GNU R: Datenimport und -export

Aus Wikibooks
Wechseln zu: Navigation, Suche
Nuvola apps bookcase.svg EDV Nuvola apps bookcase 1.svg Statistik mit RNuvola mimetypes dvi.png Daten in R


Der Datenaustausch zwischen verschiedenen Anwendungen ist oft eine mühsame Angelegenheit mit vielen Fallstricken. Er erfordert daher einiges an Aufmerksamkeit und Sorgfalt. R kann zahlreiche Formate einlesen. Welches Format im Einzelfall am geeignetsten ist, muss oft ausprobiert werden, besonders wenn das native Format eines Programmes nicht unterstützt wird. So wird z.B. das Dateiformat der Statistiksoftware Statistica von R nicht unterstützt. Allerdings bietet Statistica die Möglichkeit, die Daten unter anderem als SPSS-Datei oder als CSV-Datei (via Text File) zu exportieren, die von R eingelesen werden können.

Import[Bearbeiten]

Import aus Textdateien[Bearbeiten]

Mit der read.csv, read.table und verwandten Funktionen können Daten aus Textdateien (txt) importiert werden. read.table ist die Basisfunktion zum Import von Textdateien. read.csv und read.csv2 sowie einige Funktionen mehr sind Anpassungen an häufig auftretenden Fälle. CSV ist z.B. das Standardexportformat für viele Tabellenkalkulationen und andere Anwendungen, unterscheidet sich aber, je nachdem ob als Dezimaltrennzeichen der Punkt (englischer Sprachraum) oder das Komma (bei uns) verwendet wird.

Legen Sie eine txt-Datei mit folgendem Inhalt an, indem Sie die folgenden Zeilen markieren, kopieren und in einen Texteditor einfügen:

Geschlecht Alter Gewicht Groesse
m 28 80 170
w 18 55 174
w 25 74 183
m 29 101 190
m 21 84 185
w 19 74 178
w 27 65 169
w 26 56 163
m 31 88 189
m 22 78 184

Speichern Sie diese Textdatei unter dem Namen „Tabellentest.txt“ auf Ihre Festplatte. Nun können Sie die Tabelle mit der Funktion read.table() in R einlesen:

> meinetabelle <- read.table("/Pfad/zur/Tabelle.txt", header=TRUE)

Das Argument header=TRUE besagt, dass die erste Zeile der Datei keine Daten enthält, sondern die Bezeichnungen (Variablen) der Tabellenspalten angibt.

Die Tabelle ist nun in dem Objekt meinetabelle vorhanden. Sie können sie sich ansehen, indem Sie eingeben:

> meinetabelle
Geschlecht Alter Gewicht Groesse
1           m    28      80     170
2           w    18      55     174
3           w    25      74     183
4           m    29     101     190
5           m    21      84     185
6           w    19      74     178
7           w    27      65     169
8           w    26      56     163
9           m    31      88     189
10          m    22      78     184

In unserem Beispiel waren die Daten jeweils mit einem Leerzeichen getrennt. Haben Sie eine Textdatei, in welcher die Daten durch einen Tab getrennt sind, müssen sie die read.table-Funktion um das Argument sep=“\t“ erweitern:

> meinetabelle <- read.table("/Pfad/zur/Tabelle.txt", sep=“\t“, header=TRUE)

Wurden die Daten von einer Tabellenkalkulation, wie z.B. Excel, aber auch aus Statistikprogrammen, als CSV-Datei (comma separated values) exportiert, dann muss noch unterschieden werden, welche Schreibkonvention verwendet wurde. Bei englischsprachiger Software wird der Punkt als Dezimaltrennzeichen verwendet und das Komma, um die verschiedenen Werte voneinander zu trennen. In diesem Fall ist read.csv zu verwenden. Sofern das Komma als Dezimaltrennzeichen dient und der Strichpunkt (;) die einzelnen Werte voneinander trennt, dann kommt read.csv2 zum Einsatz.

Tipp: Bei CSV-Dateien kommt es leicht zu Problemen, wenn Textvariablen, z.B. mit Kommentaren, vorhanden sind. Diese können das jeweilige Trennzeichen enthalten. Beim Import kommt es dann dazu, dass nachfolgende Felder mit falschen Inhalten gefüllt werden. Nicht jedes importierende Programm gibt eine Fehlermeldung aus, obwohl mehr Felder als erwartet auftreten. Das gilt auch für R.
Eine Abhilfe besteht darin, ein alternatives Trennzeichen zu verwenden, das garantiert nicht in den Textvariablen auftritt, z.B. @ (wenn es sich nicht zufällig um Emailadressen handelt). Allerdings ist das nicht mit allen Programmen möglich. Eine weitere Möglichkeit besteht darin, Stringvariablen in Anführungszeichen zu setzen. Auch das ist nicht immer möglich. Im ungünstigsten Fall müssen die Textvariablen nachbearbeitet und das jeweilige Trennzeichen ersetzt werden. Auf jeden Fall ist es erforderlich die Daten nach dem Import auf Fehler zu kontrollieren.
Bei R führt das zusätzliche Datenfeld dazu, dass ein zusätzlicher Fall angelegt wird, der durchgängig mit fehlenden Werten (NA) belegt ist. Mit dim(x) kann einfach überprüft werden, ob mehr Fälle als erwartet vorliegen.


Import aus dem Zwischenspeicher / Clipboard[Bearbeiten]

Analog dem Import aus Textdateien kann statt einer File bei read.table auch stdin() als Quelle angegeben werden. In diesem Fall wartet R auf Texteingaben. Wenn sich im Zwischenspeicher eine Tabelle befindet, kann diese per Copy and Paste übernommen werden.

> a <- read.table(file=stdin(),header=T)                                                                                                                       
0: Name Geschlecht Lieblingsfarbe                     # R wartet auf Eingabe                                                                                                                                 
1: Hans m gruen                                                                                                                                                          
2: Waldemar w blau                                                                                                                                                       
3: Tanja m rosa                                                                                                                                                          
4:                                                    # Return in leerer Zeile schließt Eingabe ab                                                                                                                                 
> a                                                                                                                                                                      
      Name Geschlecht Lieblingsfarbe                                                                                                                                     
1     Hans          m          gruen                                                                                                                                     
2 Waldemar          w           blau                                                                                                                                     
3    Tanja          m           rosa 

Dies ist oft die einfachste Variante des Imports, wenn aus Browsern oder PDF-Files Tabellen übernommen werden sollen, die bereits hinreichend formatiert sind.

Tipp: Wenn die Daten aus einer HTML-Seite übernommen werden, ist die Verwendung des Webbrowser Firefox in Verbindung mit dem Add-On Table2Clipboard hilfreich. Wenn die Standardeinstellung mit Tabulator-Trennung Probleme macht, funktioniert zum Beispiel die Parameterkombination row-seperator: "\n", column-seperator: "@" in Table2Clipboard und read.table(file=stdin(),header=T,dec=".",sep="@") in R.


Import aus MySQL[Bearbeiten]

Um aus R auf eine MySQL-Datenbank zugreifen zu können, muss das Paket RMySQL installiert sein. Es benötigt zusätzlich das Paket DBI (und unter Windows die Datei libmySQL.dll, die in MySQL enthalten ist).


library(RMySQL)         # package RMySQL laden
drv = dbDriver("MySQL") # MySQL verwenden

# Verbinde mit einer Datenbank
con = dbConnect(drv,"user/password@dbname")
# Verbinde mit einer Datenbank und verwende Benutzer/Passwort aus der Datei .my.cnf 
con = dbConnect(drv,"dbname")
# Andere Möglichkeit
con <- mysqlNewConnection(drv,"dbname","user","password")

# listet alle Tabellen auf
dbListTables(con)

# Anfrage
rs <- dbGetQuery(con,"SELECT COUNT(*) FROM mytable")


Hilfreich sind auch die Funktionen mysqlReadTable und mysqlWriteTable.

Import aus SPSS[Bearbeiten]

Sie können Ihre vorliegenden SPSS-Daten in R importieren. Hierzu müssen Sie allerdings zunächst ein Zusatzpaket in R installieren. Funktionen zum Datenimport aus SPSS bieten beispielsweise die Pakete foreign und Hmisc. Sie installieren also zunächst eines der Zusatzpakete per:

install.packages("foreign", dependencies = TRUE)

oder

install.packages("Hmisc", dependencies = TRUE)

Das Argument dependencies=TRUE besagt, dass alle weiteren relevanten Zusatzpakete, die eventuell für foreign und Hmisc benötigt werden, direkt mitinstalliert werden. Bevor sie die Funktionen der Zusatzpakete nutzen können, müssen Sie diese aktivieren per:

library(foreign)
oder
library(Hmisc)

Der Import kann nun über die folgenden Funktionen erfolgen:

Dies geschieht mit der read.spss-Funktion beispielsweise so:

 meinspss <- read.spss("/der/pfad/zur/SPSSdatei.sav")

Beachten Sie, dass Sie den kompletten Pfad zur SPSS-Datei angeben müssen. Auf Windows-Systemen werden Pfadangaben normalerweise mit einem Backslash (\) dargestellt. Dies funktioniert in R nicht, da der Backslash in R ein Steuerungszeichen ist. Die übliche Schreibweise in R mit dem Schrägstrich (/) funktioniert aber auch unter Windows einwandfrei. Falls unter Windows der Backslash beibehalten werden soll, muss jeder Backslash durch zwei Backslashes ersetzt werden (z.B. C:\\Pfad\\zur\\SPSSdatei.sav).

Sind in der SPSS-Datei nominale Daten vorhanden, deren numerische Ausprägungen mit Labels hinterlegt sind (z.B. bei einer Variable „Geschlecht“ sind die Ausprägungslabels 0=weiblich, 1=männlich gesetzt), so werden die ausgeschriebenen Labels als Variablenwert in R übernommen

Wenn Sie möchten, dass nicht die Variablenlabels, sondern die numerischen Ausprägungen (z.B. Geschlecht = 0;1) übernommen werden, muss der Befehl um das Argument use.value.labels=FALSE erweitert werden:

meinspss <- read.spss("/pfad/zur/SPSSdatei.sav", use.value.labels=FALSE)

Jetzt sind in dem Objekt meinspss die Daten der SPSS-Datei vorhanden. Sie können sie sich ansehen, indem Sie eingeben:

meinspss
Tipp: Für Variablennamen mit Umlauten können beim Import aus SPSS-Dateien Probleme auftreten. Deshalb ist es möglicherweise notwendig vor dem Import die Sprachoptionen richtig zu setzen (z.B. Sys.setlocale(locale="de_DE.ISO8859-15") ).
read.spss übernimmt auch die in SPSS vergebenen Variablenlabels, allerdings als spezielles Attribut. Diese können über attr(meinspss,"variable.labels") als Vektor ausgegeben und entsprechend als Titel für Tabellen und Graphiken weiter verwendet werden. ( Als Beispiel, wie sich SPSS-Labess in R importiert lassen, dient dieses Skript. )


Import aus XML[Bearbeiten]

Grundsätzlich gibt es zwei Mechanismen zum importieren von Daten aus einer XML Datei.

  • Suche eine Element mit folgenden Eigenschaften (dafür gibt XPath)
  • Wenn du über ein Element mit folgenden Eigenschaften stolperst tue dies

Das erstere ist einfacher und das zweite effizienter.

Nehmen wir folgende XMLDatei an:

<root>
 <child1>
  <child2>data1</child2>
  <child2>data2</child2>
 </child1>
</root>

In beiden Fällen brauchen wir:

install.packages(XML)
library(XML)

Für die erste Variante:

xmlobj <- xmlTreeParse(xmlfile)
data <- xpathSApply(xmlobj, "/root/child1/*", xmlValue(x))


Die zweite Variante:

data <<- list()
counter <<-1
state <<- F
xmlEventParse(xmlfile,useTagName=F,addContext=F,handlers=list(
startElement=function(name,...){
if(!state)
{
  if(name=="child2") state<<- T  else {}
}},
text=function(name,...){
if(state)
{
  data[[counter]]<<-name
  counter<<-counter+1
}},
endElement=function(name,...){
if(state)
{
  if(name=="child2") state<<- F  else {}
}}))

Man sieht sofort, dass man die zweite Variante nur benutzen will, wenn die ersten unglaublich langsam ist.

Import aus Excel-Dateien und CSV-Dateien[Bearbeiten]

Excel Dateien können auf verschiedenen Wegen in R importiert werden. Welcher Weg für den Benutzer der Richtige ist hängt von folgenden Bedingungen ab:

  • Excel Version,
  • Umfang der Daten,
  • Strukturierung der Daten.

Excel ist sehr weit verbreitetes Programm zur Verarbeitung von Tabellen. Es gibt diverse Versionen dieser Software und durch die kontinuierliche Weiterentwicklung von Excel gibt es auch verschieden Versionen des Excel Dateiformats. Für die verschiedenen Excel Formate gibt es Importmöglichkeiten in R z.B. via eines Datenbanktreibers.

Neben diesen Importmöglichkeiten gibt es den oft praktikableren Weg, die Datei im Excel Format in eine CSV (Comma-Separated Values) Datei umzuwandeln. Dazu kann man Excel selbst aber auch andere Programme wie Open Office verwenden. Der Nachteil dieses Weges ist, dass man nur eine Tabelle umwandeln kann. Oft bestehen Excel Dateien aus mehreren Tabellen. Nach der Umwandlung kann man die CSV Datei in R wie folgt einlesen:

tt = read.csv("t.csv")

Hier wird die Datei t.csv aus dem aktuellen Arbeitsverzeichnis in die Variable tt vom Typ "list" eingelesen. Alternativ kann auch folgende Anweisung verwendet werden:

tt = read.table("t.csv", sep=",")

Die Option "sep" legt fest, welches Zeichen R als Zelltrenner in der Datei interpretieren soll. Weitere Optionen sind unter GNU R: read.table zu finden.

Export[Bearbeiten]

HDF5[Bearbeiten]

Siehe von http://cran.r-project.org/web/packages/hdf5/hdf5.pdf

# Import von HDF-lib
install.packages("hdf5")
library("hdf5")
(m <- cbind(A = 1, diag(4)))
ll <- list(a=1:10, b=letters[1:8]);
l2 <- list(C="c", l=ll); PP <- pi
# Speichern der Objekte als HDF Datei
hdf5save("ex1.hdf", "m","PP","ll","l2")
# Entfernen der Objekte aus dem R-Workspace
rm(m,PP,ll,l2) # and reload them:
# Laden der Objekte aus der HDF Datei
hdf5load("ex1.hdf",verbosity=3)
m        # read from "ex1.hdf"; buglet: dimnames dropped
str(ll)
str(l2)


Inhaltsverzeichnis[Bearbeiten]