Real numbers – Serlo

Aus Wikibooks
Zur Navigation springen Zur Suche springen
UnderCon icon.svg

Diese Seite ist noch im Entstehen und noch nicht offizieller Bestandteil des Buchs. Gib der Autorin / dem Autor Zeit, die Seite anzupassen!

Real numbers are the basics for this book, because we want to understand topics related to these numbers like real sequences or real functions. But before we begin with studying the concepts of analysis, we have to ask: "What are real numbers?"

This isn't an easy question. So let's start by looking at different ideas and concepts of how to define these real numbers.

Ways to describe real numbers[Bearbeiten]

We all already have an intuitive idea of what real numbers are, even though it is often hard to put it into words. For example one often imagines the real numbers as points on the number line:

Vorstellung der reellen Zahlen als Punkte auf der Zahlengeraden

Our next task now is to translate this intuitive idea of real numbers into mathematical expressions. There are two approaches how to do this: either by using axioms or by constructing the real numbers.

The axiomatic characterisation[Bearbeiten]

In der axiomatischen Beschreibung der Analysis legen wir mit den Axiomen das Fundament, auf dem wir schrittweise die Theoreme der Analysis herleiten.

Instead of accurately specifying what the real numbers are, the axiomatic characterisation instead describes the properties of real numbers. We want to do this, by making this kind of a statement: "The real numbers are the set of objects, which have the following properties:<list of the properties of real numbers>". These basic properties we will define through axioms. Short recap: An axiom is a statement, which we accept to be true, without proof. Every mathematical model that fulfils these properties or axioms can be used as a model for real numbers. Statements which are proven with the help of axioms are called theorems.

When formulating these axioms we must make sure that they don't contradict each other. In other words we need to make sure that there exist at least one model, which fulfils all axioms. A bad example for a model would be, that and cannot be true at the samen time. Making sure to not get too abstract is also good. We want the axioms to represent our intuitive idea of real numbers.

We also need to be aware that we need to have enough axioms to characterise the real numbers. If we have too few, there could be other structures which fulfil all requirements as a model, but wouldn't fit our intuitive idea of real numbers. for example it isn't enough for there just to be the possibility to add two real numbers and resulting in . With only that the whole numbers would also be a model for the real numbers, which doesn't fit with our idea of real numbers. So just having addition isn't enough.

The final thing to pay attention to, is to avoid redundancy. So if a statement can be proven through other axioms, it shouldn't be an axiom. So for example: if the statement E can be proven by only using the axioms A1 and A2, then E doesn't need to be defined as an axiom.

the construction-based approach[Bearbeiten]

Skizze zur Konstruktion reeller Zahlen (hier am Beispiel von Fundamentalfolgen)

If we want to construct the real numbers, we have to start with the rational numbers as building blocks. Then by using a specific method/process we create new objects, based on the rational numbers, which then we define as the real numbers.

In contrast to the axiomatic characterisation, which talks about the properties of real numbers, the construction-based approach has the advantage, that we can precisely determine what the real numbers are. They are exactly the objects which we created through our construction process. We especially don't have to define the properties with axioms, because the properties can be derived from the properties of the constructed objects.

There are different methods to construct the real numbers[1]. The resulting structures are none the less equivalent: they have the same properties(these structures are called "isomorph").

The relationship between the approaches[Bearbeiten]

Both approaches lead to the same result. If one can prove all the properties defined by the axioms for the constructed objects, then all other properties derived from the axioms are also true for the constructed objects. Vice versa all theorems proved only based on the axioms in the model, can be recreated in the axiomatic description.

So it is unimportant which approach we choose. We will start with the axiomatic approach, since it is easier to understand.

Summary: The axiomatic approach to characterising the real numbers[Bearbeiten]

To determine the axioms of the real numbers, we can do the following:

  1. Develop an intuitive idea: We first need an intuitive idea of the real numbers. We can for example go back to the idea, of real numbers being points on the number line.
  2. Define the axioms: Now all axioms need to be defined. When doing that we need to pay attention to the following:
    • Comprehensible: The axioms should make sense, meaning every axiom should be intuitive.
    • Free from contradiction:The axioms need to be free from contradiction. This can be implicitly shown, by it being possible to construct an actual model of the real numbers, because this is only possible when the axioms don't contradict themselves.
    • Sufficiency: Once all axioms are fulfilled for a model, then that model should correspond to our intuitive idea of real numbers. We should be able to derive all theorems for real numbers from the axioms.
    • To avoid redundancy: No axiom should be derive from the other axioms.
  3. To define terms and prove theorems:

Building upon these axioms, we will introduce the core ideas of analysis as well as the theorems of analysis.

In analysis all theorems are proven by using the axioms of the real numbers. Here we will have to introduce concepts and theorems which you already know from school mathematics - like the equation . During these proofs it is really important, that we only use properties of real numbers, which we either defined in the axioms or have already proven. Things that you know from school are off limits, until you have proven them based on the axioms!

The axioms of real numbers can be divided in three categories: The "field axioms",the "ordering axioms" and the "Archimedean property".

The field axioms[Bearbeiten]

The field axioms define the addition and multiplication, which is the arithmetic structure of the real numbers. The real numbers are objects, that can be added and multiplied by using the properties of addition and multiplication which you are used to. The essential properties of these operations are the field axioms. The division and subtraction are derived from multiplication and addition. So in total this group of axioms describe how you can calculate with real numbers.

Definition (Körperaxiome)

Auf der Menge der reellen Zahlen sind zwei Operationen und definiert. Diese erfüllen folgende Eigenschaften:

  • Eigenschaften der Addition:
    • Assoziativgesetz der Addition: Für alle reellen Zahlen gilt .
    • Kommutativgesetz der Addition: Für alle reellen Zahlen und gilt .
    • Existenz der Null: Es gibt mindestens eine reelle Zahl , für die für alle reellen Zahlen gilt.
    • Existenz des Negativen: Für jede reelle Zahl gibt es mindestens eine reelle Zahl mit .
  • Eigenschaften der Multiplikation:
    • Assoziativgesetz der Multiplikation: Für alle reellen Zahlen gilt .
    • Kommutativgesetz der Multiplikation: Für alle reellen Zahlen und gilt .
    • Existenz der Eins: Es gibt mindestens eine reelle Zahl mit , für die für alle reellen Zahlen gilt.
    • Existenz des Inversen: Für jede reelle Zahl gibt es mindestens eine reelle Zahl mit .
  • Distributivgesetz: Für alle reellen Zahlen gilt .

The ordering axioms[Bearbeiten]

The ordering axioms describe a linear order of the real numbers. The real numbers are therefore objects, which one can be compared to each other. The comparison of two different real numbers results either in one of the numbers being larger in comparison or the other way around. This shows a clear connection between the structures of the real numbers and a line since all points on a line are ordered in a natural fashion. This group of axioms is imperative for the construction of a mental picture of the real numbers as points on the number line. This group of axioms also define how the operations of addition and multiplication are connected to the ordered structure.

Die Ordnung der reellen Zahlen kann dadurch beschrieben werden, dass wir alle positiven Zahlen kennen. Wenn eine positive Zahl ist, schreiben wir . Die Positivität der reellen Zahlen wird dabei über die Anordnungsaxiome definiert:

Definition (Anordnungsaxiome)

Die Anordnungsaxiome lauten

  • Trichotomie der Positivität: Für alle reellen Zahlen gilt entweder oder oder . Mit den Abkürzungen "" für "für alle" und "" für "entweder oder" können wir dies schreiben als
  • Abgeschlossenheit bezüglich Addition: Für alle reellen Zahlen und gilt: Wenn und ist, dann ist auch . In Zeichen:
  • Abgeschlossenheit bezüglich Multiplikation: Für alle reellen Zahlen und gilt: Wenn und ist, dann ist auch . In Zeichen:

Mit Hilfe der Positivitätseigenschaft können wir die Kleiner-Relation definieren:

Definition (Kleiner-Relation)

Die Kleiner-Relation ist durch folgende Äquivalenz definiert:

Es ist also genau dann kleiner als , wenn die Differenz positiv ist. Über die Kleiner-Relation können wir alle weiteren Ordnungsrelationen definieren:

Definition (Weitere Ordnungsrelationen auf Grundlage der Kleiner-Relation)

Für die reellen Zahlen sind außerdem die Relationen , und über folgende Äquivalenzen definiert:

The completeness axiom[Bearbeiten]

The completeness axiom describes the transition or more precisely the definitive difference between the rational and real numbers. While both the above-mentioned groups of axioms are still fulfilled by the rational numbers, this isn't true anymore for the completeness axiom. The reason for this is, that in the number range of the rational numbers, there exist "gaps" like . These gaps can be approximated by rational numbers to any degree, but the gaps aren't rational numbers anymore. These gaps do not exist in the real numbers, because the completeness axiom denies the existence of such gaps. If it is possible to approximate something to any degree through real numbers, then this "something" exists and is a real number.

The approximation of a real number can be realized with nested intervals. These are a series of intervals, which are subsets of each other and their length converging towards 0:

Eine Intervallschachtelung

Eine Intervallschachtelung dient als Approximation einer reellen Zahl. Jedes Intervall schränkt den Bereich ein, in dem die zu approximierende Zahl liegt und im Laufe der Intervallschachtelung wird dieser Bereich immer kleiner. Das Intervallschachtelungsprinzip garantiert, dass durch jede Intervallschachtelung mindestens eine Zahl approximiert wird:

Definition (Allgemeines Intervallschachtelungsprinzip)

Zu jeder allgemeinen Intervallschachtelung , , ... existiert eine reelle Zahl, die in allen Intervallen liegt und damit von allen Intervallen approximiert wird.

Dieses Vollständigkeitsaxiom beschreibt, dass die Menge der reellen Zahlen keine „Lücken“ besitzt. Um zu beschreiben, dass die reellen Zahlen die kleinstmögliche Erweiterung sind, um die Lücken der rationalen Zahlen zu füllen, müssen wir das Intervallschachtelungsprinzip um ein weiteres Axiom ergänzen. Hierzu müssen wir ausschließen, dass es keine unendlich kleinen bzw. unendlich großen Zahlen gibt. Eine positive Zahl wäre im Vergleich zu einer positiven Zahl unendlich groß, wenn größer als alle Vielfachen von wäre, wenn also keine der Vielfachen jemals über hinauswächst. Für alle natürlichen Zahlen wäre also . Dies wollen wir nun ausschließen. Für je zwei positive Zahlen und soll es also mindestens eine natürliche Zahl mit geben. Genau diese Eigenschaft beschreibt das archimedische Axiom:

Definition (Das Archimedische Axiom)

Für alle reellen Zahlen gibt es eine natürliche Zahl , so dass ist. Mit den Abkürzungen "" für "für alle" und "" für "es gibt" liest sich dies als

Mit Hilfe des Vollständigkeitsaxioms kann man zeigen, dass reelle Zahlen beliebig durch rationale Zahlen angenähert werden können. Diese Eigenschaft ist wesentlich, denn sie ermöglicht das Rechnen mit rationalen anstelle von reellen Zahlen. Beispielsweise werden Computerberechnungen in der Regel nur mit rationalen Zahlen durchgeführt[2]. Solche Rechnungen sind zwar fehleranfällig, ihre Fehler können aber in der Regel beliebig klein gemacht werden.