Kartenprojektionen: Maple Sheet Hauptstreckungen
Maple Sheet Hauptverzerrungen |
---|
Parametergleichung links |
X:=vector([R*cos(U)*cos(V),R*sin(U)*cos(V),R*sin(V)]); |
Parametergleichung rechts |
x:=vector([v*cos(u),v*sin(u)]); |
Gaußsche Tangentenvektoren |
links |
XU:=vector([diff(X[1],U),diff(X[2],U),diff(X[3],U)]); |
XV:=vector([diff(X[1],V),diff(X[2],V),diff(X[3],V)]); |
rechts |
xu:=vector([diff(x[1],u),diff(x[2],u)]); |
xv:=vector([diff(x[1],v),diff(x[2],v)]); |
erste Metriktensoren |
links |
Gl:=matrix(2,2): |
Gl[1,1]:=simplify(dotprod(XU,XU,'orthogonal')): |
Gl[1,2]:=simplify(dotprod(XU,XV,'orthogonal')): |
Gl[2,1]:=Gl[1,2]: |
Gl[2,2]:=simplify(dotprod(XV,XV,'orthogonal')): |
print(Gl); |
rechts |
Gr:=matrix(2,2): |
Gr[1,1]:=simplify(dotprod(xu,xu,'orthogonal')): |
Gr[1,2]:=simplify(dotprod(xu,xv,'orthogonal')): |
Gr[2,1]:=Gl[1,2]: |
Gr[2,2]:=simplify(dotprod(xv,xv,'orthogonal')): |
print(Gr); |
Abbildungsgleichungen |
fu:=U; |
fv:=2*R*tan(Pi/4-V/2); |
Linke Jacobimatrix |
Jl:=matrix(2,2): |
Jl[1,1]:=simplify(diff(fu,U)): |
Jl[1,2]:=simplify(diff(fu,V)): |
Jl[2,1]:=simplify(diff(fv,U)): |
Jl[2,2]:=simplify(diff(fv,V)): |
print(Jl); |
Rechte Jacobimatrix incomplete! substitution muss angepasst werden. Besser isses, Jacobi so aufzustellen. |
#Jr:=inverse(Jl); |
#for i from 1 to 2 do |
#for j from 1 to 2 do |
#Gr[i,j]:=subs(v=2*R*tan(Pi/4-V/2),Gr[i,j]); |
#od; |
#od; |
Cauchy Green Tensor |
#for i from 1 to 2 do |
#for j from 1 to 2 do |
Gr[i,j]:=subs(v=2*R*tan(Pi/4-V/2),Gr[i,j]); |
#od; |
#od; |
print(Gr); |
Cl:=evalm(transpose(Jl)&*Gr&*Jl); |
Hauptverzerrungen (Eigenwerte) bezüglich links |
lambda[1]:=sqrt(1/2*(trace(evalm(Cl&*inverse(Gl))) + sqrt(trace(evalm(Cl&*inverse(Gl)))^2 - 4*det(evalm(Cl&*inverse(Gl)))))); |
lambda[2]:=sqrt(1/2*(trace(evalm(Cl&*inverse(Gl))) - sqrt(trace(evalm(Cl&*inverse(Gl)))^2 - 4*det(evalm(Cl&*inverse(Gl)))))); |
Eigenvektoren |
EV[1]:=simplify(vector([(Cl[2,2]-lambda[1]^2*Gl[2,2])/sqrt( (Cl[2,2]-lambda[1]^2*Gl[2,2])^2*Gl[1,1] - 2*(Cl[1,2]-lambda[1]^2*Gl[1,2])*(Cl[2,2]-lambda[1]^2*Gl[2,2])*Gl[1,2] + (Cl[1,2]-lambda[1]^2*Gl[1,2])^2*Gl[2,2] ) , -(Cl[1,2]-lambda[1]^2*Gl[1,2])/sqrt( (Cl[2,2]-lambda[1]^2*Gl[2,2])^2*Gl[1,1] - 2*(Cl[1,2]-lambda[1]^2*Gl[1,2])*(Cl[2,2]-lambda[1]^2*Gl[2,2])*Gl[1,2] + (Cl[1,2]-lambda[1]^2*Gl[1,2])^2*Gl[2,2] )])); |
EV[2]:=simplify(vector([-(Cl[1,2]-lambda[2]^2*Gl[1,2])/sqrt( (Cl[1,1]-lambda[2]^2*Gl[1,1])^2*Gl[2,2] - 2*(Cl[1,2]-lambda[2]^2*Gl[1,2])*(Cl[1,1]-lambda[2]^2*Gl[1,1])*Gl[1,2] + (Cl[1,2]-lambda[2]^2*Gl[1,2])^2*Gl[1,1] ), (Cl[1,1]-lambda[2]^2*Gl[1,1])/sqrt( (Cl[1,1]-lambda[2]^2*Gl[1,1])^2*Gl[2,2] - 2*(Cl[1,2]-lambda[2]^2*Gl[1,2])*(Cl[1,1]-lambda[2]^2*Gl[1,1])*Gl[1,2] + (Cl[1,2]-lambda[2]^2*Gl[1,2])^2*Gl[1,1] )])); |
Lade das Maple Sheet von http://www.wasdenktihr.de herunter! |