Physik Oberstufe/ Quantenphysik/ Die Struktur des Atoms
Eine kleine Geschichte der Atommodelle
[Bearbeiten]Thomsonsche Atommodell (1903)
[Bearbeiten]Das Atom besteht aus gleichmäßig verteilter, positiv geladener Masse, in der sich die negativ geladenen Elektronen bewegen. Die negativ geladenen Elektronen sind die „Rosinen“ im positiv geladenen „Teig“.
Rutherfordsche Atommodell (um 1911)
[Bearbeiten]
Experiment: Man beschießt eine 0,5 μm dünne Goldfolie mit Alpha-Strahlung, d.h. -Kernen. |
Kritik
[Bearbeiten]- Stöße mit anderen Atomen verändern die Bahn der Elektronen, wie kann es stabil sein?
- Die kreisenden Elektronen müssten außerdem als Hertzscher Dipol eine elektromagnetische Welle abstrahlen und schließlich in den Kern stürzen.
Moderne Auffassung des Atoms
[Bearbeiten]Elektronen bewegen sich nicht auf Bahnen. Dieses Konzept der klassischen Physik müssen wir aufgeben. Stattdessen bilden sie stehende Materiewellen um den Kern. Es gibt nur bestimmte, diskrete Eigenzustände dieser stehenden Wellen, vergleichbar mit den Eigenschwingungen einer schwingenden Saite. Diese diskreten Eigenzustände werden Orbitale genannt.
Die Eigenzustände sind Lösungen der Schrödingergleichung:
Das halbklassische Bohrsche Atommodell ⚛ (1913)
[Bearbeiten]Weil die moderne quantenmechanische Behandlung des Wasserstoffatoms uns nicht zur Verfügung steht, betrachten wir das halbklassische Bohrsche Atommodell. Es ergänzt das klassische Rutherfordsche Modell um quantenmechanische Prinzipien. Viele mit dem Modell durchgeführte Berechnungen stimmen erstaunlicherweise mit den Ergebnissen einer korrekten modernen quantenmechanischen Berechnung überein.
Bohrs Idee
[Bearbeiten]Um das Problem des Rutherfordschen Modells, das in den Kern stürzende Elektron, auszuhebeln, erhob Bohr neben der klassischen Forderung des Kräftegleichgewichts im stationären Zustand eine zusätzliche Bedingung aus der Quantenwelt (siehe auch: Bohr'sche Postulate):
- Kräftegleichgewicht auf der Kreisbahn: Die Anziehungskraft des Kerns ist im Gleichgewicht mit der Zentripetalkraft .
- Erlaubt sind nur Kreisbahnen um den Atomkern, die geschlossene stehende Wellen mit der De-Brogli-Wellenlänge bilden.
Es müssen also folgende Gleichungen erfüllt sein:
Der Bohrsche Atomradius
[Bearbeiten]Wir berechnen den Radius des Wasserstoffatoms nach dem Bohrschen Atommodell.
Aus (2) folgt:
In (1) eingesetzt:
und nach umgestellt:
Quantenmechanisch wird zu den einzelnen stehenden Wellen (den Lösungen der Schrödingergleichung) der mittlere Radius berechnet (als „Erwartungswert des Radius“ bezeichnet). Bohr hatte Glück: Es ergibt sich die selbe Formel. Für den Grundzustand erhält man also für den Atomdurchmesser:
Gesamtenergie des Elektrons
[Bearbeiten]Welche Gesamtenergie hat das Elektron in der -ten Bahn?
Für gilt:
Die kinetische Energie wird mit (1) zu:
Die potentielle Energie im Coulomb-Feld des Kerns ist:
Zusammen erhält man:
Setzt man für das Ergebnis von oben ein, so ergibt sich:
Auch diese Formel stimmt mit dem Ergebnis einer quantenmechanischen Behandlung (Lösung der Schrödingergleichung) überein. Für den Grundzustand erhält man eine Gesamtenergie von .
Aufgabe: Prüfe die Einheiten der Formeln für und nach.
Das Termschema des Wasserstoffatoms
[Bearbeiten]Mit den berechneten Energien der Energieniveaus können wir ein Termschema erstellen. Um das Elektron vom Grundzustand aus zu ionisieren, benötigen wir eine Ionisierungsenergie von . Das Atom kann nur diskrete Energiezustände annehmen. Beim Wechsel der Zustände gibt es die freiwerdende Energie als Photon mit der Frequenz:
bzw. Wellenlänge:
ab.
Berechnung der Balmerfrequenzen
[Bearbeiten]Es ist:
Mit der Formel für :
mit der Rydbergkonstanten:
Aufgabe: Berechne einige Wellenlängen der Balmerserie und skizziere das zu beobachtende Emissions-Spektrum
Verallgemeinerung: Atome besitzen diskrete Energieniveaus. Diese lassen sich durch Termschemata darstellen. Beim Übergang zwischen Energieniveaus gibt das Atom die entsprechende Energie ab bzw. nimmt sie auf.
Experiment: Elektronen werden in einer mit Gas gefüllten Röhre mittels der regulierbaren Spannung in Richtung Gitter beschleunigt. Aufgrund ihrer kinetischen Energie laufen einige der Elektronen anschließend gegen die kleine Bremsspannung an und treffen auf die Auffangelektrode . Man misst mit einem empfindlichen Amperemeter den zugehörigen Strom. Beobachtung: Der Strom an der Auffangelektrode steigt an, allerdings periodisch moduliert. Der Abstand der Maxima beträgt immer . Erklärung: Mit ansteigender Spannung steigt die kinetische Energie der Elektronen. Bei reicht die Energie gerade aus, um Quecksilberatome anzuregen. Dabei geben die Elektronen ihre kinetische Energie ab (sie werden abgestoppt). Anschließend können sie die Bremsspannung nicht mehr überwinden, der Strom an der Auffangelektrode versiegt. Bei kann jedes Elektron auf dem Weg zum Gitter zwei Quecksilberatome anregen. |