Exercise (Proof of identities)
Show that
cosh
2
(
x
)
−
sinh
2
(
x
)
=
1
{\displaystyle \cosh ^{2}(x)-\sinh ^{2}(x)=1}
arccos
(
x
)
+
arcsin
(
x
)
=
π
2
{\displaystyle \arccos(x)+\arcsin(x)={\frac {\pi }{2}}}
for all
x
∈
(
−
1
,
1
)
{\displaystyle x\in (-1,1)}
Proof (Proof of identities)
Part 1: The function
f
:
R
→
R
,
f
(
x
)
=
cosh
2
(
x
)
−
sinh
2
(
x
)
{\displaystyle f:\mathbb {R} \to \mathbb {R} ,\ f(x)=\cosh ^{2}(x)-\sinh ^{2}(x)}
is differentiable by the chain- and difference rule with
f
′
(
x
)
=
2
cosh
(
x
)
sinh
(
x
)
−
2
sinh
(
x
)
cosh
(
x
)
=
0
{\displaystyle f'(x)=2\cosh(x)\sinh(x)-2\sinh(x)\cosh(x)=0}
So
f
≡
c
{\displaystyle f\equiv c}
is constant. Since further there is
f
(
0
)
=
cosh
(
0
)
−
sinh
(
0
)
=
1
−
0
=
1
{\displaystyle f(0)=\cosh(0)-\sinh(0)=1-0=1}
we have
f
(
x
)
=
cosh
2
(
x
)
−
sinh
2
(
x
)
=
c
=
1
{\displaystyle f(x)=\cosh ^{2}(x)-\sinh ^{2}(x)=c=1}
.
Part 2:
g
:
(
−
1
,
1
)
→
R
,
g
(
x
)
=
arcsin
(
x
)
+
arccos
(
x
)
{\displaystyle g:(-1,1)\to \mathbb {R} ,\ g(x)=\arcsin(x)+\arccos(x)}
is differentiable according to the sum rule, since the arcus-functions are differentiable. Further there is
g
′
(
x
)
=
1
1
−
x
2
−
1
1
−
x
2
=
0
{\displaystyle g'(x)={\frac {1}{\sqrt {1-x^{2}}}}-{\frac {1}{\sqrt {1-x^{2}}}}=0}
Hence
g
≡
c
{\displaystyle g\equiv c}
is constant. Further there is
f
(
0
)
=
arcsin
(
0
)
+
arccos
(
0
)
=
0
+
π
2
=
π
2
{\displaystyle f(0)=\arcsin(0)+\arccos(0)=0+{\frac {\pi }{2}}={\frac {\pi }{2}}}
since
sin
(
0
)
=
0
{\displaystyle \sin(0)=0}
and
cos
(
π
2
)
=
0
{\displaystyle \cos({\tfrac {\pi }{2}})=0}
. So
c
=
π
2
{\displaystyle c={\tfrac {\pi }{2}}}
establishing the assertion.
Proof (Logarithm representations of
arcosh
{\displaystyle {\text{arcosh}}}
and
artanh
{\displaystyle {\text{artanh}}}
)
Part 1:
The function
f
=
arcosh
:
(
1
,
∞
)
→
R
{\displaystyle f={\text{arcosh}}:(1,\infty )\to \mathbb {R} }
is differentiable, see examples for derivatives , with
arcosh
′
(
x
)
=
1
x
2
−
1
{\displaystyle {\text{arcosh}}'(x)={\frac {1}{\sqrt {x^{2}-1}}}}
By the chain- and sum rule also
g
:
(
1
,
∞
)
→
R
,
g
(
x
)
=
ln
(
x
+
x
2
−
1
)
{\displaystyle g:(1,\infty )\to \mathbb {R} ,\ g(x)=\ln \left(x+{\sqrt {x^{2}-1}}\right)}
is differentiable with
g
′
(
x
)
=
1
x
+
x
2
−
1
⋅
(
1
+
2
x
2
x
2
−
1
)
=
1
x
+
x
2
−
1
⋅
(
x
2
−
1
+
x
x
2
−
1
)
=
1
x
2
−
1
{\displaystyle g'(x)={\frac {1}{x+{\sqrt {x^{2}-1}}}}\cdot \left(1+{\frac {2x}{2{\sqrt {x^{2}-1}}}}\right)={\frac {1}{x+{\sqrt {x^{2}-1}}}}\cdot \left({\frac {{\sqrt {x^{2}-1}}+x}{\sqrt {x^{2}-1}}}\right)={\frac {1}{\sqrt {x^{2}-1}}}}
So we get
f
(
x
)
=
g
(
x
)
+
c
{\displaystyle f(x)=g(x)+c}
. But now,
f
(
1
)
=
arcosh
(
1
)
=
0
{\displaystyle f(1)={\text{arcosh}}(1)=0}
since
cosh
(
0
)
=
1
{\displaystyle \cosh(0)=1}
, and there is
g
(
1
)
=
ln
(
1
)
=
0
{\displaystyle g(1)=\ln(1)=0}
So
c
=
0
{\displaystyle c=0}
, and hence
f
=
g
{\displaystyle f=g}
.
Part 2:
f
=
artanh
:
(
−
1
,
1
)
→
R
{\displaystyle f={\text{artanh}}:(-1,1)\to \mathbb {R} }
is differentiable, as well, with
artanh
′
(
x
)
=
1
1
−
x
2
{\displaystyle {\text{artanh}}'(x)={\frac {1}{1-x^{2}}}}
By the factor-, chain- and quotient rule, also
g
:
(
−
1
,
1
)
→
R
,
g
(
x
)
=
1
2
ln
(
x
+
1
x
−
1
)
{\displaystyle g:(-1,1)\to \mathbb {R} ,\ g(x)={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)}
is differentiable with
g
′
(
x
)
=
1
2
1
x
+
1
x
−
1
⋅
1
⋅
(
x
−
1
)
−
(
x
+
1
)
⋅
1
(
x
−
1
)
2
=
1
2
x
−
1
x
+
1
⋅
−
2
(
x
−
1
)
2
=
−
1
x
2
−
1
=
1
1
−
x
2
{\displaystyle g'(x)={\frac {1}{2}}{\frac {1}{\frac {x+1}{x-1}}}\cdot {\frac {1\cdot (x-1)-(x+1)\cdot 1}{(x-1)^{2}}}={\frac {1}{2}}{\frac {x-1}{x+1}}\cdot {\frac {-2}{(x-1)^{2}}}={\frac {-1}{x^{2}-1}}={\frac {1}{1-x^{2}}}}
So we have
f
(
x
)
=
g
(
x
)
+
c
{\displaystyle f(x)=g(x)+c}
. Since
f
(
0
)
=
artanh
(
0
)
=
0
{\displaystyle f(0)={\text{artanh}}(0)=0}
by
tanh
(
0
)
=
0
{\displaystyle \tanh(0)=0}
, as well as
g
(
0
)
=
ln
(
1
)
=
0
{\displaystyle g(0)=\ln(1)=0}
there is again
c
=
0
{\displaystyle c=0}
, and hence
f
=
g
{\displaystyle f=g}
.
Proof (General solution of a differential equation)
Part 1: There is
f
′
(
x
)
=
a
ω
cos
(
ω
x
)
−
b
ω
(
−
sin
(
ω
x
)
)
=
ω
(
a
cos
(
ω
x
)
+
b
sin
(
ω
x
)
)
=
ω
g
(
x
)
{\displaystyle f'(x)=a\omega \cos(\omega x)-b\omega (-\sin(\omega x))=\omega (a\cos(\omega x)+b\sin(\omega x))=\omega g(x)}
and
g
′
(
x
)
=
a
ω
(
−
sin
(
ω
x
)
)
+
b
ω
cos
(
ω
x
)
=
−
ω
(
a
sin
(
ω
x
)
−
b
cos
(
ω
x
)
)
=
−
ω
f
(
x
)
{\displaystyle g'(x)=a\omega (-\sin(\omega x))+b\omega \cos(\omega x)=-\omega (a\sin(\omega x)-b\cos(\omega x))=-\omega f(x)}
So
f
{\displaystyle f}
and
g
{\displaystyle g}
satisfy the differential equations.
Part 2: We define (as given in the hint) the auxiliary functions
h
1
:
R
→
R
,
h
1
(
x
)
=
f
(
x
)
sin
(
ω
x
)
+
g
(
x
)
cos
(
ω
x
)
h
2
:
R
→
R
,
h
2
(
x
)
=
f
(
x
)
cos
(
ω
x
)
−
g
(
x
)
sin
(
ω
x
)
{\displaystyle {\begin{aligned}h_{1}:\mathbb {R} \to \mathbb {R} ,\ h_{1}(x)&=f(x)\sin(\omega x)+g(x)\cos(\omega x)\\h_{2}:\mathbb {R} \to \mathbb {R} ,\ h_{2}(x)&=f(x)\cos(\omega x)-g(x)\sin(\omega x)\end{aligned}}}
These are differentiable by the product-, sum- and difference rule with
h
1
′
(
x
)
=
f
′
(
x
)
⏟
=
ω
g
(
x
)
sin
(
ω
x
)
+
f
(
x
)
ω
cos
(
ω
x
)
+
g
′
(
x
)
⏟
=
−
ω
f
(
x
)
cos
(
ω
x
)
−
g
(
x
)
ω
sin
(
ω
x
)
=
ω
g
(
x
)
sin
(
ω
x
)
+
ω
f
(
x
)
cos
(
ω
x
)
−
ω
f
(
x
)
cos
(
ω
x
)
−
ω
g
(
x
)
sin
(
ω
x
)
=
0
{\displaystyle {\begin{aligned}h_{1}'(x)&=\underbrace {f'(x)} _{=\omega g(x)}\sin(\omega x)+f(x)\omega \cos(\omega x)+\underbrace {g'(x)} _{=-\omega f(x)}\cos(\omega x)-g(x)\omega \sin(\omega x)\\&=\omega g(x)\sin(\omega x)+\omega f(x)\cos(\omega x)-\omega f(x)\cos(\omega x)-\omega g(x)\sin(\omega x)\\&=0\end{aligned}}}
and
h
2
′
(
x
)
=
f
′
(
x
)
⏟
=
ω
g
(
x
)
cos
(
ω
x
)
−
f
(
x
)
ω
sin
(
ω
x
)
−
g
′
(
x
)
⏟
=
−
ω
f
(
x
)
sin
(
ω
x
)
−
g
(
x
)
ω
cos
(
ω
x
)
=
ω
g
(
x
)
cos
(
ω
x
)
−
ω
f
(
x
)
sin
(
ω
x
)
+
ω
f
(
x
)
sin
(
ω
x
)
−
ω
g
(
x
)
cos
(
ω
x
)
=
0
{\displaystyle {\begin{aligned}h_{2}'(x)&=\underbrace {f'(x)} _{=\omega g(x)}\cos(\omega x)-f(x)\omega \sin(\omega x)-\underbrace {g'(x)} _{=-\omega f(x)}\sin(\omega x)-g(x)\omega \cos(\omega x)\\&=\omega g(x)\cos(\omega x)-\omega f(x)\sin(\omega x)+\omega f(x)\sin(\omega x)-\omega g(x)\cos(\omega x)\\&=0\end{aligned}}}
by the criterion for constancy, there is now
h
1
(
x
)
=
f
(
x
)
sin
(
ω
x
)
+
g
(
x
)
cos
(
ω
x
)
=
a
h
2
(
x
)
=
f
(
x
)
cos
(
ω
x
)
−
g
(
x
)
sin
(
ω
x
)
=
b
{\displaystyle {\begin{aligned}h_{1}(x)&=f(x)\sin(\omega x)+g(x)\cos(\omega x)=a\\h_{2}(x)&=f(x)\cos(\omega x)-g(x)\sin(\omega x)=b\end{aligned}}}
with
a
,
b
∈
R
{\displaystyle a,b\in \mathbb {R} }
. Further there is
sin
(
ω
x
)
h
1
(
x
)
+
cos
(
ω
x
)
h
2
(
x
)
=
sin
(
ω
x
)
[
f
(
x
)
sin
(
ω
x
)
+
g
(
x
)
cos
(
ω
x
)
]
+
cos
(
ω
x
)
[
f
(
x
)
cos
(
ω
x
)
−
g
(
x
)
sin
(
ω
x
)
]
=
a
sin
(
ω
x
)
+
b
cos
(
ω
x
)
⟺
f
(
x
)
sin
2
(
ω
x
)
+
g
(
x
)
sin
(
ω
x
)
cos
(
ω
x
)
+
f
(
x
)
cos
2
(
ω
x
)
−
g
(
x
)
sin
(
ω
x
)
cos
(
ω
x
)
=
a
sin
(
ω
x
)
+
b
cos
(
ω
x
)
⟺
f
(
x
)
(
sin
2
(
ω
x
)
+
cos
2
(
ω
x
)
)
⏟
=
1
=
a
sin
(
ω
x
)
+
b
cos
(
ω
x
)
cos
(
ω
x
)
h
1
(
x
)
−
sin
(
ω
x
)
h
2
(
x
)
=
cos
(
ω
x
)
[
f
(
x
)
sin
(
ω
x
)
+
g
(
x
)
cos
(
ω
x
)
]
−
sin
(
ω
x
)
[
f
(
x
)
cos
(
ω
x
)
−
g
(
x
)
sin
(
ω
x
)
]
=
a
cos
(
ω
x
)
−
b
sin
(
ω
x
)
⟺
f
(
x
)
sin
(
ω
x
)
cos
(
ω
x
)
+
g
(
x
)
cos
2
(
ω
x
)
−
f
(
x
)
sin
(
ω
x
)
cos
(
ω
x
)
+
g
(
x
)
sin
2
(
ω
x
)
=
a
cos
(
ω
x
)
−
b
sin
(
ω
x
)
⟺
g
(
x
)
(
cos
2
(
ω
x
)
+
sin
2
(
ω
x
)
)
⏟
=
1
=
a
cos
(
ω
x
)
−
b
sin
(
ω
x
)
{\displaystyle {\begin{aligned}\sin(\omega x)h_{1}(x)+\cos(\omega x)h_{2}(x)&=\sin(\omega x)[f(x)\sin(\omega x)+g(x)\cos(\omega x)]+\cos(\omega x)[f(x)\cos(\omega x)-g(x)\sin(\omega x)]=a\sin(\omega x)+b\cos(\omega x)\\\iff &f(x)\sin ^{2}(\omega x)+g(x)\sin(\omega x)\cos(\omega x)+f(x)\cos ^{2}(\omega x)-g(x)\sin(\omega x)\cos(\omega x)=a\sin(\omega x)+b\cos(\omega x)\\\iff &f(x)\underbrace {(\sin ^{2}(\omega x)+\cos ^{2}(\omega x))} _{=1}=a\sin(\omega x)+b\cos(\omega x)\\&\\\cos(\omega x)h_{1}(x)-\sin(\omega x)h_{2}(x)&=\cos(\omega x)[f(x)\sin(\omega x)+g(x)\cos(\omega x)]-\sin(\omega x)[f(x)\cos(\omega x)-g(x)\sin(\omega x)]=a\cos(\omega x)-b\sin(\omega x)\\\iff &f(x)\sin(\omega x)\cos(\omega x)+g(x)\cos ^{2}(\omega x)-f(x)\sin(\omega x)\cos(\omega x)+g(x)\sin ^{2}(\omega x)=a\cos(\omega x)-b\sin(\omega x)\\\iff &g(x)\underbrace {(\cos ^{2}(\omega x)+\sin ^{2}(\omega x))} _{=1}=a\cos(\omega x)-b\sin(\omega x)\end{aligned}}}
So
f
(
x
)
=
a
sin
(
ω
x
)
+
b
cos
(
ω
x
)
{\displaystyle f(x)=a\sin(\omega x)+b\cos(\omega x)}
and
g
(
x
)
=
a
cos
(
ω
x
)
−
b
sin
(
ω
x
)
{\displaystyle g(x)=a\cos(\omega x)-b\sin(\omega x)}
.
Part 3: If further
ω
=
1
{\displaystyle \omega =1}
and
f
(
0
)
=
a
sin
(
0
)
+
b
cos
(
0
)
=
a
⋅
0
+
b
⋅
1
=
b
=
0
g
(
0
)
=
a
cos
(
0
)
−
b
sin
(
0
)
=
a
⋅
1
−
b
⋅
0
=
a
=
1
{\displaystyle {\begin{aligned}f(0)&=a\sin(0)+b\cos(0)=a\cdot 0+b\cdot 1=b=0\\g(0)&=a\cos(0)-b\sin(0)=a\cdot 1-b\cdot 0=a=1\end{aligned}}}
then
f
(
x
)
=
1
⋅
sin
(
x
)
+
0
⋅
cos
(
x
)
=
sin
(
x
)
g
(
x
)
=
1
⋅
cos
(
x
)
−
0
⋅
sin
(
x
)
=
cos
(
x
)
{\displaystyle {\begin{aligned}f(x)&=1\cdot \sin(x)+0\cdot \cos(x)=\sin(x)\\g(x)&=1\cdot \cos(x)-0\cdot \sin(x)=\cos(x)\end{aligned}}}
Exercise (Monotony of the exponential function)
Show using the monotony criterion that:
For all
x
>
0
{\displaystyle x>0}
there is
ln
(
1
+
1
x
)
−
1
x
+
1
>
0
{\displaystyle \ln(1+{\tfrac {1}{x}})-{\tfrac {1}{x+1}}>0}
f
:
R
+
→
R
,
f
(
x
)
=
(
1
+
1
x
)
x
{\displaystyle f:\mathbb {R} ^{+}\to \mathbb {R} ,\ f(x)=\left(1+{\tfrac {1}{x}}\right)^{x}}
is strictly monotonously increasing.
Hint: use 1. in order to prove 2.
Exercise (Condition for monotonicity of a cubic function)
Let
a
,
b
,
c
,
d
∈
R
{\displaystyle a,b,c,d\in \mathbb {R} }
. Provide a condition for
a
,
b
,
c
,
d
{\displaystyle a,b,c,d}
such that
f
:
R
→
R
,
f
(
x
)
=
a
x
3
+
b
x
2
+
c
x
+
d
{\displaystyle f:\mathbb {R} \to \mathbb {R} ,\ f(x)=ax^{3}+bx^{2}+cx+d}
is strictly monotonously increasing on all of
R
{\displaystyle \mathbb {R} }
.
Solution (Condition for monotonicity of a cubic function)
For
f
{\displaystyle f}
being strictly monotonously increasing on all of
R
{\displaystyle \mathbb {R} }
, we need by the monotony criterion that
f
′
(
x
)
=
3
a
x
2
+
2
b
x
+
c
>
0
{\displaystyle f'(x)=3ax^{2}+2bx+c>0}
holds for all
x
∈
R
{\displaystyle x\in \mathbb {R} }
.
Fall 1:
a
=
0
{\displaystyle a=0}
Fall 2:
a
>
0
{\displaystyle a>0}
Fall 3:
x
>
0
{\displaystyle x>0}
Here, we have
f
′
(
x
)
>
0
⟺
3
a
(
x
+
b
3
a
)
2
>
b
2
−
3
a
c
3
a
⟺
3
a
<
0
(
x
+
b
3
a
)
2
<
b
2
−
3
a
c
(
3
a
)
2
{\displaystyle {\begin{aligned}f'(x)>0\iff &3a(x+{\tfrac {b}{3a}})^{2}>{\tfrac {b^{2}-3ac}{3a}}\\{\overset {3a<0}{\iff }}&(x+{\tfrac {b}{3a}})^{2}<{\tfrac {b^{2}-3ac}{(3a)^{2}}}\end{aligned}}}
However, this is never fulfilled for all
x
∈
R
{\displaystyle x\in \mathbb {R} }
. So in this case
f
{\displaystyle f}
is never strictly monotonous increasing.
Hint: Consider the auxiliary function
h
(
x
)
=
f
(
x
)
e
−
λ
x
{\displaystyle h(x)=f(x)e^{-\lambda x}}
.
Proof (Applying the monotony criterion)
As stated in the hint we consider
h
:
[
0
,
1
]
→
R
,
h
(
x
)
=
f
(
x
)
e
−
λ
x
{\displaystyle h:[0,1]\to \mathbb {R} ,\ h(x)=f(x)e^{-\lambda x}}
h
{\displaystyle h}
is differentiable according to the product rule with
h
′
(
x
)
=
f
′
(
x
)
e
−
λ
x
+
f
(
x
)
e
−
λ
x
(
−
λ
)
=
e
−
λ
x
(
f
′
(
x
)
−
λ
f
(
x
)
)
{\displaystyle h'(x)=f'(x)e^{-\lambda x}+f(x)e^{-\lambda x}(-\lambda )=e^{-\lambda x}(f'(x)-\lambda f(x))}
But now
e
−
λ
x
>
0
{\displaystyle e^{-\lambda x}>0}
and by assumption
f
′
(
x
)
≤
λ
f
(
x
)
⟺
f
′
(
x
)
−
λ
f
(
x
)
≤
0
{\displaystyle f'(x)\leq \lambda f(x)\iff f'(x)-\lambda f(x)\leq 0}
. So there is
h
′
(
x
)
≤
0
{\displaystyle h'(x)\leq 0}
for all
x
∈
[
0
,
1
]
{\displaystyle x\in [0,1]}
by the monotony criterion,
h
{\displaystyle h}
is monotonously decreasing. Since further there is
h
(
0
)
=
f
(
0
)
e
0
=
f
(
0
)
=
0
{\displaystyle h(0)=f(0)e^{0}=f(0)=0}
we have
h
(
x
)
≤
h
(
0
)
=
0
{\displaystyle h(x)\leq h(0)=0}
for all
x
∈
[
0
,
1
]
{\displaystyle x\in [0,1]}
Therefore, we also have
f
(
x
)
=
h
(
x
)
⏟
≤
0
e
λ
x
⏟
>
0
≤
0
{\displaystyle f(x)=\underbrace {h(x)} _{\leq 0}\underbrace {e^{\lambda x}} _{>0}\leq 0}
for all
x
∈
[
0
,
1
]
{\displaystyle x\in [0,1]}
Exercise (Extrema of functions 1)
Investigate whether the following functions have local/global extrema. Determine and characterise these if they exist.
f
:
(
0
,
∞
)
→
R
,
f
(
x
)
=
(
ln
(
x
)
)
2
x
{\displaystyle f:(0,\infty )\to \mathbb {R} ,\ f(x)={\tfrac {(\ln(x))^{2}}{x}}}
g
:
[
1
2
,
∞
)
→
R
,
g
(
x
)
=
1
arctan
(
2
x
)
{\displaystyle g:[{\tfrac {1}{2}},\infty )\to \mathbb {R} ,\ g(x)={\tfrac {1}{\arctan(2x)}}}
Solution (Extrema of functions 1)
Part 1:
Part 1: Local extrema of
f
{\displaystyle f}
f
{\displaystyle f}
is differentiable on
(
0
,
∞
)
{\displaystyle (0,\infty )}
according to the quotient rule with
f
′
(
x
)
=
2
ln
(
x
)
1
x
⋅
x
−
(
ln
(
x
)
)
2
⋅
1
x
2
=
ln
(
x
)
(
2
−
ln
(
x
)
)
x
2
{\displaystyle f'(x)={\frac {2\ln(x){\frac {1}{x}}\cdot x-(\ln(x))^{2}\cdot 1}{x^{2}}}={\frac {\ln(x)(2-\ln(x))}{x^{2}}}}
According to the sufficient criterion for the existence of an extremum
x
~
∈
R
+
{\displaystyle {\tilde {x}}\in \mathbb {R} ^{+}}
, there must be
f
′
(
x
~
)
=
0
{\displaystyle f'({\tilde {x}})=0}
. Now
f
′
(
x
)
=
ln
(
x
)
(
2
−
ln
(
x
)
)
x
2
=
0
⟺
ln
(
x
)
=
0
or
ln
(
x
)
=
2
⟺
x
=
1
or
x
=
e
2
{\displaystyle f'(x)={\frac {\ln(x)(2-\ln(x))}{x^{2}}}=0\iff \ln(x)=0{\text{ or }}\ln(x)=2\iff x=1{\text{ or }}x=e^{2}}
So
x
~
=
1
{\displaystyle {\tilde {x}}=1}
and
x
^
=
e
2
{\displaystyle {\hat {x}}=e^{2}}
are the candidates for local extrema in
(
0
,
∞
)
{\displaystyle (0,\infty )}
. Now there is
f
(
x
)
=
ln
(
x
)
(
2
−
ln
(
x
)
)
x
2
>
0
⟺
ln
(
x
)
>
0
and
2
−
ln
(
x
)
>
0
⟺
x
>
1
and
x
<
e
2
{\displaystyle f(x)={\frac {\ln(x)(2-\ln(x))}{x^{2}}}>0\iff \ln(x)>0{\text{ and }}2-\ln(x)>0\iff x>1{\text{ and }}x<e^{2}}
The case
ln
(
x
)
<
0
⟺
x
<
1
{\displaystyle \ln(x)<0\iff x<1}
and
2
−
ln
(
x
)
<
0
⟺
x
>
e
2
{\displaystyle 2-\ln(x)<0\iff x>e^{2}}
is not possible. Thus
f
′
(
x
)
>
0
{\displaystyle f'(x)>0}
holds on
(
1
,
e
2
)
{\displaystyle (1,e^{2})}
.
Further there is
f
(
x
)
=
ln
(
x
)
(
2
−
ln
(
x
)
)
x
2
<
0
⟺
{
ln
(
x
)
>
0
and
2
−
ln
(
x
)
<
0
⟺
x
>
1
and
x
>
e
2
⟺
x
>
e
2
,
or
ln
(
x
)
<
0
and
2
−
ln
(
x
)
>
0
⟺
x
<
1
and
x
<
e
2
⟺
x
<
1
{\displaystyle f(x)={\frac {\ln(x)(2-\ln(x))}{x^{2}}}<0\iff {\begin{cases}\ln(x)>0{\text{ and }}2-\ln(x)<0\iff x>1{\text{ and }}x>e^{2}\iff x>e^{2},&{\text{ or }}\\\ln(x)<0{\text{ and }}2-\ln(x)>0\iff x<1{\text{ and }}x<e^{2}\iff x<1&\end{cases}}}
So
f
′
(
x
)
<
0
{\displaystyle f'(x)<0}
holds on
(
0
,
1
)
{\displaystyle (0,1)}
and on
(
e
2
,
∞
)
{\displaystyle (e^{2},\infty )}
.
By the sufficient criterion,
x
~
=
1
{\displaystyle {\tilde {x}}=1}
is a (strict) local minimum and
x
^
=
e
2
{\displaystyle {\hat {x}}=e^{2}}
is a (strict) local maximum of
f
{\displaystyle f}
.
Part 2: Global extrema of
f
{\displaystyle f}
Part 2:
Part 1: Local extrema of
g
{\displaystyle g}
g
{\displaystyle g}
is differentiable on
(
1
2
,
∞
)
{\displaystyle ({\tfrac {1}{2}},\infty )}
by the chain rule with
Graph of the function
g
{\displaystyle g}
g
′
(
x
)
=
−
1
(
arctan
(
2
x
)
)
2
⋅
1
1
+
(
2
x
)
2
⋅
2
=
−
2
(
arctan
(
2
x
)
)
2
(
1
+
4
x
2
)
)
{\displaystyle g'(x)={\frac {-1}{(\arctan(2x))^{2}}}\cdot {\frac {1}{1+(2x)^{2}}}\cdot 2=-{\frac {2}{(\arctan(2x))^{2}(1+4x^{2}))}}}
Since now
(
arctan
(
2
x
)
)
2
>
0
{\displaystyle (\arctan(2x))^{2}>0}
and
1
+
4
x
2
>
0
{\displaystyle 1+4x^{2}>0}
there is,
g
′
(
x
)
<
0
{\displaystyle g'(x)<0}
. By the necessary criterion for extrema,
g
{\displaystyle g}
has no local extrema on
(
1
2
,
∞
)
{\displaystyle ({\tfrac {1}{2}},\infty )}
.
Since
g
{\displaystyle g}
is continuous on
[
1
2
,
∞
)
{\displaystyle [{\tfrac {1}{2}},\infty )}
, it follows from
g
′
(
x
)
<
0
{\displaystyle g'(x)<0}
for all
x
∈
(
1
2
,
∞
)
{\displaystyle x\in ({\tfrac {1}{2}},\infty )}
that
g
{\displaystyle g}
is strictly monotonously decreasing on
[
1
2
,
∞
)
{\displaystyle [{\tfrac {1}{2}},\infty )}
. Therefore
g
{\displaystyle g}
has a local maximum at
x
~
=
1
2
{\displaystyle {\tilde {x}}={\tfrac {1}{2}}}
.
Part 2: Global extrema of
g
{\displaystyle g}
Using the same argument as in part 1, it follows that
x
~
=
1
2
{\displaystyle {\tilde {x}}={\tfrac {1}{2}}}
is even a global maximum of
g
{\displaystyle g}
.
Exercise (Extrema of functions 2)
Investigate whether the following functions are continuous, differentiability and/or have local/global extrema:
f
:
R
→
R
,
f
(
x
)
=
{
x
x
for
x
>
0
,
x
+
1
for
x
≤
0
{\displaystyle f:\mathbb {R} \to \mathbb {R} ,\ f(x)={\begin{cases}x^{x}&{\text{ for }}x>0,\\x+1&{\text{ for }}x\leq 0\end{cases}}}
Solution (Extrema of functions 2)
Part 1: continuity and differentiability
Continuity:
On
(
−
∞
,
0
)
{\displaystyle (-\infty ,0)}
the function
f
(
x
)
=
x
+
1
{\displaystyle f(x)=x+1}
is continuous as a polynomial. The function
f
(
x
)
=
x
x
=
exp
(
x
ln
(
x
)
)
{\displaystyle f(x)=x^{x}=\exp(x\ln(x))}
is continuous on
(
0
,
∞
)
{\displaystyle (0,\infty )}
as a composition of the continuous functions
exp
{\displaystyle \exp }
,
id
{\displaystyle {\text{id}}}
and
ln
{\displaystyle \ln }
. At
x
=
0
{\displaystyle x=0}
there is
lim
x
→
0
−
f
(
x
)
=
lim
x
→
0
−
x
+
1
=
0
+
1
=
1
,
and
f
(
0
)
=
0
+
1
=
1
{\displaystyle {\begin{aligned}\lim _{x\to 0-}f(x)&=\lim _{x\to 0-}x+1=0+1=1,{\text{ and }}\\[0.3em]f(0)&=0+1=1\end{aligned}}}
In addition, since
lim
x
→
0
+
x
ln
(
x
)
=
0
{\displaystyle \lim _{x\to 0+}x\ln(x)=0}
and by continuity of the exponential function
lim
x
→
0
+
f
(
x
)
=
lim
x
→
0
+
x
x
=
lim
x
→
0
+
exp
(
x
ln
(
x
)
)
=
exp
(
lim
x
→
0
+
x
ln
(
x
)
)
=
exp
(
0
)
=
1
{\displaystyle \lim _{x\to 0+}f(x)=\lim _{x\to 0+}x^{x}=\lim _{x\to 0+}\exp(x\ln(x))=\exp(\lim _{x\to 0+}x\ln(x))=\exp(0)=1}
So
f
{\displaystyle f}
is continuous at zero and hence on all of
R
{\displaystyle \mathbb {R} }
.
Differentiability:
On
(
−
∞
,
0
)
{\displaystyle (-\infty ,0)}
the function
f
(
x
)
=
x
+
1
{\displaystyle f(x)=x+1}
is differentiable as a polynomial, with
f
′
(
x
)
=
1
{\displaystyle f'(x)=1}
On
(
0
,
∞
)
{\displaystyle (0,\infty )}
the function
f
(
x
)
=
x
x
=
exp
(
x
ln
(
x
)
)
{\displaystyle f(x)=x^{x}=\exp(x\ln(x))}
is differentiable by the chain- and product rule as it is a composition of differentiable functions
exp
{\displaystyle \exp }
,
id
{\displaystyle {\text{id}}}
and
ln
{\displaystyle \ln }
. There is
f
′
(
x
)
=
exp
(
x
ln
(
x
)
)
⋅
(
1
⋅
ln
(
x
)
+
x
⋅
1
x
)
=
x
x
(
ln
(
x
)
+
1
)
{\displaystyle f'(x)=\exp(x\ln(x))\cdot (1\cdot \ln(x)+x\cdot {\frac {1}{x}})=x^{x}(\ln(x)+1)}
At
x
=
0
{\displaystyle x=0}
there is, according to L'Hospital's rule,
lim
x
→
0
+
f
(
x
)
−
f
(
0
)
x
−
0
=
lim
x
→
0
+
x
x
−
1
x
=
0
0
l.H.
lim
x
→
0
+
x
x
(
ln
(
x
)
+
1
)
1
=
−
∞
1
−
∞
{\displaystyle \lim _{x\to 0+}{\frac {f(x)-f(0)}{x-0}}=\lim _{x\to 0+}{\frac {x^{x}-1}{x}}{\underset {\text{l.H.}}{\overset {\frac {0}{0}}{=}}}\lim _{x\to 0+}{\frac {x^{x}(\ln(x)+1)}{1}}{\overset {\frac {-\infty }{1}}{=}}-\infty }
So
f
{\displaystyle f}
is not differentiable at zero.
Part 2: Local and global extrema
Local extrema:
On
(
−
∞
,
0
)
{\displaystyle (-\infty ,0)}
there is
f
′
(
x
)
=
1
≠
0
{\displaystyle f'(x)=1\neq 0}
. So
f
{\displaystyle f}
cannot have local extrema there.
On
(
0
,
∞
)
{\displaystyle (0,\infty )}
however
f
′
(
x
)
=
x
x
(
ln
(
x
)
+
1
)
=
exp
(
x
ln
(
x
)
)
⏟
≠
0
(
ln
(
x
)
+
1
)
=
0
⟺
ln
(
x
)
=
−
1
⟺
x
=
e
−
1
=
1
e
{\displaystyle f'(x)=x^{x}(\ln(x)+1)=\underbrace {\exp(x\ln(x))} _{\neq 0}(\ln(x)+1)=0\iff \ln(x)=-1\iff x=e^{-1}={\frac {1}{e}}}
So
x
~
=
1
e
{\displaystyle {\tilde {x}}={\tfrac {1}{e}}}
is a candidate for a possible extremum. Further
f
′
(
x
)
=
x
x
⏟
>
0
(
ln
(
x
)
+
1
)
{
>
0
⟺
ln
(
x
)
+
1
>
0
⟺
ln
(
x
)
>
−
1
⟺
x
>
1
e
,
<
0
⟺
ln
(
x
)
+
1
<
0
⟺
ln
(
x
)
<
−
1
⟺
x
<
1
e
{\displaystyle f'(x)=\underbrace {x^{x}} _{>0}(\ln(x)+1){\begin{cases}>0\iff \ln(x)+1>0\iff \ln(x)>-1\iff x>{\tfrac {1}{e}},\\<0\iff \ln(x)+1<0\iff \ln(x)<-1\iff x<{\tfrac {1}{e}}\end{cases}}}
So
f
{\displaystyle f}
has a strict local minimum in
x
~
=
1
e
{\displaystyle {\tilde {x}}={\tfrac {1}{e}}}
.
Now we still have to examine
x
^
=
0
{\displaystyle {\hat {x}}=0}
. Since
f
{\displaystyle f}
is not differentiable there, our necessary and sufficient criteria are not applicable. However, there is
f
′
(
x
)
=
1
>
0
{\displaystyle f'(x)=1>0}
for all
x
∈
(
−
∞
,
0
)
{\displaystyle x\in (-\infty ,0)}
and
f
′
(
x
)
=
x
x
(
ln
(
x
)
+
1
)
<
0
{\displaystyle f'(x)=x^{x}(\ln(x)+1)<0}
for all
x
∈
(
0
,
1
e
)
{\displaystyle x\in (0,{\tfrac {1}{e}})}
Thus
f
{\displaystyle f}
is strictly monotonously increasing on
(
−
∞
,
0
)
{\displaystyle (-\infty ,0)}
, and strictly monotonously decreasing on
(
0
,
1
e
)
{\displaystyle (0,{\tfrac {1}{e}})}
. Since
f
{\displaystyle f}
is continuous at zero, it follows that
f
(
0
)
>
f
(
x
)
{\displaystyle f(0)>f(x)}
for all
x
∈
(
−
1
e
,
1
e
)
∖
{
0
}
{\displaystyle x\in (-{\tfrac {1}{e}},{\tfrac {1}{e}})\setminus \{0\}}
So
f
{\displaystyle f}
has a strict local maximum in
x
^
=
0
{\displaystyle {\hat {x}}=0}
.
Global extrema:
There is
Graph of the function
f
{\displaystyle f}
lim
x
→
−
∞
f
(
x
)
=
lim
x
→
−
∞
x
+
1
=
−
∞
{\displaystyle \lim _{x\to -\infty }f(x)=\lim _{x\to -\infty }x+1=-\infty }
and
lim
x
→
∞
f
(
x
)
=
lim
x
→
∞
x
x
=
lim
x
→
∞
exp
(
x
ln
(
x
)
⏟
→
∞
)
=
∞
{\displaystyle \lim _{x\to \infty }f(x)=\lim _{x\to \infty }x^{x}=\lim _{x\to \infty }\exp(\underbrace {x\ln(x)} _{\to \infty })=\infty }
Therefore
f
{\displaystyle f}
is unbounded from above and below, and has no global extrema.
Exercise (Extrema of functions 3)
Show that the function
f
:
R
+
→
R
,
f
(
x
)
=
e
3
x
ln
(
x
)
{\displaystyle f:\mathbb {R} ^{+}\to \mathbb {R} ,\ f(x)=e^{3x}\ln(x)}
has exactly two local extrema, and determine their type.
Solution (Extrema of functions 3)
Candidates for the extreme values are obtained from our necessary condition
f
′
(
x
)
=
Prod.-
rule
3
e
3
x
ln
(
x
)
+
e
3
x
1
x
=
3
e
3
x
x
⏟
>
0
(
x
ln
(
x
)
+
1
3
⏟
:=
h
(
x
)
)
=
!
0
{\displaystyle f'(x){\underset {\text{rule}}{\overset {\text{Prod.-}}{=}}}3e^{3x}\ln(x)+e^{3x}{\frac {1}{x}}=\underbrace {\frac {3e^{3x}}{x}} _{>0}(\underbrace {x\ln(x)+{\frac {1}{3}}} _{:=h(x)}){\overset {!}{=}}0}
Graph of the auxiliary function
h
{\displaystyle h}
Since the zeros of
h
{\displaystyle h}
cannot be calculated explicitly, we need to examine this function more closely. There is
h
′
(
x
)
=
ln
(
x
)
+
1
{
>
0
⟺
x
>
1
e
,
<
0
⟺
x
<
1
e
{\displaystyle h'(x)=\ln(x)+1{\begin{cases}>0\iff x>{\tfrac {1}{e}},\\<0\iff x<{\tfrac {1}{e}}\end{cases}}}
lim
x
→
0
h
(
x
)
=
1
3
{\displaystyle \lim \limits _{x\to 0}h(x)={\frac {1}{3}}}
,
lim
x
→
∞
h
(
x
)
=
∞
{\displaystyle \lim \limits _{x\to \infty }h(x)=\infty }
and
h
(
1
e
)
=
−
1
e
⏟
<
−
1
3
+
1
3
<
0
{\displaystyle h({\tfrac {1}{e}})=\underbrace {-{\tfrac {1}{e}}} _{<-{\tfrac {1}{3}}}+{\tfrac {1}{3}}<0}
Because of continuity and 2.
h
{\displaystyle h}
with the intermediate value theorem has (at least) two zeros
x
1
∈
(
0
,
1
e
)
{\displaystyle x_{1}\in (0,{\tfrac {1}{e}})}
and
x
2
∈
(
1
e
,
∞
)
{\displaystyle x_{2}\in ({\tfrac {1}{e}},\infty )}
.
Because of 1., the function
h
{\displaystyle h}
is strictly monotonously increasing on
(
0
,
1
e
)
{\displaystyle (0,{\tfrac {1}{e}})}
and strictly monotonously decreasing on
(
1
e
,
∞
)
{\displaystyle ({\tfrac {1}{e}},\infty )}
. Thus
h
{\displaystyle h}
is respectively injective on
(
0
,
1
e
)
{\displaystyle (0,{\tfrac {1}{e}})}
and
(
1
e
,
∞
)
{\displaystyle ({\tfrac {1}{e}},\infty )}
and thus has exactly the two zeros
x
1
{\displaystyle x_{1}}
and
x
2
{\displaystyle x_{2}}
.
For the derivative of
f
{\displaystyle f}
we now have
f
′
(
x
)
=
3
e
3
x
x
⋅
h
(
x
)
{
>
0
for
x
∈
(
0
,
x
1
)
∪
(
x
2
,
∞
)
,
<
0
for
x
∈
(
x
1
,
x
2
)
.
{\displaystyle f'(x)={\frac {3e^{3x}}{x}}\cdot h(x)\ {\begin{cases}>0&{\text{ for }}x\in (0,x_{1})\cup (x_{2},\infty ),\\<0&{\text{ for }}x\in (x_{1},x_{2}).\end{cases}}}
According to our first sufficient criterion,
f
{\displaystyle f}
has a strict local maximum at
x
1
{\displaystyle x_{1}}
and a strict local minimum at
x
2
{\displaystyle x_{2}}
.
Solution (L'Hospital 1)
Part 1:
lim
x
→
0
sinh
(
x
)
x
=
0
0
L.H.
lim
x
→
0
cosh
(
x
)
1
=
cosh
(
0
)
1
=
1
1
=
1
{\displaystyle \lim _{x\to 0}{\frac {\sinh(x)}{x}}\ {\underset {\text{L.H.}}{\overset {\frac {0}{0}}{=}}}\ \lim _{x\to 0}{\frac {\cosh(x)}{1}}={\frac {\cosh(0)}{1}}={\frac {1}{1}}=1}
Part 2:
L'Hospital's rule is not applicable here. However, the function
x
↦
sin
(
x
)
x
{\displaystyle x\mapsto {\tfrac {\sin(x)}{x}}}
is continuous at the point
x
=
π
2
{\displaystyle x={\tfrac {\pi }{2}}}
, and therefore there is
lim
x
→
π
2
sin
(
x
)
x
2
=
sin
(
π
2
)
(
π
2
)
2
=
1
π
2
4
=
4
π
2
{\displaystyle \lim _{x\to {\frac {\pi }{2}}}{\frac {\sin(x)}{x^{2}}}={\frac {\sin({\tfrac {\pi }{2}})}{\left({\tfrac {\pi }{2}}\right)^{2}}}={\frac {1}{\frac {\pi ^{2}}{4}}}={\frac {4}{\pi ^{2}}}}
Part 3:
lim
x
→
0
+
sin
(
x
)
x
2
=
0
0
L.H.
lim
x
→
0
+
cos
(
x
)
⏞
→
cos
(
0
)
=
1
2
x
=
1
0
+
+
∞
{\displaystyle \lim _{x\to 0+}{\frac {\sin(x)}{x^{2}}}\ {\underset {\text{L.H.}}{\overset {\frac {0}{0}}{=}}}\ \lim _{x\to 0+}{\frac {\overbrace {\cos(x)} ^{\to \cos(0)=1}}{2x}}{\overset {\frac {1}{0+}}{=}}+\infty }
Part 4:
This limit value does not exist. First it can be decomposed into
lim
x
→
0
sinh
(
x
)
x
2
=
lim
x
→
0
sinh
(
x
)
x
⋅
1
x
{\displaystyle \lim _{x\to 0}{\frac {\sinh(x)}{x^{2}}}=\lim _{x\to 0}{\frac {\sinh(x)}{x}}\cdot {\frac {1}{x}}}
For the left-hand limit there is now with Part 1:
lim
x
→
0
−
sinh
(
x
)
x
⏟
→
1
⋅
1
x
⏟
→
−
∞
=
−
∞
{\displaystyle \lim _{x\to 0-}\underbrace {\frac {\sinh(x)}{x}} _{\to 1}\cdot \underbrace {\frac {1}{x}} _{\to -\infty }=-\infty }
Analogously, however, for the right-hand limit:
lim
x
→
0
+
sinh
(
x
)
x
⏟
→
1
⋅
1
x
⏟
→
+
∞
=
+
∞
{\displaystyle \lim _{x\to 0+}\underbrace {\frac {\sinh(x)}{x}} _{\to 1}\cdot \underbrace {\frac {1}{x}} _{\to +\infty }=+\infty }
So
lim
x
→
0
−
sinh
(
x
)
x
2
≠
lim
x
→
0
+
sinh
(
x
)
x
2
{\displaystyle \lim \limits _{x\to 0-}{\frac {\sinh(x)}{x^{2}}}\neq \lim \limits _{x\to 0+}{\frac {\sinh(x)}{x^{2}}}}
, and hence
lim
x
→
0
sinh
(
x
)
x
2
{\displaystyle \lim _{x\to 0}{\frac {\sinh(x)}{x^{2}}}}
does not exist.
Part 5:
lim
x
→
∞
ln
(
x
p
+
1
)
ln
(
x
q
)
=
∞
∞
L.H.
lim
x
→
∞
p
x
p
−
1
x
p
+
1
q
x
q
−
1
x
q
=
lim
x
→
∞
p
x
q
x
p
−
1
q
x
q
−
1
(
x
p
+
1
)
=
lim
x
→
∞
p
x
q
−
1
x
p
q
x
q
−
1
(
x
p
+
1
)
=
lim
x
→
∞
p
q
⋅
x
p
x
p
+
1
=
|
:
x
p
|
:
x
p
lim
x
→
∞
p
q
⋅
1
1
+
1
x
p
⏟
→
0
=
p
q
{\displaystyle \lim _{x\to \infty }{\frac {\ln(x^{p}+1)}{\ln(x^{q})}}\ {\underset {\text{L.H.}}{\overset {\frac {\infty }{\infty }}{=}}}\ \lim _{x\to \infty }{\dfrac {\dfrac {px^{p-1}}{x^{p}+1}}{\dfrac {qx^{q-1}}{x^{q}}}}=\lim _{x\to \infty }{\dfrac {px^{q}x^{p-1}}{qx^{q-1}(x^{p}+1)}}=\lim _{x\to \infty }{\dfrac {px^{q-1}x^{p}}{qx^{q-1}(x^{p}+1)}}=\lim _{x\to \infty }{\frac {p}{q}}\cdot {\dfrac {x^{p}}{x^{p}+1}}\ {\underset {|:x^{p}}{\overset {|:x^{p}}{=}}}\ \lim _{x\to \infty }{\frac {p}{q}}\cdot {\dfrac {1}{1+\underbrace {\frac {1}{x^{p}}} _{\to 0}}}={\frac {p}{q}}}
Part 6:
L'Hospital can be applied here, but it is useless:
lim
x
→
∞
sinh
(
x
)
cosh
(
x
)
=
∞
∞
L.H.
lim
x
→
∞
cosh
(
x
)
sinh
(
x
)
=
∞
∞
L.H.
lim
x
→
∞
sinh
(
x
)
cosh
(
x
)
=
…
{\displaystyle \lim _{x\to \infty }{\frac {\sinh(x)}{\cosh(x)}}\ {\underset {\text{L.H.}}{\overset {\frac {\infty }{\infty }}{=}}}\ \lim _{x\to \infty }{\frac {\cosh(x)}{\sinh(x)}}\ {\underset {\text{L.H.}}{\overset {\frac {\infty }{\infty }}{=}}}\ \lim _{x\to \infty }{\dfrac {\sinh(x)}{\cosh(x)}}=\ldots }
Instead, it makes sense to use the definitions of
sinh
{\displaystyle \sinh }
and
cosh
{\displaystyle \cosh }
, and then transform the quotient:
lim
x
→
∞
sinh
(
x
)
cosh
(
x
)
=
Def.
lim
x
→
∞
e
x
−
e
−
x
2
e
x
+
e
−
x
2
=
lim
x
→
∞
2
(
e
x
−
e
−
x
)
2
(
e
x
+
e
−
x
)
=
lim
x
→
∞
e
x
−
e
−
x
e
x
+
e
−
x
=
|
:
e
x
|
:
e
x
lim
x
→
∞
1
−
e
−
2
x
⏞
→
0
1
+
e
−
2
x
⏟
→
0
=
1
−
0
1
+
0
=
1
{\displaystyle \lim _{x\to \infty }{\frac {\sinh(x)}{\cosh(x)}}\ {\overset {\text{Def.}}{=}}\ \lim _{x\to \infty }{\dfrac {\frac {e^{x}-e^{-x}}{2}}{\frac {e^{x}+e^{-x}}{2}}}=\lim _{x\to \infty }{\dfrac {2(e^{x}-e^{-x})}{2(e^{x}+e^{-x})}}=\lim _{x\to \infty }{\dfrac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}\ {\underset {|:e^{x}}{\overset {|:e^{x}}{=}}}\ \lim _{x\to \infty }{\dfrac {1-\overbrace {e^{-2x}} ^{\to 0}}{1+\underbrace {e^{-2x}} _{\to 0}}}={\frac {1-0}{1+0}}=1}
Part 7:
L'Hospital cannot be applied here because the enumerator
1
−
cos
(
x
)
{\displaystyle 1-\cos(x)}
for
x
→
∞
{\displaystyle x\to \infty }
diverges (improperly). Instead, the fraction can be estimated as follows:
0
≤
|
1
−
cos
(
x
)
x
2
|
=
|
1
−
cos
(
x
)
|
x
2
=
triangle
inequality
1
+
|
cos
(
x
)
|
⏞
≤
1
x
2
≤
2
x
2
→
x
→
∞
0
{\displaystyle 0\leq \left|{\frac {1-\cos(x)}{x^{2}}}\right|={\frac {|1-\cos(x)|}{x^{2}}}{\underset {\text{inequality}}{\overset {\text{triangle}}{=}}}{\frac {1+\overbrace {|\cos(x)|} ^{\leq 1}}{x^{2}}}\leq {\frac {2}{x^{2}}}{\overset {x\to \infty }{\to }}0}
Using the squeeze theorem, it follows
lim
x
→
∞
1
−
cos
(
x
)
x
2
=
0
{\displaystyle \lim _{x\to \infty }{\frac {1-\cos(x)}{x^{2}}}=0}
.
Part 8:
lim
x
→
0
x
3
−
x
2
tan
(
x
)
=
0
0
L.H.
lim
x
→
0
3
x
2
−
2
x
1
+
tan
(
x
)
2
=
3
⋅
0
2
−
2
⋅
0
1
+
tan
(
0
)
2
=
0
1
+
0
=
0
{\displaystyle \lim _{x\to 0}{\frac {x^{3}-x^{2}}{\tan(x)}}\ {\underset {\text{L.H.}}{\overset {\frac {0}{0}}{=}}}\ \lim _{x\to 0}{\frac {3x^{2}-2x}{1+\tan(x)^{2}}}={\frac {3\cdot 0^{2}-2\cdot 0}{1+\tan(0)^{2}}}={\frac {0}{1+0}}=0}
Part 9:
lim
x
→
0
3
x
−
2
x
tan
(
x
)
=
0
0
L.H.
lim
x
→
0
3
x
ln
(
3
)
−
2
x
ln
(
2
)
1
+
tan
(
x
)
2
=
3
0
ln
(
3
)
−
2
0
ln
(
2
)
1
+
tan
(
0
)
2
=
ln
(
3
)
−
ln
(
2
)
1
+
0
=
ln
(
3
2
)
{\displaystyle \lim _{x\to 0}{\frac {3^{x}-2^{x}}{\tan(x)}}\ {\underset {\text{L.H.}}{\overset {\frac {0}{0}}{=}}}\ \lim _{x\to 0}{\frac {3^{x}\ln(3)-2^{x}\ln(2)}{1+\tan(x)^{2}}}={\frac {3^{0}\ln(3)-2^{0}\ln(2)}{1+\tan(0)^{2}}}={\frac {\ln(3)-\ln(2)}{1+0}}=\ln \left({\tfrac {3}{2}}\right)}
Part 10:
lim
x
→
0
e
x
−
1
−
x
x
(
e
x
−
1
)
=
0
0
L.H.
lim
x
→
0
e
x
−
1
1
⋅
(
e
x
−
1
)
+
x
e
x
=
0
0
L.H.
e
x
e
x
+
e
x
+
x
e
x
=
e
0
e
0
+
e
0
+
0
=
1
2
{\displaystyle \lim _{x\to 0}{\frac {e^{x}-1-x}{x(e^{x}-1)}}\ {\underset {\text{L.H.}}{\overset {\frac {0}{0}}{=}}}\ \lim _{x\to 0}{\frac {e^{x}-1}{1\cdot (e^{x}-1)+xe^{x}}}\ {\underset {\text{L.H.}}{\overset {\frac {0}{0}}{=}}}\ {\frac {e^{x}}{e^{x}+e^{x}+xe^{x}}}={\frac {e^{0}}{e^{0}+e^{0}+0}}={\frac {1}{2}}}
Solution (L'Hospital 2)
Part 1:
lim
x
→
0
+
x
2
ln
(
x
2
)
=
lim
x
→
0
x
2
⋅
2
ln
(
x
)
=
lim
x
→
0
+
2
ln
(
x
)
1
x
2
↓
lim
x
→
0
+
2
ln
(
x
)
=
−
∞
and
lim
x
→
0
+
1
x
2
=
∞
→
L'Hospital
=
lim
x
→
0
+
(
2
ln
(
x
)
)
′
(
1
x
2
)
′
=
lim
x
→
0
+
2
x
−
2
x
3
=
lim
x
→
0
+
−
2
x
3
2
x
=
lim
x
→
0
+
(
−
x
2
)
=
0
{\displaystyle {\begin{aligned}\lim _{x\to 0+}x^{2}\ln(x^{2})&=\lim _{x\to 0}x^{2}\cdot 2\ln(x)\\[0.3em]&=\lim _{x\to 0+}{\frac {2\ln(x)}{\frac {1}{x^{2}}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0+}2\ln(x)=-\infty {\text{ and }}\lim _{x\to 0+}{\frac {1}{x^{2}}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0+}{\frac {\left(2\ln(x)\right)'}{\left({\frac {1}{x^{2}}}\right)'}}\\[0.3em]&=\lim _{x\to 0+}{\frac {\frac {2}{x}}{-{\frac {2}{x^{3}}}}}\\[0.3em]&=\lim _{x\to 0+}{\frac {-2x^{3}}{2x}}\\[0.3em]&=\lim _{x\to 0+}(-x^{2})\\[0.3em]&=0\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
Part 2:
lim
x
→
0
+
x
2
ln
(
x
)
2
=
lim
x
→
0
+
ln
(
x
)
2
1
x
2
↓
lim
x
→
0
+
ln
(
x
)
2
=
∞
and
lim
x
→
0
+
1
x
2
=
∞
→
L'Hospital
=
lim
x
→
0
+
(
ln
(
x
)
2
)
′
(
1
x
2
)
′
=
lim
x
→
0
+
2
ln
(
x
)
⋅
1
x
−
2
x
3
=
lim
x
→
0
+
−
2
x
3
ln
(
x
)
2
x
=
lim
x
→
0
+
−
x
2
ln
(
x
)
=
lim
x
→
0
+
−
ln
(
x
)
1
x
2
↓
lim
x
→
0
+
−
ln
(
x
)
=
∞
and
lim
x
→
0
+
1
x
2
=
∞
→
L'Hospital
=
lim
x
→
0
+
−
1
x
−
2
x
3
=
lim
x
→
0
+
(
1
2
x
2
)
=
0
{\displaystyle {\begin{aligned}\lim _{x\to 0+}x^{2}\ln(x)^{2}&=\lim _{x\to 0+}{\frac {\ln(x)^{2}}{\frac {1}{x^{2}}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0+}\ln(x)^{2}=\infty {\text{ and }}\lim _{x\to 0+}{\frac {1}{x^{2}}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0+}{\frac {\left(\ln(x)^{2}\right)'}{\left({\frac {1}{x^{2}}}\right)'}}\\[0.3em]&=\lim _{x\to 0+}{\frac {2\ln(x)\cdot {\frac {1}{x}}}{-{\frac {2}{x^{3}}}}}\\[0.3em]&=\lim _{x\to 0+}{\frac {-2x^{3}\ln(x)}{2x}}\\[0.3em]&=\lim _{x\to 0+}-x^{2}\ln(x)\\[0.3em]&=\lim _{x\to 0+}{\frac {-\ln(x)}{\frac {1}{x^{2}}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0+}-\ln(x)=\infty {\text{ and }}\lim _{x\to 0+}{\frac {1}{x^{2}}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0+}{\frac {-{\frac {1}{x}}}{-{\frac {2}{x^{3}}}}}\\[0.3em]&=\lim _{x\to 0+}({\frac {1}{2}}x^{2})\\[0.3em]&=0\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
Part 3:
lim
x
→
0
+
x
α
ln
(
x
)
k
=
0
⋅
(
±
∞
)
lim
x
→
0
ln
(
x
)
k
1
x
α
↓
lim
x
→
0
+
ln
(
x
)
k
=
±
∞
and
lim
x
→
0
+
1
x
α
=
∞
→
L'Hospital
=
lim
x
→
0
+
k
⋅
ln
(
x
)
k
−
1
⋅
1
x
−
α
1
x
α
+
1
=
lim
x
→
0
+
k
⋅
ln
(
x
)
k
−
1
−
α
x
α
↓
lim
x
→
0
+
k
⋅
ln
(
x
)
k
−
1
=
±
∞
and
lim
x
→
0
+
−
α
x
α
=
∞
→
L'Hospital
=
lim
x
→
0
+
k
(
k
−
1
)
⋅
ln
(
x
)
k
−
2
⋅
1
x
−
α
⋅
(
−
α
)
x
α
+
1
=
lim
x
→
0
+
k
(
k
−
1
)
⋅
ln
(
x
)
k
−
2
(
−
1
)
2
α
2
x
α
↓
lim
x
→
0
+
k
(
k
−
1
)
⋅
ln
(
x
)
k
−
2
=
±
∞
and
lim
x
→
0
+
(
−
1
)
2
α
2
x
α
=
∞
→
L'Hospital further
(
k
−
2
)
times
=
lim
x
→
0
+
k
(
k
−
1
)
⋅
2
⋅
1
⋅
ln
(
x
)
0
(
−
1
)
k
α
k
x
α
=
lim
x
→
0
+
k
!
⋅
1
(
−
1
)
k
α
k
x
α
↓
k
!
=
constant and
lim
x
→
0
+
(
−
1
)
k
α
k
x
α
=
∞
=
0
{\displaystyle {\begin{aligned}\lim _{x\to 0+}x^{\alpha }\ln(x)^{k}&{\overset {0\cdot (\pm \infty )}{=}}\lim _{x\to 0}{\frac {\ln(x)^{k}}{\frac {1}{x^{\alpha }}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0+}\ln(x)^{k}=\pm \infty {\text{ and }}\lim _{x\to 0+}{\frac {1}{x^{\alpha }}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0+}{\frac {k\cdot \ln(x)^{k-1}\cdot {\frac {1}{x}}}{-\alpha {\frac {1}{x^{\alpha +1}}}}}\\[0.3em]&=\lim _{x\to 0+}{\frac {k\cdot \ln(x)^{k-1}}{\frac {-\alpha }{x^{\alpha }}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0+}k\cdot \ln(x)^{k-1}=\pm \infty {\text{ and }}\lim _{x\to 0+}{\frac {-\alpha }{x^{\alpha }}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0+}{\frac {k(k-1)\cdot \ln(x)^{k-2}\cdot {\frac {1}{x}}}{\frac {-\alpha \cdot (-\alpha )}{x^{\alpha +1}}}}\\[0.3em]&=\lim _{x\to 0+}{\frac {k(k-1)\cdot \ln(x)^{k-2}}{\frac {(-1)^{2}\alpha ^{2}}{x^{\alpha }}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0+}k(k-1)\cdot \ln(x)^{k-2}=\pm \infty {\text{ and }}\lim _{x\to 0+}{\frac {(-1)^{2}\alpha ^{2}}{x^{\alpha }}}=\infty \rightarrow {\text{L'Hospital further }}(k-2){\text{ times}}\right.}\\[0.3em]&=\lim _{x\to 0+}{\frac {k(k-1)\cdot 2\cdot 1\cdot \ln(x)^{0}}{\frac {(-1)^{k}\alpha ^{k}}{x^{\alpha }}}}\\[0.3em]&=\lim _{x\to 0+}{\frac {k!\cdot 1}{\frac {(-1)^{k}\alpha ^{k}}{x^{\alpha }}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ k!={\text{constant and }}\lim _{x\to 0+}{\frac {(-1)^{k}\alpha ^{k}}{x^{\alpha }}}=\infty \right.}\\[0.3em]&=0\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
Part 4:
lim
x
→
1
−
sin
(
π
x
)
ln
(
1
−
x
)
=
lim
x
→
1
−
ln
(
1
−
x
)
1
sin
(
π
x
)
↓
lim
x
→
1
−
ln
(
1
−
x
)
=
−
∞
and
lim
x
→
1
−
1
sin
(
π
x
)
=
∞
→
L'Hospital
=
lim
x
→
1
−
(
ln
(
1
−
x
)
)
′
(
1
sin
(
π
x
)
)
′
=
lim
x
→
1
−
−
1
1
−
x
π
cos
(
π
x
)
sin
(
π
x
)
2
=
lim
x
→
1
−
−
sin
(
π
x
)
2
π
(
1
−
x
)
cos
(
π
x
)
↓
lim
x
→
1
−
−
sin
(
π
x
)
2
=
0
and
lim
x
→
1
−
π
(
1
−
x
)
cos
(
π
x
)
=
0
→
L'Hospital
=
lim
x
→
1
−
−
2
π
sin
(
π
x
)
cos
(
π
x
)
−
π
cos
(
π
x
)
−
π
2
(
1
−
x
)
sin
(
π
x
)
=
−
2
π
sin
(
π
)
⏞
=
0
cos
(
π
)
−
π
cos
(
π
)
⏟
=
−
1
−
π
2
⋅
0
⋅
sin
(
π
)
=
0
π
=
0
{\displaystyle {\begin{aligned}\lim _{x\to 1-}\sin(\pi x)\ln(1-x)&=\lim _{x\to 1-}{\frac {\ln(1-x)}{\frac {1}{\sin(\pi x)}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 1-}\ln(1-x)=-\infty {\text{ and }}\lim _{x\to 1-}{\frac {1}{\sin(\pi x)}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 1-}{\frac {\left(\ln(1-x)\right)'}{\left({\frac {1}{\sin(\pi x)}}\right)'}}\\[0.3em]&=\lim _{x\to 1-}{\frac {\frac {-1}{1-x}}{\frac {\pi \cos(\pi x)}{\sin(\pi x)^{2}}}}\\[0.3em]&=\lim _{x\to 1-}{\frac {-\sin(\pi x)^{2}}{\pi (1-x)\cos(\pi x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 1-}-\sin(\pi x)^{2}=0{\text{ and }}\lim _{x\to 1-}\pi (1-x)\cos(\pi x)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 1-}{\frac {-2\pi \sin(\pi x)\cos(\pi x)}{-\pi \cos(\pi x)-\pi ^{2}(1-x)\sin(\pi x)}}\\[0.3em]&={\frac {-2\pi \overbrace {\sin(\pi )} ^{=0}\cos(\pi )}{-\pi \underbrace {\cos(\pi )} _{=-1}-\pi ^{2}\cdot 0\cdot \sin(\pi )}}\\[0.3em]&={\frac {0}{\pi }}\\[0.3em]&=0\end{aligned}}}
Part 5:
lim
x
→
1
x
1
1
−
x
=
1
±
∞
lim
x
→
1
exp
(
ln
(
x
)
1
−
x
)
{\displaystyle {\begin{aligned}\lim _{x\to 1}x^{\frac {1}{1-x}}&{\overset {1^{\pm \infty }}{=}}\lim _{x\to 1}\exp \left({\frac {\ln(x)}{1-x}}\right)\end{aligned}}}
For the expression in the exponent there is now
lim
x
→
1
ln
(
x
)
1
−
x
↓
lim
x
→
1
ln
(
x
)
=
0
and
lim
x
→
1
1
−
x
=
0
→
L'Hospital
=
lim
x
→
1
(
ln
(
x
)
)
′
(
1
−
x
)
′
=
lim
x
→
1
1
x
−
1
=
lim
x
→
1
−
1
x
=
−
1
{\displaystyle {\begin{aligned}&\lim _{x\to 1}{\frac {\ln(x)}{1-x}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 1}\ln(x)=0{\text{ and }}\lim _{x\to 1}1-x=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 1}{\frac {\left(\ln(x)\right)'}{\left(1-x\right)'}}\\[0.3em]&=\lim _{x\to 1}{\frac {\frac {1}{x}}{-1}}\\[0.3em]&=\lim _{x\to 1}-{\frac {1}{x}}\\[0.3em]&=-1\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
By continuity of
x
↦
exp
(
x
)
{\displaystyle x\mapsto \exp(x)}
at
x
=
−
1
{\displaystyle x=-1}
we now get
lim
x
→
1
x
1
1
−
x
=
lim
x
→
1
exp
(
ln
(
x
)
1
−
x
)
=
exp
(
lim
x
→
1
ln
(
x
)
1
−
x
)
=
exp
(
−
1
)
=
1
e
{\displaystyle {\begin{aligned}\lim _{x\to 1}x^{\frac {1}{1-x}}&=\lim _{x\to 1}\exp \left({\frac {\ln(x)}{1-x}}\right)\\[0.3em]&=\exp \left(\lim _{x\to 1}{\frac {\ln(x)}{1-x}}\right)\\[0.3em]&=\exp \left(-1\right)\\[0.3em]&={\frac {1}{e}}\end{aligned}}}
Part 6: First we have: If the limit
lim
x
→
∞
x
1
x
{\displaystyle \lim _{x\to \infty }x^{\frac {1}{\sqrt {x}}}}
exists, then the sequence limit
lim
n
→
∞
n
1
n
{\displaystyle \lim _{n\to \infty }n^{\frac {1}{\sqrt {n}}}}
also exists.
Further:
lim
x
→
∞
x
1
x
=
∞
0
lim
x
→
∞
exp
(
ln
(
x
)
x
)
{\displaystyle \lim _{x\to \infty }x^{\frac {1}{\sqrt {x}}}\ {\overset {{\infty }^{0}}{=}}\ \lim _{x\to \infty }\exp \left({\frac {\ln(x)}{\sqrt {x}}}\right)}
For the expression in the exponent there is now
lim
x
→
∞
ln
(
x
)
x
↓
lim
x
→
∞
ln
(
x
)
=
∞
and
lim
x
→
∞
x
=
∞
→
L'Hospital
=
lim
x
→
∞
(
ln
(
x
)
)
′
(
x
)
′
=
lim
x
→
∞
1
x
1
2
x
=
lim
x
→
∞
2
x
x
=
lim
x
→
∞
2
x
=
0
{\displaystyle {\begin{aligned}&\lim _{x\to \infty }{\frac {\ln(x)}{\sqrt {x}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to \infty }\ln(x)=\infty {\text{ and }}\lim _{x\to \infty }{\sqrt {x}}=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to \infty }{\frac {\left(\ln(x)\right)'}{\left({\sqrt {x}}\right)'}}\\[0.3em]&=\lim _{x\to \infty }{\frac {\frac {1}{x}}{\frac {1}{2{\sqrt {x}}}}}\\[0.3em]&=\lim _{x\to \infty }{\frac {2{\sqrt {x}}}{x}}\\[0.3em]&=\lim _{x\to \infty }{\frac {2}{\sqrt {x}}}\\[0.3em]&=0\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
By continuity of
x
↦
exp
(
x
)
{\displaystyle x\mapsto \exp(x)}
at
x
=
0
{\displaystyle x=0}
we now get
lim
x
→
∞
x
1
x
=
lim
x
→
∞
exp
(
ln
(
x
)
x
)
=
exp
(
lim
x
→
∞
ln
(
x
)
x
)
=
exp
(
0
)
=
1
{\displaystyle {\begin{aligned}\lim _{x\to \infty }x^{\frac {1}{\sqrt {x}}}&=\lim _{x\to \infty }\exp \left({\frac {\ln(x)}{\sqrt {x}}}\right)\\[0.3em]&=\exp \left(\lim _{x\to \infty }{\frac {\ln(x)}{\sqrt {x}}}\right)\\[0.3em]&=\exp \left(0\right)\\[0.3em]&=1\end{aligned}}}
And now, we also have
lim
n
→
∞
n
1
n
=
1
{\displaystyle \lim _{n\to \infty }n^{\frac {1}{\sqrt {n}}}=1}
.
Part 7:
lim
x
→
π
2
−
cos
(
x
)
x
−
π
2
=
0
0
lim
x
→
π
2
−
exp
(
ln
(
cos
(
x
)
)
(
x
−
π
2
)
)
=
lim
x
→
π
2
−
exp
(
ln
(
cos
(
x
)
)
1
x
−
π
2
)
{\displaystyle \lim _{x\to {\frac {\pi }{2}}-}\cos(x)^{x-{\frac {\pi }{2}}}\ {\overset {{0}^{0}}{=}}\ \lim _{x\to {\frac {\pi }{2}}-}\exp \left(\ln(\cos(x))(x-{\frac {\pi }{2}})\right)=\lim _{x\to {\frac {\pi }{2}}-}\exp \left({\frac {\ln(\cos(x))}{\frac {1}{x-{\frac {\pi }{2}}}}}\right)}
For the expression in the exponent there is now
lim
x
→
π
2
−
ln
(
cos
(
x
)
)
1
x
−
π
2
↓
lim
x
→
π
2
−
ln
(
cos
(
x
)
⏟
→
0
+
)
=
−
∞
and
lim
x
→
π
2
−
1
x
−
π
2
=
−
∞
→
L'Hospital
=
lim
x
→
π
2
−
(
ln
(
cos
(
x
)
)
)
′
(
1
x
−
π
2
)
′
=
lim
x
→
π
2
−
−
sin
(
x
)
cos
(
x
)
−
1
(
x
−
π
2
)
2
=
lim
x
→
π
2
−
sin
(
x
)
(
x
−
π
2
)
2
cos
(
x
)
↓
lim
x
→
π
2
−
sin
(
x
)
(
x
−
π
2
)
2
=
0
and
lim
x
→
π
2
−
cos
(
x
)
=
0
→
L'Hospital
=
lim
x
→
π
2
−
cos
(
x
)
(
x
−
π
2
)
2
+
2
sin
(
x
)
(
x
−
π
2
)
−
sin
(
x
)
=
0
+
0
−
1
=
0
{\displaystyle {\begin{aligned}&\lim _{x\to {\frac {\pi }{2}}-}{\frac {\ln(\cos(x))}{\frac {1}{x-{\frac {\pi }{2}}}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to {\frac {\pi }{2}}-}\ln(\underbrace {\cos(x)} _{\to 0+})=-\infty {\text{ and }}\lim _{x\to {\frac {\pi }{2}}-}{\frac {1}{x-{\frac {\pi }{2}}}}=-\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to {\frac {\pi }{2}}-}{\frac {\left(\ln(\cos(x))\right)'}{\left({\frac {1}{x-{\frac {\pi }{2}}}}\right)'}}\\[0.3em]&=\lim _{x\to {\frac {\pi }{2}}-}{\frac {\frac {-\sin(x)}{\cos(x)}}{-{\frac {1}{(x-{\frac {\pi }{2}})^{2}}}}}\\[0.3em]&=\lim _{x\to {\frac {\pi }{2}}-}{\frac {\sin(x)(x-{\frac {\pi }{2}})^{2}}{\cos(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to {\frac {\pi }{2}}-}\sin(x)(x-{\frac {\pi }{2}})^{2}=0{\text{ and }}\lim _{x\to {\frac {\pi }{2}}-}\cos(x)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to {\frac {\pi }{2}}-}{\frac {\cos(x)(x-{\frac {\pi }{2}})^{2}+2\sin(x)(x-{\frac {\pi }{2}})}{-\sin(x)}}\\[0.3em]&={\frac {0+0}{-1}}\\[0.3em]&=0\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
By continuity of
x
↦
exp
(
x
)
{\displaystyle x\mapsto \exp(x)}
at
x
=
0
{\displaystyle x=0}
we now get
lim
x
→
π
2
−
cos
(
x
)
(
x
−
π
2
)
=
lim
x
→
π
2
−
exp
(
ln
(
cos
(
x
)
)
1
x
−
π
2
)
=
exp
(
lim
x
→
π
2
−
ln
(
cos
(
x
)
)
1
x
−
π
2
)
=
exp
(
0
)
=
1
{\displaystyle {\begin{aligned}\lim _{x\to {\frac {\pi }{2}}-}\cos(x)^{(x-{\frac {\pi }{2}})}&=\lim _{x\to {\frac {\pi }{2}}-}\exp \left({\frac {\ln(\cos(x))}{\frac {1}{x-{\frac {\pi }{2}}}}}\right)\\[0.3em]&=\exp \left(\lim _{x\to {\frac {\pi }{2}}-}{\frac {\ln(\cos(x))}{\frac {1}{x-{\frac {\pi }{2}}}}}\right)\\[0.3em]&=\exp \left(0\right)\\[0.3em]&=1\end{aligned}}}
Part 8:
lim
x
→
∞
arctan
(
x
)
1
x
=
∞
0
lim
x
→
∞
exp
(
ln
(
arctan
(
x
)
)
⋅
1
x
)
=
lim
x
→
∞
exp
(
ln
(
arctan
(
x
)
)
x
)
{\displaystyle \lim _{x\to \infty }\arctan(x)^{\frac {1}{x}}\ {\overset {{\infty }^{0}}{=}}\ \lim _{x\to \infty }\exp \left(\ln(\arctan(x))\cdot {\frac {1}{x}}\right)=\lim _{x\to \infty }\exp \left({\frac {\ln(\arctan(x))}{x}}\right)}
For the expression in the exponent there is now
lim
x
→
∞
ln
(
arctan
(
x
)
)
x
↓
lim
x
→
∞
ln
(
arctan
(
x
)
⏟
→
∞
)
=
∞
and
lim
x
→
∞
x
=
∞
→
L'Hospital
=
lim
x
→
∞
(
ln
(
arctan
(
x
)
)
)
′
(
x
)
′
=
lim
x
→
∞
1
arctan
(
x
)
(
1
+
x
2
)
1
=
lim
x
→
∞
1
arctan
(
x
)
(
1
+
x
2
)
↓
lim
x
→
∞
arctan
(
x
)
(
1
+
x
2
)
=
∞
=
0
{\displaystyle {\begin{aligned}&\lim _{x\to \infty }{\frac {\ln(\arctan(x))}{x}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to \infty }\ln(\underbrace {\arctan(x)} _{\to \infty })=\infty {\text{ and }}\lim _{x\to \infty }x=\infty \rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to \infty }{\frac {\left(\ln(\arctan(x))\right)'}{\left(x\right)'}}\\[0.3em]&=\lim _{x\to \infty }{\frac {\frac {1}{\arctan(x)(1+x^{2})}}{1}}\\[0.3em]&=\lim _{x\to \infty }{\frac {1}{\arctan(x)(1+x^{2})}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to \infty }\arctan(x)(1+x^{2})=\infty \right.}\\[0.3em]&=0\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
By continuity of
x
↦
exp
(
x
)
{\displaystyle x\mapsto \exp(x)}
at
x
=
0
{\displaystyle x=0}
we now get
lim
x
→
∞
arctan
(
x
)
1
x
=
lim
x
→
∞
exp
(
ln
(
arctan
(
x
)
)
x
)
=
exp
(
lim
x
→
∞
ln
(
arctan
(
x
)
)
x
)
=
exp
(
0
)
=
1
{\displaystyle {\begin{aligned}\lim _{x\to \infty }\arctan(x)^{\frac {1}{x}}&=\lim _{x\to \infty }\exp \left({\frac {\ln(\arctan(x))}{x}}\right)\\[0.3em]&=\exp \left(\lim _{x\to \infty }{\frac {\ln(\arctan(x))}{x}}\right)\\[0.3em]&=\exp \left(0\right)\\[0.3em]&=1\end{aligned}}}
Part 9:
lim
x
→
0
1
x
2
−
1
sin
2
(
x
)
↓
lim
x
→
0
1
x
2
=
∞
and
lim
x
→
∞
1
sin
2
(
x
)
=
∞
→
Type
∞
−
∞
→
re-formulate
=
lim
x
→
0
sin
2
(
x
)
−
x
2
x
2
sin
2
(
x
)
↓
lim
x
→
0
sin
2
(
x
)
−
x
2
=
0
and
lim
x
→
0
x
2
sin
2
(
x
)
=
0
→
L'Hospital
=
lim
x
→
0
2
sin
(
x
)
cos
(
x
)
−
2
x
2
x
sin
2
(
x
)
+
2
x
2
sin
(
x
)
cos
(
x
)
↓
lim
x
→
0
2
sin
(
x
)
cos
(
x
)
−
2
x
=
0
and
lim
x
→
0
2
x
sin
2
(
x
)
+
2
x
2
sin
(
x
)
cos
(
x
)
=
0
→
L'Hospital
=
lim
x
→
0
2
cos
2
(
x
)
−
2
sin
2
(
x
)
−
2
2
sin
2
(
x
)
+
4
x
sin
(
x
)
cos
(
x
)
+
4
x
sin
(
x
)
cos
(
x
)
⏟
=
8
x
sin
(
x
)
cos
(
x
)
+
2
x
2
cos
2
(
x
)
−
2
x
2
sin
2
(
x
)
↓
lim
x
→
0
2
cos
2
(
x
)
−
2
sin
2
(
x
)
−
2
=
0
and
lim
x
→
0
2
sin
2
(
x
)
+
8
x
sin
(
x
)
cos
(
x
)
+
2
x
2
cos
2
(
x
)
−
2
x
2
sin
2
(
x
)
=
0
→
L'Hospital
=
lim
x
→
0
−
4
cos
(
x
)
sin
(
x
)
−
4
sin
(
x
)
cos
(
x
)
4
sin
(
x
)
cos
(
x
)
+
8
sin
(
x
)
cos
(
x
)
+
8
x
cos
2
(
x
)
−
8
x
sin
2
(
x
)
+
4
x
cos
2
(
x
)
−
4
x
2
cos
(
x
)
sin
(
x
)
−
4
x
sin
2
(
x
)
−
4
x
2
sin
(
x
)
cos
(
x
)
=
lim
x
→
0
−
8
sin
(
x
)
cos
(
x
)
12
sin
(
x
)
cos
(
x
)
+
12
x
cos
2
(
x
)
−
12
x
sin
2
(
x
)
−
12
x
2
sin
(
x
)
cos
(
x
)
↓
lim
x
→
0
−
8
sin
(
x
)
cos
(
x
)
=
0
and
lim
x
→
0
12
sin
(
x
)
cos
(
x
)
+
12
x
cos
2
(
x
)
−
12
x
sin
2
(
x
)
−
12
x
2
sin
(
x
)
cos
(
x
)
=
0
→
L'Hospital
=
lim
x
→
0
−
8
cos
2
(
x
)
+
8
sin
2
(
x
)
12
cos
2
(
x
)
−
12
sin
2
(
x
)
+
12
cos
2
(
x
)
−
24
x
cos
(
x
)
sin
(
x
)
−
12
sin
2
(
x
)
−
24
x
sin
(
x
)
cos
(
x
)
−
12
x
sin
(
x
)
cos
(
x
)
−
12
x
2
cos
2
(
x
)
+
12
x
2
sin
2
(
x
)
=
lim
x
→
0
−
8
cos
2
(
x
)
+
8
sin
2
(
x
)
24
cos
2
(
x
)
−
24
sin
2
(
x
)
−
60
x
sin
(
x
)
cos
(
x
)
−
12
x
2
cos
2
(
x
)
+
12
x
2
sin
2
(
x
)
↓
lim
x
→
0
−
8
cos
2
(
x
)
=
−
8
and
lim
x
→
0
24
cos
2
(
x
)
=
24
→
L'Hospital
=
−
8
24
=
−
1
3
{\displaystyle {\begin{aligned}&\lim _{x\to 0}{\frac {1}{x^{2}}}-{\frac {1}{\sin ^{2}(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}{\frac {1}{x^{2}}}=\infty {\text{ and }}\lim _{x\to \infty }{\frac {1}{\sin ^{2}(x)}}=\infty \rightarrow {\text{ Type }}\infty -\infty \rightarrow {\text{re-formulate}}\right.}\\[0.3em]&=\lim _{x\to 0}{\frac {\sin ^{2}(x)-x^{2}}{x^{2}\sin ^{2}(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}\sin ^{2}(x)-x^{2}=0{\text{ and }}\lim _{x\to 0}x^{2}\sin ^{2}(x)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0}{\frac {2\sin(x)\cos(x)-2x}{2x\sin ^{2}(x)+2x^{2}\sin(x)\cos(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}2\sin(x)\cos(x)-2x=0{\text{ and }}\lim _{x\to 0}2x\sin ^{2}(x)+2x^{2}\sin(x)\cos(x)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0}{\frac {2\cos ^{2}(x)-2\sin ^{2}(x)-2}{2\sin ^{2}(x)+\underbrace {4x\sin(x)\cos(x)+4x\sin(x)\cos(x)} _{=8x\sin(x)\cos(x)}+2x^{2}\cos ^{2}(x)-2x^{2}\sin ^{2}(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}2\cos ^{2}(x)-2\sin ^{2}(x)-2=0{\text{ and }}\lim _{x\to 0}2\sin ^{2}(x)+8x\sin(x)\cos(x)+2x^{2}\cos ^{2}(x)-2x^{2}\sin ^{2}(x)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0}{\frac {-4\cos(x)\sin(x)-4\sin(x)\cos(x)}{4\sin(x)\cos(x)+8\sin(x)\cos(x)+8x\cos ^{2}(x)-8x\sin ^{2}(x)+4x\cos ^{2}(x)-4x^{2}\cos(x)\sin(x)-4x\sin ^{2}(x)-4x^{2}\sin(x)\cos(x)}}\\[0.3em]&=\lim _{x\to 0}{\frac {-8\sin(x)\cos(x)}{12\sin(x)\cos(x)+12x\cos ^{2}(x)-12x\sin ^{2}(x)-12x^{2}\sin(x)\cos(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}-8\sin(x)\cos(x)=0{\text{ and }}\lim _{x\to 0}12\sin(x)\cos(x)+12x\cos ^{2}(x)-12x\sin ^{2}(x)-12x^{2}\sin(x)\cos(x)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 0}{\frac {-8\cos ^{2}(x)+8\sin ^{2}(x)}{12\cos ^{2}(x)-12\sin ^{2}(x)+12\cos ^{2}(x)-24x\cos(x)\sin(x)-12\sin ^{2}(x)-24x\sin(x)\cos(x)-12x\sin(x)\cos(x)-12x^{2}\cos ^{2}(x)+12x^{2}\sin ^{2}(x)}}\\[0.3em]&=\lim _{x\to 0}{\frac {-8\cos ^{2}(x)+8\sin ^{2}(x)}{24\cos ^{2}(x)-24\sin ^{2}(x)-60x\sin(x)\cos(x)-12x^{2}\cos ^{2}(x)+12x^{2}\sin ^{2}(x)}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}-8\cos ^{2}(x)=-8{\text{ and }}\lim _{x\to 0}24\cos ^{2}(x)=24\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&={\frac {-8}{24}}\\[0.3em]&=-{\frac {1}{3}}\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.
Part 10:
lim
x
→
1
a
1
−
x
a
−
b
1
−
x
b
↓
lim
x
→
0
a
1
−
x
a
=
±
∞
and
lim
x
→
1
b
1
−
x
b
=
±
∞
→
Type
±
∞
±
∞
→
re-formulate
=
lim
x
→
1
a
(
1
−
x
b
)
−
b
(
1
−
x
a
)
(
1
−
x
a
)
(
1
−
x
b
)
=
lim
x
→
1
a
−
a
x
b
−
b
+
b
x
a
1
−
x
a
−
x
b
+
x
a
+
b
↓
lim
x
→
1
a
−
a
x
b
−
b
+
b
x
a
=
a
−
a
−
b
+
b
=
0
and
lim
x
→
1
1
−
x
a
−
x
b
+
x
a
+
b
=
1
−
1
−
1
+
1
=
0
→
L'Hospital
=
lim
x
→
1
−
a
b
x
b
−
1
+
a
b
x
a
−
1
−
a
x
a
−
1
−
b
x
b
−
1
+
(
a
+
b
)
x
a
+
b
−
1
↓
lim
x
→
1
−
a
b
x
b
−
1
+
a
b
x
a
−
1
=
−
a
b
+
a
b
=
0
and
lim
x
→
1
−
a
x
a
−
1
−
b
x
b
−
1
+
(
a
+
b
)
x
a
+
b
−
1
=
−
a
−
a
+
(
a
+
b
)
=
0
→
L'Hospital
=
lim
x
→
1
−
a
b
(
b
−
1
)
x
b
−
2
+
a
b
(
a
−
1
)
x
a
−
2
−
a
(
a
−
1
)
x
a
−
2
−
b
(
b
−
1
)
x
b
−
2
+
(
a
+
b
)
(
a
+
b
−
1
)
x
a
+
b
−
2
=
−
a
b
(
b
−
1
)
+
a
b
(
a
−
1
)
−
a
(
a
−
1
)
−
b
(
b
−
1
)
+
(
a
+
b
)
(
a
+
b
−
1
)
=
−
a
b
2
+
a
b
+
a
2
b
−
a
b
−
a
2
+
a
−
b
2
+
b
+
a
2
+
a
b
−
a
+
a
b
+
b
2
−
b
=
−
a
b
2
+
a
2
b
2
a
b
=
a
b
(
a
−
b
)
2
a
b
=
a
−
b
2
{\displaystyle {\begin{aligned}&\lim _{x\to 1}{\frac {a}{1-x^{a}}}-{\frac {b}{1-x^{b}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 0}{\frac {a}{1-x^{a}}}=\pm \infty {\text{ and }}\lim _{x\to 1}{\frac {b}{1-x^{b}}}=\pm \infty \rightarrow {\text{ Type }}\pm \infty \pm \infty \rightarrow {\text{re-formulate}}\right.}\\[0.3em]&=\lim _{x\to 1}{\frac {a(1-x^{b})-b(1-x^{a})}{(1-x^{a})(1-x^{b})}}\\[0.3em]&=\lim _{x\to 1}{\frac {a-ax^{b}-b+bx^{a}}{1-x^{a}-x^{b}+x^{a+b}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 1}a-ax^{b}-b+bx^{a}=a-a-b+b=0{\text{ and }}\lim _{x\to 1}1-x^{a}-x^{b}+x^{a+b}=1-1-1+1=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 1}{\frac {-abx^{b-1}+abx^{a-1}}{-ax^{a-1}-bx^{b-1}+(a+b)x^{a+b-1}}}\\[0.3em]&\quad {\color {Gray}\left\downarrow \ \lim _{x\to 1}-abx^{b-1}+abx^{a-1}=-ab+ab=0{\text{ and }}\lim _{x\to 1}-ax^{a-1}-bx^{b-1}+(a+b)x^{a+b-1}=-a-a+(a+b)=0\rightarrow {\text{L'Hospital}}\right.}\\[0.3em]&=\lim _{x\to 1}{\frac {-ab(b-1)x^{b-2}+ab(a-1)x^{a-2}}{-a(a-1)x^{a-2}-b(b-1)x^{b-2}+(a+b)(a+b-1)x^{a+b-2}}}\\[0.3em]&={\frac {-ab(b-1)+ab(a-1)}{-a(a-1)-b(b-1)+(a+b)(a+b-1)}}\\[0.3em]&={\frac {-ab^{2}+ab+a^{2}b-ab}{-a^{2}+a-b^{2}+b+a^{2}+ab-a+ab+b^{2}-b}}\\[0.3em]&={\frac {-ab^{2}+a^{2}b}{2ab}}\\[0.3em]&={\frac {ab(a-b)}{2ab}}\\[0.3em]&={\frac {a-b}{2}}\end{aligned}}}
and since the limit exists, the application of L'Hospital is justified.