Algorithmensammlung: Numerik: Determinante
Erscheinungsbild
Determinante
[Bearbeiten]Die Determinante einer quadratischen Matrix ist ein wichtiges Hilfsmittel der Linearen Algebra. Siehe Determinante.
Die Berechnung einer Determinante kann mit dem Gauß'schen Eliminationsverfahren erfolgen. Eine Kopie der ursprünglichen Matrix wird durch Zeilenumformungen (Subtraktion eines Vielfachen einer anderen Zeile, Vertauschung zweier Zeilen) auf Stufenform gebracht, sodass eine obere Dreiecksmatrix entsteht. Die Determinante dieser Dreiecksmatrix ergibt sich als Produkt der Hauptdiagonalenelemente.
Pseudocode
[Bearbeiten]function determinante (m) n ← Zeilen- bzw. Spaltenzahl von m a ← Kopie von m d ← 1 for j ← 1 to n do begin p ← j while p ≤ n and a[p][j] = 0 do p ← p + 1 if p = n + 1 then return 0 if p ≠ j then begin Vertausche in Matrix a Zeile j und Zeile p d ← -d end d ← d * a[j][j] for i ← j + 1 to n do begin f ← a[i][j] / a[j][j] Subtrahiere in Matrix a von Zeile i das f-fache von Zeile j end end return d
Java
[Bearbeiten] // Determinante einer quadratischen Matrix:
// m ... Matrix
public static double determinant (double[][] m) {
int n = m.length; // Anzahl der Zeilen
// Überprüfung, ob die gegebene Matrix quadratisch ist:
for (int i=0; i<n; i++) { // Für alle Zeilenindizes ...
if (m[i].length != n) { // Falls abweichende Zeilenlänge ...
System.out.println("Matrix nicht quadratisch!"); // Fehlermeldung
return Double.NaN; // Rückgabewert
}
}
// Kopie der gegebenen Matrix:
double[][] a = new double[n][n]; // Zweifach indiziertes Array für Kopie von m
for (int i=0; i<n; i++) // Für alle Zeilenindizes ...
for (int j=0; j<n; j++) // Für alle Spaltenindizes ...
a[i][j] = m[i][j]; // Matrixelement
// Berechnung:
double d = 1; // Startwert Determinante
for (int j=0; j<n; j++) { // Für alle Spaltenindizes ...
int p = j; // Variable für Zeilenindex
while (p < n && a[p][j] == 0) p++; // Index erhöhen, bis Spaltenelement ungleich 0
if (p == n) return 0; // Rückgabewert, falls Suche erfolglos
if (p != j) { // Falls Zeilentausch nötig ...
double[] temp = a[j]; // Zeile mit Index j
a[j] = a[p]; // Zeile mit Index j neu
a[p] = temp; // Zeile mit Index p neu
d = -d; // Vorzeichenänderung wegen Zeilentausch
}
d = d*a[j][j]; // Multiplikation mit Element der Hauptdiagonale
for (int i=j+1; i<n; i++) { // Für alle Zeilenindizes ab j+1 ...
double f = a[i][j]/a[j][j]; // Faktor
for (int k=0; k<n; k++) // Für alle Spaltenindizes ...
a[i][k] -= a[j][k]*f; // Subtraktion eines Vielfachen von Zeile j
} // Ende for (i)
} // Ende for (j)
return d; // Rückgabewert
}