Zum Inhalt springen

Mathematik für Geodäten: Rotationen im Dreidimensionalen

Aus Wikibooks


Drehsinn

[Bearbeiten]

Im Dreidimensionalen lässt sich jede Rotation durch mehrere Rotationen um die Koordinatenachsen beschreiben. Dies kann je nach belieben rechts oder linksdrehend (siehe Zeichnung) erfolgen. Mit

  • rechtsdrehend
  • linksdrehend

ist

  • rechtsdrehend
  • linksdrehend

für positive Winkel gemeint!

Eine Matrix, die ein rechtsläufige Rotation beschreibt, kann durch w:transponieren in eine linksdrehende Rotationsmatrix verwandelt werden. Praktisch heisst das, man muss das Minuszeichen von dem einen Sinus zum anderen tun.

Drehmatrix

[Bearbeiten]
  • Rechtsdrehende Rotation mit x1-Achse als Drehachse:
,


  • Linksläufige Rotation mit x2-Achse als Drehachse:
,


  • Rechtssinnige Rotation mit x3-Achse als Drehachse: