A
i
j
=
⋃
i
∈
I
⋃
j
∈
J
A
i
j
=
⋃
j
∈
J
⋃
i
∈
I
A
i
j
{\displaystyle \bigcup _{(i,j)\in I\times J}A_{ij}=\bigcup _{i\in I}\bigcup _{j\in J}A_{ij}=\bigcup _{j\in J}\bigcup _{i\in I}A_{ij}}
⋂
(
i
,
j
)
∈
I
×
J
A
i
j
=
⋂
i
∈
I
⋂
j
∈
J
A
i
j
=
⋂
j
∈
J
⋂
i
∈
I
A
i
j
{\displaystyle \bigcap _{(i,j)\in I\times J}A_{ij}=\bigcap _{i\in I}\bigcap _{j\in J}A_{ij}=\bigcap _{j\in J}\bigcap _{i\in I}A_{ij}}
⋃
i
∈
I
⋂
j
∈
J
A
i
j
⊆
⋂
j
∈
J
⋃
i
∈
I
A
i
j
{\displaystyle \bigcup _{i\in I}\bigcap _{j\in J}A_{ij}\subseteq \bigcap _{j\in J}\bigcup _{i\in I}A_{ij}}
Verallgemeinerte De Morgansche Gesetze:
⋃
i
∈
I
A
i
¯
=
⋂
i
∈
I
A
¯
i
{\displaystyle {\overline {\bigcup _{i\in I}A_{i}}}=\bigcap _{i\in I}{\overline {A}}_{i}}
⋂
i
∈
I
A
i
¯
=
⋃
i
∈
I
A
¯
i
{\displaystyle {\overline {\bigcap _{i\in I}A_{i}}}=\bigcup _{i\in I}{\overline {A}}_{i}}
Verallgemeinerte Distributivgesetze:
M
∩
⋃
i
∈
I
A
i
=
⋃
i
∈
I
(
M
∩
A
i
)
{\displaystyle M\cap \bigcup _{i\in I}A_{i}=\bigcup _{i\in I}\,(M\cap A_{i})}
M
∪
⋂
i
∈
I
A
i
=
⋂
i
∈
I
(
M
∪
A
i
)
{\displaystyle M\cup \bigcap _{i\in I}A_{i}=\bigcap _{i\in I}\,(M\cup A_{i})}
Verallgemeinerte Idempotenzgesetze:
I
≠
{
}
⟹
⋃
i
∈
I
A
=
A
{\displaystyle I\neq \{\}\implies \bigcup _{i\in I}A=A}
I
≠
{
}
⟹
⋂
i
∈
I
A
=
A
{\displaystyle I\neq \{\}\implies \bigcap _{i\in I}A=A}
A
∖
A
=
{
}
{\displaystyle A\setminus A=\{\}}
A
∖
{
}
=
A
{\displaystyle A\setminus \{\}=A}
{
}
∖
A
=
{
}
{\displaystyle \{\}\setminus A=\{\}}
(
A
∖
B
)
∖
C
=
A
∖
(
B
∪
C
)
{\displaystyle (A\setminus B)\setminus C=A\setminus (B\cup C)}
A
∖
(
B
∖
C
)
=
(
A
∖
B
)
∪
(
A
∩
C
)
{\displaystyle A\setminus (B\setminus C)=(A\setminus B)\cup (A\cap C)}
A
∖
(
A
∖
B
)
=
A
∩
B
{\displaystyle A\setminus (A\setminus B)=A\cap B}
(
A
∖
B
)
∩
M
=
(
A
∩
M
)
∖
B
=
A
∩
(
M
∖
B
)
{\displaystyle (A\setminus B)\cap M=(A\cap M)\setminus B=A\cap (M\setminus B)}
(
A
∖
B
)
∪
M
=
(
A
∪
M
)
∖
(
B
∖
M
)
{\displaystyle (A\setminus B)\cup M=(A\cup M)\setminus (B\setminus M)}
A
∖
B
=
A
∩
B
¯
{\displaystyle A\setminus B=A\cap {\overline {B}}}
A
∖
B
¯
=
A
¯
∪
B
{\displaystyle {\overline {A\setminus B}}={\overline {A}}\cup B}
(
A
∖
B
)
∪
(
A
∩
B
)
=
A
{\displaystyle (A\setminus B)\cup (A\cap B)=A}
(
A
∖
B
)
∩
(
A
∩
B
)
=
{
}
{\displaystyle (A\setminus B)\cap (A\cap B)=\{\}}
Distributivgesetze:
(
A
∪
B
)
∖
M
=
(
A
∖
M
)
∪
(
B
∖
M
)
{\displaystyle (A\cup B)\setminus M=(A\setminus M)\cup (B\setminus M)}
(
A
∩
B
)
∖
M
=
(
A
∖
M
)
∩
(
B
∖
M
)
{\displaystyle (A\cap B)\setminus M=(A\setminus M)\cap (B\setminus M)}
Pseudo-Distributivgesetze:
M
∖
(
A
∪
B
)
=
(
M
∖
A
)
∩
(
M
∖
B
)
{\displaystyle M\setminus (A\cup B)=(M\setminus A)\cap (M\setminus B)}
M
∖
(
A
∩
B
)
=
(
M
∖
A
)
∪
(
M
∖
B
)
{\displaystyle M\setminus (A\cap B)=(M\setminus A)\cup (M\setminus B)}
A
△
B
=
(
A
∪
B
)
∖
(
A
∩
B
)
{\displaystyle A\triangle B=(A\cup B)\setminus (A\cap B)}
A
△
B
=
(
A
∖
B
)
∪
(
B
∖
A
)
{\displaystyle A\triangle B=(A\setminus B)\cup (B\setminus A)}
A
△
B
=
B
△
A
{\displaystyle A\triangle B=B\triangle A}
(
A
△
B
)
△
C
=
A
△
(
B
△
C
)
{\displaystyle (A\triangle B)\triangle C=A\triangle (B\triangle C)}
A
△
{
}
=
A
{\displaystyle A\triangle \{\}=A}
A
△
A
=
{
}
{\displaystyle A\triangle A=\{\}}
A
△
B
¯
=
(
A
∩
B
)
∪
(
A
¯
∩
B
¯
)
=
(
A
¯
∪
B
)
∩
(
B
¯
∪
A
)
{\displaystyle {\overline {A\triangle B}}=(A\cap B)\cup ({\overline {A}}\cap {\overline {B}})=({\overline {A}}\cup B)\cap ({\overline {B}}\cup A)}
Distributivgesetz:
M
∩
(
A
△
B
)
=
(
M
∩
A
)
△
(
M
∩
B
)
{\displaystyle M\cap (A\triangle B)=(M\cap A)\triangle (M\cap B)}
Distributivgesetze:
M
×
(
A
∪
B
)
=
(
M
×
A
)
∪
(
M
×
B
)
{\displaystyle M\times (A\cup B)=(M\times A)\cup (M\times B)}
M
×
(
A
∩
B
)
=
(
M
×
A
)
∩
(
M
×
B
)
{\displaystyle M\times (A\cap B)=(M\times A)\cap (M\times B)}
M
×
(
A
∖
B
)
=
(
M
×
A
)
∖
(
M
×
B
)
{\displaystyle M\times (A\setminus B)=(M\times A)\setminus (M\times B)}
(
A
∪
B
)
×
M
=
(
A
×
M
)
∪
(
B
×
M
)
{\displaystyle (A\cup B)\times M=(A\times M)\cup (B\times M)}
(
A
∩
B
)
×
M
=
(
A
×
M
)
∩
(
B
×
M
)
{\displaystyle (A\cap B)\times M=(A\times M)\cap (B\times M)}
(
A
∖
B
)
×
M
=
(
A
×
M
)
∖
(
B
×
M
)
{\displaystyle (A\setminus B)\times M=(A\times M)\setminus (B\times M)}
Weiterhin gilt:
(
A
1
×
B
1
)
∩
(
A
2
×
B
2
)
=
(
A
1
∩
A
2
)
×
(
B
1
∩
B
2
)
{\displaystyle (A_{1}\times B_{1})\cap (A_{2}\times B_{2})=(A_{1}\cap A_{2})\times (B_{1}\cap B_{2})}
(
A
1
×
B
1
)
∪
(
A
2
×
B
2
)
⊆
(
A
1
∪
A
2
)
×
(
B
1
∪
B
2
)
{\displaystyle (A_{1}\times B_{1})\cup (A_{2}\times B_{2})\subseteq (A_{1}\cup A_{2})\times (B_{1}\cup B_{2})}
A
×
B
=
{
}
⟺
A
=
{
}
∨
B
=
{
}
{\displaystyle A\times B=\{\}\iff A=\{\}\lor B=\{\}}
A
⊆
B
⟹
|
A
|
≤
|
B
|
{\displaystyle A\subseteq B\implies |A|\leq |B|}
|
A
∪
B
|
≤
|
A
|
+
|
B
|
{\displaystyle |A\cup B|\leq |A|+|B|}
|
⋃
k
=
1
n
A
k
|
≤
∑
k
=
1
n
|
A
k
|
{\displaystyle {\Big |}\bigcup _{k=1}^{n}A_{k}{\Big |}\leq \sum _{k=1}^{n}|A_{k}|}
|
A
×
B
|
=
|
A
|
|
B
|
{\displaystyle |A\times B|=|A|\,|B|}
|
A
n
|
=
|
A
|
n
{\displaystyle |A^{n}|=|A|^{n}}
|
B
A
|
=
|
B
|
|
A
|
{\displaystyle |B^{A}|=|B|^{|A|}}
|
P
(
A
)
|
=
2
|
A
|
{\displaystyle |{\mathcal {P}}(A)|=2^{|A|}}
Prinzip von Inklusion und Exklusion:
|
A
∪
B
|
=
|
A
|
+
|
B
|
−
|
A
∩
B
|
{\displaystyle |A\cup B|=|A|+|B|-|A\cap B|}
|
A
∪
B
∪
C
|
=
|
A
|
+
|
B
|
+
|
C
|
−
|
A
∩
B
|
−
|
A
∩
C
|
−
|
B
∩
C
|
+
|
A
∩
B
∩
C
|
{\displaystyle |A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|}