Die Himmelstafel von Tal-Qadi/ Die Plejaden

Aus Wikibooks
Zur Navigation springen Zur Suche springen


Die Plejaden gehören mit dem Mond und den fünf mit bloßem Auge sichtbaren Planeten, zu den auffälligsten Objekten am Nachthimmel, die ohne Hilfsmittel beobachtet werden können.

Die Sterne der Plejaden[Bearbeiten]

Die Plejaden bestehen aus insgesamt über eintausend einzelnen Sternen. Sie gehören zu einem offenen Sternhaufen und sind unserem Sonnensystem zwar nicht so groß und so nah wie der ebenfalls im Sternbild Stier (Taurus) gelegene Sternhaufen der nur 153 Lichtjahre entfernten Hyaden, mit einer Entfernung von rund 400 Lichtjahren sind sie dennoch nah genug, dass einzelne der helleren Sterne mit bloßem Auge unterschieden werden können.

Diese beiden Sternhaufen bilden das Das Goldene Tor der Ekliptik, durch das im Laufe der Zeiten immer wieder alle Wandelgestirne hindurchziehen.

Atlas ist in der griechischen Mythologie der Vater und Pleione die Mutter der sieben Plejaden. Die Ausdehnung der mit bloßem Auge sichtbaren Sterne der Plejaden beträgt ungefähr ein Bogengrad von Atlas und Pleione zu Taygeta, Celaeno und Electra sowie zirka ein halbes Bogengrad von der Linie Merope–Electra zur Linie Pleione–Asterope. Der Winkelabstand zwischen den beiden paarweise am nächsten gelegenen Sternen Pleione und Atlas beträgt 15 Bogenminuten. Zwei leuchtende Punkte können bei diesem Abstand bei guten Sichtverhältnissen auch freiäugig ohne weiteres unterschieden werden. Die hellsten sieben Hauptsterne der Plejaden sind im Folgenden aufgelistet:

Die sieben Hauptsterne der Plejaden
Eigenname Scheinbare
Helligkeit
Minimale Horizonthöhe
für die freiäugige Sichtbarkeit
Alkione 3,0m
Atlas 3,5m
Electra 3,5m
Maia 4,0m
Merope 4,0m
Taygeta 4,0m
Pleione ≈5,0m 10°

→ Siehe auch Exkurs Zur Sieben.

Zwei weitere, etwas dunklere Sterne des Sternhaufens haben die Eigennamen der beiden anderen Plejaden aus der Mythologie, nämlich Celaeno (5,5m) und Asterope (6,0m). Celaeno ist somit erst ab einer Horizonthöhe von 16 Bogengrad zu sehen und Asterone sogar erst am ungefähr 25 Bogengrad. Über diese neun genannten Sterne hinaus gibt es noch zwei weitere Sterne am Rand des offenen Sternhaufens, die mit bloßem Auge gesehen werden können, nämlich 18 Tauri (5,6m) am nördlichen Rand und HD 23753 (5,4m) am südlichen Rand. Der nächstdunklere Stern ist sehr nah bei Asterope der Stern Sterope II (22 Tauri) mit einer scheinbaren Helligkeit von (6,4m), der unter optimalen Bedingungen zumindest theoretisch noch ohne Fernrohr gesehen werden könnte, wenn die Plejaden in der Nähe des Zenits stehen. Alle weiteren Sterne der Plejaden sind deutlich dunkler und mit bloßem Auge somit nicht sichtbar. Für den Sternhaufen resultiert insgesamt eine scheinbare Helligkeit von ungefähr 1,5m.

Anmerkung: Die numerische Größenklasse der scheinbaren Helligkeit wird durch ein nach- und hochgestelltes m (für magnitudo beziehungsweise kürzer auch mag) gekennzeichnet. Eine um eine Größenklasse höhere Zahl, bedeutet eine Abnahme der scheinbaren Helligkeit um einen Faktor von rund 2,5. Der Helligkeitsunterschied zwischen dem hellsten Stern des Nachthimmels Sirius (-1,5m) und den dunkelsten gerade noch mit unbewaffnetem Auge sichtbaren Sternen (6m) entspricht demzufolge einem Verhältnis von 1000 zu 1. Die scheinbare Helligkeit sagt nichts über die Größe, Entfernung oder absolute Helligkeit eines Sternes aus.

Sichtbarkeit[Bearbeiten]

Die Plejaden stehen heute sowohl am 20. Mai (in Konjunktion zur Sonne sind sie dann unsichtbar) als auch am 18. November (in Opposition zur Sonne und um Mitternacht mit maximaler Höhe über dem südlichen Horizont) im Meridian. Der Meridian ist der gedachte Großkreis, der sowohl durch die beiden Himmelspole als auch durch den Zenit und den Nadir läuft. Im Winter und im Frühjahr sind die Plejaden am Abendhimmel in westlicher Richtung und im Sommer und im Herbst am Morgenhimmel in östlicher Richtung zu beobachten.

Die Plejaden beim Abendletzt (akronychischer Untergang) von Berlin aus gesehen. Die effektive scheinbare Helligkeit zu Beginn der nautischen Abenddämmerung betrug 3,7m (Alkione) bis 6,4m (Celaeno), die Höhe über dem nordwestlichen Horizont 8 Bogengrad.

Seit jeher hatten die zu beobachtenden Auf- und Untergänge der Plejaden eine hohe kulturelle und wissenschaftliche Bedeutung. Heliakische Aufgänge sind hierbei "zur Sonne gehörend", also in Nähe zur aufgehenden Sonne (Morgenerst), und akronychische Untergänge befinden sich "am Rand der beginnenden Nacht", also in Nähe zur untergehenden Sonne (Abendletzt). Für die Beobachtung der Plejaden muss die Sonne allerdings unter dem Horizont stehen, und der Abstand zur Sonne (also die Elongation) muss mehr als 18 Bogengrad betragen, damit das in der Atmosphäre gestreute Sonnenlicht die Sterne des Sternhaufens nicht überstrahlt.

Die akronychischen Aufgänge (Abenderst) sowie die heliakischen Untergänge (Morgenletzt) spielen für Fixsterne (und somit auch für die Plejaden) keine Rolle, da diese im Gegensatz zum Mond, zu den Planeten und zu Kometen in den Nächten zwischen Morgenerst und Abendletzt immer zu sehen sind.

Um 2320 vor Christus befanden sich die Plejaden genau auf der ekliptikalen Länge des Frühlingspunkts und der akronychische Untergang fand also genau zur Tag-und-Nacht-Gleiche, dem Julianischen Datum zufolge zirka 20 Tage vor dem heutigen Frühlingsbeginn also am Anfang des Monats März statt, der in alten Sonnenkalendern der erste Monat des Jahres war. Um 1000 vor Christus hatten die Plejaden eine ekliptikale Länge von rund 18 Bogengrad, so dass der akronychische Untergang nach dem Julianischen Datum um den 21. März erfolgte.

Der Zeitpunkt des heliakischen Aufgangs der Plejaden in Bezug auf die durch die Mondphasen bestimmten zwölf Monate machte diese im babylonischen Lunisolarkalender zu einem Kalendergestirn. Wenn der Aufgang sich bis in den dritten Kalendermonat (Simanu) verschoben hatte, wurde ein dreizehnter Schaltmonat eingelegt, womit die Kalendermonate wieder mit dem Frühlingsbeginn des Sonnenjahrs synchronisiert werden konnten.

Auch die neuseeländischen Māori orientierten sich am heliakischen Aufgang der Plejaden, um den Termin des Neujahrs festzulegen und mit der Aussaat zu beginnen.

Vor 5000 Jahren gingen die Plejaden auf der Linie des Horizonts ungefähr bei 7 Bogengrad nördlich der Ekliptik auf und bei 4 Bogengrad nördlich der Ekliptik unter. Heute gehen die Plejaden auf der Linie des Horizonts fast unverändert ungefähr bei 7 Bogengrad nördlich der Ekliptik auf und bei 5 Bogengrad nördlich der Ekliptik unter. Durch die damalige Lage der Ekliptik gingen die Plejaden überall auf der Erde und immer im Westen (bei einem Azimut von rund 270 Bogengrad) unter und im Osten (bei einem Azimut von rund 90 Bogengrad) auf. Im gegenüberliegenden Punkt der Himmelssphäre befand sich der sehr auffällige Rote Überriese Antares (α Scorpii) im Sternbild Skorpion (Scorpio). Sowohl die Plejaden als auch Antares waren gleichzeitig zu sehen (die sogenannte "Plejaden-Waage"), wenn sie beide ein Bogengrad über dem Horizont standen. Sie waren deswegen während der dunklen Jahreszeiten zur direkten Bestimmung dieser ausgezeichneten Himmelsrichtungen geeignet.

Vom Elsässer Belchen aus gesehen gehen die Plejaden heute beispielsweise immer über dem Kleinen Belchen auf, wo auch die Sonne bei der Sommersonnenwende aufgeht. Am 1. Mai, also an dem Tag, an dem die Plejaden in unserer heutigen Zeit in der maltesischen Abenddämmerung verschwunden sind, geht sie genau über dem höchsten Berg der Vogesen, dem Großen Belchen auf. Dieser wurde vermutlich dem keltischen Lichtgott Belenus geweiht, dessen Feiertag Beltane auf den 1. Mai fällt. Der Schwarzwälder Belchen befindet sich exakt in östlicher Richtung, also auf dem gleichen Breitengrad wie der Elsässer Belchen (47,82° nördliche Breite). An den beiden Tagen der Tag-und-Nacht-Gleiche beim Frühlings- und Herbstanfang gehen Himmelsobjekte, die sich in der Nähe des Frühlings- beziehungsweise des Herbstpunktes der Sonne befinden (also auch die Plejaden, die sich vor 5000 Jahren dort befanden), vom Elsässer Belchen aus gesehen genau im Osten über dem Schwarzwälder Belchen auf beziehungsweise vom Schwarzwälder Belchen aus gesehen genau im Westen über dem Elsässer Belchen unter.[1]

→ Siehe auch Das Belchen-System.

Als Bezugspunkt[Bearbeiten]

Die sieben hellsten feststehenden Himmelsobjekte in der Nähe der Ekliptik liegen zwischen den Sternbildern Stier (Taurus, rechts) und Skorpion (Scorpio, links). Zwischen den beiden offenen Sternhaufen der Hyaden und der Plejaden befindet sich das Goldene Tor der Ekliptik. Der Bogen der Ekliptik wird von den Wandelgestirnen vom Frühlingspunkt rechts zum Herbstpunkt links durchlaufen. In der unteren Hälfte der Ekliptik befinden sich keine hellen, ekliptiknahen Fixsterne. Außerhalb des Bogens liegende Punkte befinden sich nördlich der Ekliptik und innen liegende südlich. Der hellste gegenüber von Regulus liegende Stern Fomalhaut (α Piscis Austrini) im Sternbild Südlicher Fisch (Piscis Austrinus) ist zur Vervollständigung und zur Orientierung hinzugefügt, obwohl er sich mehr als zwanzig Bogengrad südlich der Ekliptiklinie befindet.

Die Plejaden liegen nahe der Ekliptik und sind eines der hellsten und aufgrund ihrer Form das auffälligste Fixsternobjekt an der Ekliptik. Sie sind ebenso wie die Hyaden ein "Pfosten" des Goldenen Tors der Ekliptik. Um 2300 vor Christi Geburt lag der Frühlingspunkt auf der Ekliptik bei der gleichen ekliptikalen Länge wie das Siebengestirn im heutigen Sternbild Stier (Taurus). Die Plejaden haben eine nördliche ekliptikale Breite von rund vier Bogengrad. Damit können sie unter Berücksichtigung der möglichen geographischen Breiten der Beobachtung von den Wandelgestirnen bedeckt werden, deren Bahnen eine hinreichend große Neigung zur Ekliptik haben.[2] Dies sind der Mond (Bahnneigung gut 5 Bogengrad), die Venus (Bahnneigung 3,4 Bogengrad) und der Merkur (Bahnneigung rund 7 Bogengrad). Letzterer ist wegen seiner permanenten Sonnennähe allerdings mit bloßem Auge nie gleichzeitig mit den Plejaden zu sehen. Bis heute hat sich der Frühlingspunkt gut 60 Bogengrad in westlicher Richtung verschoben, so dass er über das heutige Sternbild Widder (Aries) in das heutige heute Sternbild Fische (Pisces) weitergewandert ist.

Der Roten Riesen Aldebaran (α Tauri) ist innerhalb der Hyaden zu sehen, gehört selbst jedoch nicht zu diesem Sternhaufen. Sein Eigenname stammt vom arabischen Wort "al-dabaran" ab, was so viel wie "der Nachfolger" beziehungsweise "der Verfolger" bedeutet. Kurz nach dem Aufgang der Plejaden erscheint er ebenfalls über dem östlichen Horizont und scheint den Sternhaufen auf dem Bogen nach Westen stets zu Verfolgen.

Aldebaran (α Tauri) und der Roten Überriese Antares (α Scorpii) liegen fast auf der Ekliptik und unterscheiden sich in ihrer ekliptikalen Länge um fast genau 180 Bogengrad. Die beiden äußersten Pole der Reihe hellsten feststehenden Himmelsobjekte in der Nähe der Ekliptik, der Stern Antares und der Sternhaufen der Plejaden, werden in ihrer Eigenschaft als Kalendergespann auch als Plejaden-Waage bezeichnet.[3] Für die Menschen waren die beiden sehr hellen und rot leuchtenden Sterne Antares im Sternbild Skorpion (Scorpio) und Aldebaran im offenen Sternhaufen der Hyaden mit dem gegenüberliegenden Siebengestirn im Sternbild Stier (Taurus) im Altertum ein Gespann, mit dem auf einfache Weise die Zeitpunkte des Frühlings- und des Herbstanfangs im Sonnenjahr zuverlässig bestimmt werden konnten. Der in Abbildung zu sehende obere Halbbogen der Ekliptik befand sich damals zum Frühlingsbeginn bei Sonnenuntergang und zum Herbstbeginn bei Sonnenaufgang vollständig oberhalb des Horizonts. Zum Sommerbeginn war dieser Halbbogen um Mitternacht vollständig unter dem Horizont und daher gar nicht zu sehen. Der sichtbare Teil der Ekliptik war zum Winterbeginn um Mitternacht vom Stern Antares Osten bis zu den Plejaden im Westen vollständig und fast gleichmäßig in 45-Grad-Schritten durch die weitern angegebenen drei ekliptiknahen Sterne Spica im Sternbild Jungfrau (Virgo), Regulus im Sternbild Löwe (Leo) und Pollux im Sternbild Zwillinge (Gemini) markiert. Die Ekliptik schnitt vor 4300 Jahren bei maximaler Höhe und nahe dem Stern Regulus den südlichen Meridian. Regulus stand also zum Frühlingsbeginn bei Sonnenuntergang, zur Sommersonnenwende mittags, zum Herbstbeginn bei Sonnenaufgang und zur Wintersonnenwende um Mitternacht hoch im Süden.

→ Siehe auch Die sieben hellsten Objekte der Ekliptik.

Der hellste in seiner Region noch einigermaßen nahe an der Ekliptik liegende Stern Fomalhaut (α Piscis Austrini) im Sternbild Südlicher Fisch (Piscis Austrinus) diente den alten Persern neben Aldebaran (α Tauri), Regulus (α Leonis) und Antares (α Scorpii) als vierter Königsstern zur Orientierung am Sternenhimmel, da jeder dieser vier Sterne die Hauptrichtung eines Himmelsquadranten markiert.[4] Die vier Sternbilder, die den vier christlichen Evangelistensymbolen Stier (Lukas), Löwe (Markus), fliegender Adler (Johannes) und Mensch (Matthäus) entsprechen, sind mit diesen vier Königssternen verknüpft: der Stier (Taurus) mit Aldebaran, der Löwe (Leo) mit Regulus, der über Skorpion (Scorpio) fliegende Adler (Aquila) mit Antares und der menschliche Wassermann (Aquarius) mit Fomalhaut, der zu Füßen des Wassermanns liegt.

→ Siehe auch Die vier Evangelistensymbole.

Der Mond durchläuft auf seiner monatlichen Bahn alle ekliptikalen Längen. Diese Längen wurden schon im Altertum in Mondhäuser eingeteilt, in denen sich der Mond jeweils genau einen Tag lang aufhält, bevor er in das nächste Mondhaus weiterwandert. Als Bezugspunkt diente auch schon im Altertum häufig der Frühlingspunkt. Um 700 vor Christi Geburt lag der Frühlingspunkt auf der Ekliptik bei der gleichen ekliptikalen Länge wie der Hauptstern Hamal (α Arietis) des heutigen Sternbilds Widder (Aries). Bei den Beduinen wurden 28 Mondhäuser verwendet, und Hamal lag im ersten Mondhaus Scheratan ("die beiden Zeichen") oder Alnath ("das Horn" des Lammes). Wenn sich der Mond in diesem Mondhaus befindet, ist er einen Tag später im zweiten Mondhaus Albotayn ("das Bäuchlein" des Lammes, dort befindet sich auch der Stern Nair al Butain, auch Bharani genannt) und noch einen Tag später im dritten Mondhaus Thuraya, das sind die Plejaden.

Die in die Ebene projizierten 28 Mondhäuser (von rechts nach links) mit den wichtigsten Sternen entlang der Ekliptik (rote gestrichelte Linie, ekliptikale Länge von 0 Bogengrad bis 360 Bogengrad zur Epoche J0000.0 in horizontaler Richtung, senkrecht dazu die ekliptikale Breite). Die beiden seitlichen Ränder der Abbildung gehen im Kreisbogen der Ekliptik nahtlos ineinander über. Die Plejaden befinden sich im dritten Mondhaus.

Bei den Indern gab es nur 27 Mondhäuser und Hamal lag ebenfalls im ersten Mondhaus Ashvini ("die beiden Rosseschirrenden"). Das zweite Mondhaus heißt Bharani ("der Wegtragende") und das dritte Mondhaus Krittika, was wiederum Siebengestirn bedeutet.

Kreisförmige Darstellung der nördlichen Hemisphäre mit den 28 chinesischen Mondhäusern. Links der Frühling (Osten), oben der Winter (Norden), rechts der Herbst (Westen, in der Mitte der Asterismus Mǎo (昴 = haariger Kopf des Sternbilds "Weißer Tiger") und unten der Sommer (Süden).

Die Chinesen haben die Ekliptik ebenfalls in 28 Mondhäuser eingeteilt. Das Mondhaus mit den Plejaden heißt dort Mǎo ("haariger Kopf"), liegt in der Mitte des Herbststernbilds "Weißer Tiger des Westens" und markiert dort den Herbstpunkt auf der Ekliptik, der dem Frühlingspunkt genau gegenüber liegt. Im Altertum gingen die Plejaden zur Tag-und-Nacht-Gleiche beim Herbstanfang während des Sonnenuntergangs genau im Osten auf.

Darstellungen im Altertum[Bearbeiten]

Bei den Plejaden handelt es sich um einen äußerst auffälligen Asterismus in der Nähe der Ekliptik, und sie sind daher praktisch von jedem Ort der Erde viele Monate lang in der Nacht zu sehen. Die einzelnen Sterne können vom Mond bedeckt werden, und so ist es nicht verwunderlich, dass ihnen zu allen Zeiten und an allen Orten eine besondere Bedeutung und Aufmerksamkeit am Sternenhimmel zugeordnet wurde.

Es wird diskutiert, ob die Plejaden innerhalb des Sternbilds Stier (Taurus) bereits in den steinzeitlichen Zeichnungen in der Höhle von Lascaux dargestellt sind.[5][6]

In der neolithischen Magura-Höhle in Bulgarien tauchen bei den Höhlenmalereien zum Beispiel sehr viele Figuren mit zum Himmel erhobenen Armen auf.[7] Viele Figuren ähneln deutlich dem heutigen Sternbild Orion. An der Wand eines Korridors gibt es eine mythisch anmutende Gruppe mit einer Siebengestalt. In einer anderen größeren Zusammenstellung sind in der oberen Hälfte zahlreiche Gestalten mit erhobenen Händen zu erkennen, wohingegen darunter eher eine irdische Szene mit Menschen und Tieren zu sehen ist. Auch mehrere sonnen- und mondartige sowie stierartige und stierkopfartige Figuren sind in der Nachbarschaft dieser Darstellungen zu erkennen. Es ist daher eine naheliegende Annahme, dass die erwähnte Siebengestalt die Plejaden oder vielleicht auch die sieben Wandelgestirne symbolisieren könnte.

Die Plejaden sind vermutlich auf der Himmelsscheibe von Nebra aus der frühen Bronzezeit (um 2000 vor Christus) als sieben goldene Scheibchen abgebildet. Auch das 1891 in Allach bei München gefundene keltische Eisenschwert aus dem dritten Jahrhundert vor Christus ist mit goldenen Tauschierungen ausgeführt, die die Plejaden zeigen.[8]

Sieben Kreise an der Kante des Randsteins 15 vom neolithischen Hauptgrabhügel Knowth in Irland.

Eine sehr ähnliche Darstellung findet sich auf einem Randstein des steinzeitlichen Ganggrabs Knowth im irländischen Boyne Valley in der Nähe von Newgrange. Der Hauptgrabhügel ist rund 5100 Jahre alt, etwa 12 Meter hoch und hat einen Durchmesser von 67 Metern. Er enthält zwei in Ost-West-Richtung verlaufende Gänge, die ursprünglich von 127 Randsteinen umgeben waren, von denen 124 noch erhalten sind. Auf der ebenen Oberfläche von Randstein 15 (kerbstone 15), der sich am östlichen Rand der Anlage befindet, ist in der Mitte möglicherweise eine Sonnenuhr dargestellt, und am Rand des Steins taucht eine Darstellung aus sieben Kreisen auf.[9][10]

In Mesopotamien sind die Plejaden auf mehreren aus Ton gefertigten assyrischen MUL.APIN-Keilschrifttafeln der Astrolab B Kalender verzeichnet (siehe auch unten Abschnitt „Die Schaltregel“).

Auch auf dem bronzezeitlichen Diskos von Phaistos von der Insel Kreta taucht 17 Mal ein kreisförmiges Symbol mit sieben innenliegenden Punkten auf, das mit den Plejaden in Verbindung gebracht wurde: Diskos.von.Phaistos.Siebenerkreissymbol.png[11]

Seit mehreren Jahren wird vermutet, dass auch auf dem zirka zwei Meter großen Stein mit becherförmigen Vertiefungen (französisch: "roche à cupules") auf der Hexenebene (französisch: "Plan des Sorcières") in der Gemeinde Lillianes im Aostatal die Plejaden abgebildet sind.[12]

Ähnliche Vermutungen gibt es für eine Anordnung von sieben Löchern beim Kalenderstein von Leodagger in Niederösterreich.[13]

Überlieferungen[Bearbeiten]

Die Plejaden sind das auffälligste Objekt im Asterismus des Himmelsstieres und auch des heutigen Sternbilds Stier (Taurus). Die Bezeichnung kommt aus dem Altgriechischen, es ist jedoch nicht eindeutig geklärt, was die ursprüngliche Bedeutung ist. Hierzu wird häufig das altgriechische Lehnwort πλείας (Nominativ Singular: "pleias", Genitiv, Singular: "pleiados", Nominativ Plural: "pleiades") für "Schiffer" herangezogen, weil sie als Himmelszeichen für den Beginn der weniger gefährlicheren Schiffbarkeit des Mittelmeers genutzt worden sind.[17] In auffällig vielen Sprachen werden Deminutive (Verkleinerungsformen) oder Attribute wie "klein" verwendet, um die Plejaden zu benennen. Der Bezug auf den altgriechischen Komparativ πλείων ("pleion") mit der Bedeutung "zahlreicher" ist ebenfalls nicht abwegig, denn in einem Sternhaufen sind die Sterne zahlreicher als bei einem einzelnen Stern. Diese Bedeutung taucht bei Begriffen wie "Haufen", "Versammlung" oder "Reichliche" sinngemäß auf. Ferner wurden wegen der Funktion als Kalenderstern auch die Ableitung vom altgriechischen Wort πλείων ("pleion") mit der Bedeutung "Jahr" beziehungsweise "Jahreszeit" sowie wegen der gelegentlich gebräuchlichen Bezeichnung als "Taubengestirn" auch der Ursprung aus πελειαδες ("pleleiades" = "Tauben") diskutiert.[18]

Die Plejaden werden im Deutschen auch Siebengestirn genannt, was den unmittelbaren Bezug zur magischen, mystischen und göttlichen Zahl Sieben herstellt.[19]

Für die Plejaden sind zahllose Synonyme im Gebrauch:[20][21][22][23]

Regensterne, Schiffersterne, Buschelsterni, Staubkörner, Sieb, Glucke, Henne, Tauben, Weintraube, Traube, Frühlingsjungfern, Sieben Schwestern, Töchter des Atlas (auch Atlantiden, Atlantiaden), ...
Zeichen für die Plejaden nach dem japanischen Kosmologen Abe no Seimei (* 921; † 1005).[24]

In den meisten Sprachen hatten und haben sie einen Eigennamen:

althochdeutsch thaz sibunstirri (das Siebenstirn), polnisch baby (alte Weiber), russisch baba (altes Weib), japanisch Subaru (Versammlung), türkisch Ülker, aztekisch Tianquiztli (Marktplatz), sumerisch Mul-Mul (Sterne), akkadisch Zappu (Haufen / Borste / Kamm) sowie Šebettu (die Sieben), aramäisch und hebräisch Kimah (Häuflein), arabisch Al-Thurayya (kleine Reichliche, die vielen Kleinen oder Kronleuchter)[25], lateinisch Vergiliae (Geflecht), griechisch heptasteros (Siebenstern), indisch Krittika (sechs Nymphen, die ihren Sohn, den hinduistischen Gott Karttikeya, aufzogen), chinesisch Mǎo (昴 = haariger Kopf des Sternbilds "Weißer Tiger"), australisch Mormodellick[3], maorisch Matariki, polynesisch Matarii (Gesellschaftsinseln)[3], hawaiisch Makaliʻi (auch im Zusammenhang mit einer "Schöpfkelle" oder als "Augen des Chefs" beziehungsweise "Gottes Augen")[26], inuitisch Sakiattiak (Brustbein), Ojibwe Bugonagiizhig (Loch im Himmel) sowie Madoo'asinik (schwitzende Steine), Mittleres Sioux Wiçinyanna Sakowin / Wiçincala Sakowin (sieben Mädchen), aragonesisch As Crabetas, walisisch Twr Tewdws, samisch Rougot (Hundemeute), finnisch Seulaset (Siebchen oder Siebengestirn), ...

Es sei angemerkt, dass das finnische Wort "seula" in "seulaset" für das deutsche Wort "Sieb" steht (althochdeutsch "sib"), der Suffix "-set" steht für die Verkleinerungsform "-chen", "seulaset" heißt wörtlich übersetzt also "Siebchen". Die Assoziation eines kleinen Siebes mit einem offenen Sternhaufen ist augenfällig, wobei die Anzahl der Löcher respektive der Sterne natürlich keineswegs genau sieben betragen muss.

Bei der Chaldäern hießen die Plejaden Tamsil (zu Deutsch "Herde" beziehungsweise "Versammelte" oder "Genossen").[27]

Bibelstellen[Bearbeiten]

Im Alten Testament wird der Sternhaufen drei Mal erwähnt, allerdings weisen die verschiedenen Übersetzungen keine einheitlichen Bezeichnungen oder Begriffe auf.[28][29]

Das 9. Kapitel „Gottes Macht und die Ohnmacht des Menschen“ des Buches Hiob erwähnt die vier auffälligsten Sternkonstellationen im 9. Vers:

Einheitsübersetzung (2016):
„Er macht das Sternbild des Bären, den Orion, das Siebengestirn, die Kammern des Südens.“

Vulgata:
„Qui facit Arcturum et Oriona et Hyadas et interiora austri.“

Septuaginta:
„ὁ ποιῶν Πλειάδα ("Pleiada") καὶ Εσπερον ("Esperon") καὶ Αρκτοῦρον ("Arktouron") καὶ ταμιεῖα νότου ("tamieia notou")“

Der erste Asterismus bei Hiobs Aufzählung lautet im Hebräischen "Aisch" ("איש"), was ebenso wie die entsprechende arabischsprachige Wurzel "Aouas" mit "einen Kreis machen" auch als "zusammenrotten" oder "versammeln" gedeutet werden kann.[28] Diese Interpretation steht im Einklang mit den entsprechenden Bedeutungen im Japanischen, Akkadischen oder Chaldäischen für das Siebengestirn (siehe oben).

Das altgriechische Wort "Esperon" beim zweiten Asterismus der Aufzählung bedeutet "Abendstern", und diese Bezeichnung taucht als "Vesperum" auch in einigen Versionen der Vulgata auf.[28] Im Hebräischen steht "Kimah" ("כימה"), was vom Wort "Kamah" ("כמה") abstammen könnte, welches wiederum soviel wie "begehren" oder "jubeln" bedeutet. Das arabische Pendant "Kaouam" beziehungsweise "Kam" charakterisiert den Frühling (Stichwort "Frühlingspunkt"). Das Wort "Kam" kann auch zur Veranschaulichung einer "Schar" oder einer "Vielfalt" dienen". Letzteres kann leicht mit der wörtlichen Bedeutung des altgriechischen Begriffs "Pleiada" in Bezug gesetzt werden.[28]

An dritter Stelle folgt im Hebräischen die Konstellation "Kesil" ("כזיל"). Die Wurzel dieses Wortes ist "Kasal" ("כזל"), was so viel wie "wechselhaft" bedeutet, wohingegen im Arabischen "starr" oder "kalt" die passenden Bedeutungen sind. Insofern kann in "Kesil" der Gegenpol zu "Kimah" am Sternenhimmel beziehungsweise bei den Jahreszeiten angesehen werden. Einige Interpretatoren gehen darauf basierend davon aus, dass es sich bei den Gegenpolen um zwei gegenüberliegende Sternbilder oder auch nur Sterne handeln könnte, wie der Rote Riese Aldebaran im Stier (α Tauri) im Wintersternbild Stier (Taurus) und der Rote Überriese Antares (α Scorpii) im Sommersternbild Skorpion (Scorpio).[28] Die Sternbilder Orion und Stier (Taurus) mit den Plejaden und den Hyaden werden auch Wintersternbilder genannt, weil sie im Winter um Mitternacht auf dem südlichen Meridian kulminieren, wo sie vollständig und besonders gut zu sehen sind. Umgekehrt ist es mit den zu den Wintersternbildern auf dem Lebewesenkreis diametralen Sommersternbildern Skorpion (Scorpio) und Adler (Aquila) in der Sommermilchstraße, die im Sommer um Mitternacht auf dem südlichen Meridian kulminieren.

Im Hebräischen steht bei Hiob "Mazzaroth" ("מזרות"), was mehrere Sternbilder oder speziell den Zodiak (Lebewesenkreis) meinen könnte, insbesondere wenn das ursprüngliche Wort "Nazar" ("נזר") zugrunde gelegt wird, welches "umzingeln" beziehungsweise "umkreisen" bedeutet. Schließlich könnten mit den (geheimen) Kammern des Südens auch alle Sterne gemeint sein, die zirkumpolar um den südlichen Himmelspol kreisen, somit nie auf der nördlichen Hemisphäre sichtbar werden und demzufolge verborgen sind.[28] Die Kleinschreibung in den alten Sprachen suggeriert, dass es sich bei den "Kammern des Südens" nicht um den Namen für einen Asterismus, sondern um südlich gelegene Mondhäuser (oder "Mondstationen" respektive "Mondkammern") handeln könnte, in denen sich der Mond in der Nähe des südlichen Meridians, wegen der dort auftretenden oberen Kulmination, gut erkennbar jeweils einen Tag lang aufhält.[27] Diese Annahme wird unterstützt durch den ähnlich klingenden assyrischen Begriff "manzaltu" für "Station". Andere Autoren gehen davon aus, dass mit den Kammern des Südens die Milchstraße gemeint ist.[30]

Im 31. Vers des 38. Kapitels des Buches Hiob heißt es dann:

Einheitsübersetzung (2016):
„Knüpfst du die Bande des Siebengestirns oder löst du des Orions Fesseln ?“

Vulgata:
„Numquid coniungere valebis nexus stellarum Pleiadum aut funiculum Arcturi poteris solvere?“

Septuaginta:
„συνῆκας δὲ δεσμὸν Πλειάδος ("Pleiados") καὶ φραγμὸν Ωρίωνος ("Orionos") ἤνοιξας“

Im Buch des Propheten Amos im Kapitel 5, Vers 8 heißt es zu den beiden benachbarten Konstellationen:

Einheitsübersetzung (2016):
„Er hat das Siebengestirn und den Orion erschaffen; er verwandelt die Finsternis in den hellen Morgen, er verdunkelt den Tag zur Nacht.“

Nova Vulgata:
„Qui facit stellas Pliadis et Orionem

Vulgata:
„facientem Arcturum et Orionem

Septuaginta:
„ποιῶν πάντα ("panta") καὶ μετασκευάζων ("metaskeuazon")“

Bezug zur Vierzig[Bearbeiten]

Die Plejaden hatten in vielen Kulturen also eine besondere Bedeutung und tauchen häufig in bildlichen Darstellungen auf. Sie sind ein Kalendergestirn, nach dessen Auf- und Untergängen schon im Altertum landwirtschaftliche und seefahrerische Tätigkeiten ausgerichtet wurden, wie es zum Beispiel schon bei den griechischen Dichtern  Hesiod um 700 vor Christus[31][32] oder  Aratos von Soloi (* zirka 310 vor Christus; † 245 vor Christus) belegt ist. Hesiod erwähnt in seinem Text auch, dass die Plejaden im Frühjahr für vierzig Tage und Nächte nicht zu sehen sind, da sie vom Sonnenlicht überstrahlt werden. Der Name Plejaden geht auf die sieben Töchter des Titanen Atlas und seiner Gattin, der Okeanide Pleione, aus der griechischen Mythologie zurück. Sie heißen: Alkyone, Halcyone, Asterope (oder Sterope), Kelaino, Maia, Merope und Taygete.

Der Begriff Quarantäne (vom Französischen „quarantaine (de jours)“ = „vierzig Tage“) soll mit den Plejaden zusammenhängen, da diese in den subtropischen Breiten (heute) vom 1. Mai bis zum 9. Juni, also vierzig Tage lang, von der Sonne überstrahlt werden und dann selbst der hellste Stern dieser Konstellation, Alkione (η Tauri), mit bloßem Auge erst kurz nach Sonnenuntergang nicht mehr und dann kurz vor Sonnenaufgang noch nicht wieder gesehen werden kann.

Nach der Unsichtbarkeit der Plejaden begann im alten Ägypten vierzig Tage lang das Nilwasser zu steigen und ebenso lange wieder zu fallen.[33]

Noah öffnete nach vierzig Tagen das Fenster seiner Arche[34], und Moses verbrachte vierzig Tage auf dem Gottesberg Sinai.[35] Es ist vor diesem Hintergrund nicht verwunderlich, dass im Neuen Testament Jesus dann auch vierzig Tage in der Wüste fastet[36][37][38], weswegen es in der österlichen Bußzeit heute ebenfalls vierzig Fastentage gibt.

Siehe auch: Quadriviale Kuriositäten / Zahlen / Zur Vierzig

Sagenwelt[Bearbeiten]

Der Devils Tower im Nordosten des US-amerikanischen Bundesstaates Wyoming.

Bei den Kiowa-Indianern geht die Sage, dass sieben Mädchen sich vor mehreren Bären auf einen Felsen flüchteten und ihn anflehten sie zu retten. Daraufhin sei dieser heute als Devils Tower bekannte Vulkankegelstumpf immer weiter in den Himmel gewachsen und brachte die Mädchen schließlich als die Plejaden an das Firmament. Die von den Bärenkrallen an den Flanken des Berges verursachten vertikalen Schrammen seien immernoch zu sehen.[39]

Die Inuit erzählen sich die Legende, dass ein großer Bär die Menschheit bedrohte und von Hunden an den Himmel verjagt wurde. Die Hundemeute würde als die Plejaden diesen Bären heute weiterhin verfolgen.[22]

Die australischen Ureinwohner der Loritja erzählen sich, dass sieben Mädchen während der Unsichtbarkeit der Plejaden auf die Erde kommen und einen Feuertanz aufführen.[40]

Im Zusammenhang mit der Tatsache, dass der Kuckuck im Frühsommer aufhört zu singen und dass die Plejaden in den Breitengraden der klimatisch gemäßigten Zonen dann deutlich länger nicht zu sehen sind, gibt es eine deutsche Sage über einen hartherzigen Bäcker, der bis zur Sommersonnenwende 72 Tage lang vergeblich nach seiner Frau und seinen Töchtern ruft. In dieser Sage es heißt:

Vom Ursprung der Plejaden wird erzählt: Christus ging an einem Bäckerladen vorüber, wo frisches Brot duftete, und sandte seine Jünger hin, ein Brot zu erbitten. Der Bäcker schlug es ab, doch von Ferne stand die Bäckersfrau mit ihren sechs Töchtern und gab das Brot heimlich. Dafür sind sie als Siebengestirn an den Himmel versetzt, der Bäcker aber ist zum Kuckuck geworden und so lange er Frühjahrs ruft, von Tiburtii (Anmerkung: Namenstag  Tiburtii von Rom ist der 14. April) bis Johannis (Anmerkung: Namenstag  Johannes' des Täufers ist der 24. Juni (Johannistag)), ist das Siebengestirn am Himmel [nicht] sichtbar.[20]

In norddeutschen, ostpreußischen und böhmischen Sagen gibt es Varianten dieser Geschichte, bei denen der Kuckuck die geflüchteten Familienangehörigen nicht zurückrufen kann beziehungsweise deren Rache fürchtet.[21][41] Eine Mecklenburgische Volksüberlieferung lautet:

Viertig Dag un viertig Nacht darf de Kukuk sik man sehn laten, denn is dat Soebenstiern hier wech; wenn dat wedderkümmt, denn mööt de Kukuk wider. ("mööt" = "muss (weichen)")[42]

Bei zwei dänischen Varianten geht es um eine Frau mit sieben unehelichen Kindern und um ein zerstrittenes Ehepaar.[43][44]

Zusammenhang mit dem Stier[Bearbeiten]

Asterismus des Himmelsstieres mit den Bezeichnungen der hellsten Sterne. Die Plejaden liegen auf dem Rücken des Himmelsstieres.

Der offene Sternhaufen der Plejaden hat sieben Sterne, die eine scheinbare Helligkeit von dritter bis fünfter Größenklasse haben und somit gut mit bloßen Auge zu erkennen sind. Die Plejaden liegen auf dem Rücken des Himmelsstieres und könnten aus diesen Gründen als Urquell der sieben Wandelgestirne angesehen werden. Althochdeutsch wird der Sternhaufen mit „sibunstern“, „sibunstirni“, oder „sibunstirri“ bezeichnet.[45] Die Übersetzung ins Lateinische ist nicht eindeutig (siehe oben), da hier sowohl „Pleiades“ und „Hyades“ als auch „septemtriones“[46] („sieben Dreschochsen“) anzutreffen sind. Insbesondere bei den Wörtern für „sieben“ und für „Stier“ sowie „Gestirn“ oder „Stern“ sind die Ähnlichkeiten in den uralten (proto-indoeuropäischen oder altsemitischen) Sprachen so auffällig, dass sie gemeinsame Ursprungswörter (Etyma) haben und somit Kognaten sein dürften. Beispiele sind:[47]

  • "sieben": proto-semitisch "*šabʕum", akkadisch "sebe", proto-indoeuropäisch "*septḿ̥", proto-germanisch "*sebun", althochdeutsch "sibun", hebräisch "sajin" (Buchstabe) oder "scheva'" (Wort), etruskisch "semph", maltesisch "sebgħa", arabisch "sabʿa", lateinisch "septem", griechisch "επτά" ("(h)epta"), proto-balto-slawisch "*septin", proto-indo-iranisch "*saptá", maltesisch "sebgħa", katalanisch "set", spanisch "siete", galicisch "sete", italienisch "sette", französisch "sept", englisch "seven", wallisisch "saith"
  • "Stier":[48] akkadisch und assyrisch "šūru", aramäisch "tōra'", hebräisch "šǒr", althochdeutsch "stior", ugaritisch "twr", lateinisch "taurus", griechisch "ταύρος" ("tauros"), arabisch ثور ("thawr"), italienisch, katalanisch und spanisch "toro", galicisch "touro", französisch "taureau", schwedisch "tjur", dänisch "tyr", gallisch "tarvos", irisch und gälisch "tarbh", wallisisch "tarw"
  • "Stern / Gestirn": indogermanisch "*ster", akkadisch "istar", lateinisch "astrum" / "stella", griechisch "άστρο" / "αστέρι" ("astro" / "asteri"), althochdeutsch "stern(o)", galicisch "estrela", katalanisch und spanisch "estrella", englisch "star", isländisch "stjarna", italienisch "stella", maltesisch "stilla", dänisch und norwegisch "stjerne", schwedisch "stjärna", rumänisch "stea"

Im Althochdeutschen wären die lateinischen „septemtriones“ die „sibunstiori“, was den althochdeutschen „sibunstirri“ wiederum sehr ähnlich kommt. Es wäre demzufolge denkbar, dass der Himmelsstier als "Geburtstrichter" der Thuraya mit seinem Siebengestirn als "Geburtshelfer" für die sieben Wandelgestirne angesehen wurde und dass die göttliche Zahl „Sieben“ mit den göttlichen Begriffen „Gestirn“ und „Stier“ im Laufe der Zeiten mit variierender Kombination, Bedeutung und Verwendung assoziiert wurde.

Anmerkung:
Eine Variante des lateinischen Wortes „septemtriones“ ist die lateinische Bezeichnung „septentrio“ für die nördliche Himmelsrichtung. Die vier Haupthimmelsrichtungen sind geographisch im Horizontsystem definiert. In Italien wurde das Sternbild Großer Bär (Ursa Major) "septentrio" ("Siebenfigur") genannt.[49] Der Asterismus Großer Wagen im Sternbild Großen Bär besteht aus sieben sehr deutlich zu erkennenden Sternen und befindet sich von der Erde aus gesehen immer zwischen Nordwesten und Nordosten. Der Große Wagen ist in nördlichen Breiten seit Jahrtausenden zirkumpolar, befindet sich also nie unterhalb des Horizonts und steht keineswegs immer dicht über dem nördlichen Horizont. Nur im Sommer erfolgt die untere Kulmination auf dem nördlichen Meridian um Mitternacht.
Es möge in diesem Zusammenhang zur Kenntnis genommen werden, dass sich die nördlichen Richtungen auch als Wohnstatt von sieben Gestirnen gesehen werden können. Hierfür kommen sowohl das Siebengestirn, als auch die sieben Wandelgestirne in Frage, die im Norden nie zu sehen sind, weil sich die Ekliptiklinie dort stets unterhalb des Horizonts befindet. Das gleiche gilt für den Himmelsstier. Unabhängig von der genauen Bedeutung könnte also durchaus erwogen werden, dass sich der Begriff „septentrio“ von der Richtung ableitet, in welcher die „septemtriones“ (die „sieben Ochsen“) nie zu sehen sind, sich also in ihrem Ruheort verbergen.

Die Schaltregel[Bearbeiten]

Zweispaltige babylonische MUL.APIN-Tafel aus Ton mit Keilschrift im Britischen Museum in London. Die erste Tafel enthält astronomische Abhandlungen zu Himmelsabschnitten, Daten von Auf- und Untergängen wichtiger Sterne sowie 18 Mondstationen inklusive der drei ersten Mondstationen: die Plejaden, der Himmelsstier und Orion.

Seit 1978 ist bekannt, dass die mesopotamischen Keilschrifttexte des MUL.APIN, die seit dem siebenten Jahrhundert vor Christus hergestellt wurden und die sogenannte Plejaden-Schaltregel beschreiben, sich hierbei auf eine Zeit beziehen, die deutlich vor der Entstehung der noch erhaltenen und offenbar (mehrfach) kopierten Tontafeln liegt, nämlich auf das 26. Jahrhundert vor Christus.[2] Dies ergibt sich aus den in den Texten explizit angegebenen astronomischen Daten zu den Sichtbarkeiten der Plejaden (sumerische Bezeichnung MUL.MUL = "Sterne") und den Monatsanfängen. Aufgrund der Präzession der Erdachse verschiebt sich zum einen der Frühlingspunkt entlang der Ekliptik immer weiter nach Westen (kleinere ekliptikale Längen). Zum anderen verändern sich auch die Aufgangs- und Untergangsazimute der Gestirne ein wenig.

Wenn ein anhand der Beobachtung der Mondphasen ein sehr leicht zu führender Mondkalender (Lunarkalender) verwendet wird, verschieben sich die Tag-und-Nacht-Gleiche respektive der Frühlingsanfang und der Herbstanfang jährlich um elf Tage nach hinten, weil immer nur zwölf synodische Monate (jeweils von Neulicht zu Neulicht mit zirka 29,5 Tagen) beziehungsweise 354 Tage berücksichtigt werden. Das tropische Sonnenjahr hat jedoch gut 365 Tage, dauert also rund elf Tage länger als zwölf synodische Monate. Um aus dem Lunarkalender einen Lunisolarkalender zu machen, der mit dem tropischen Sonnenjahr im Einklang bleibt, haben schon die alten Babylonier ungefähr alle drei Jahre ein 13. synodischer Schaltmonat eingefügt.

Der Julianische und der Gregorianische Kalender sind reine Sonnenkalender (Solarkalender), bei denen der Frühling immer um den 21. März beginnt. Hier wird die Synchronität der zwölf Monate mit dem Jahreszyklus dadurch hergestellt, dass die Monate 30 oder 31 Tage haben, also länger als ein synodischer Monat dauern. Der letzte Monat der ursprünglichen Sonnenjahres, der Februar, hat als einziger Monat 28 Tage. Da das tropische Sonnenjahr nicht exakt 365 Tage hat, sondern knapp einen Vierteltag länger dauert, wird im Julianischen Kalender alle vier Jahre (Jahreszahl ohne Rest durch vier teilbar) als letzter Tag des Jahres ein 29. Februar als Schalttag eingeführt. Durch die gregorianische Kalenderreform im Jahr 1582 wurde dem Umstand Rechnung getragen, dass die Differenz zwischen dem tropischen Sonnenjahr und 365 ganzen Tagen nicht exakt einen Vierteltag beträgt, sondern etwas weniger, nämlich nur rund 0,24219 Tage. Da sich nach fast 16 Jahrhunderten die Differenz zwischen Frühlingsanfang und dem 21. März auf zehn Tage aufsummiert hatte, wurde beim Wechsel vom Julianischen Kalender zum Gregorianischen Kalender zum einen um zehn Tage nach vorne gesprungen, und zum anderen wurde nicht mehr alle vier Jahre ein Schaltjahr eingeschoben, sondern alle einhundert Jahre wurde das Schaltjahr weggelassen und alle vierhundert Jahre wiederum nicht weggelassen. Die Jahreslänge nährt sich dem tropischen Sonnenjahr damit deutlich besser an und beträgt im Mittel:

Damit ist das tatsächliche tropische Sonnenjahr auf weniger als eine Minute genau angenähert. Das mittlere Gregorianische Jahr dauert zur Zeit nur zirka 27 Sekunden länger als das tatsächliche tropische Sonnenjahr.

Da die Differenz zwischen drei tropischen Jahren (1095,7 Tage) und 37 synodischen Monaten (1092,6 Tage) nicht Null, sondern gut drei Tage beträgt, muss auch bei der Anwendung einer Drei-Jahres-Regel gelegentlich eine Korrektur angebracht werden. Diese führt dazu, dass manchmal nicht schon im dritten Jahr, sondern erst im vierten Jahr ein dreizehnter synodischer Schaltmonat eingefügt wird. Die Plejaden-Schaltregel ist zu diesem Zweck sehr hilfreich, da sie das Mondalter in den ersten Tagen des Neulichts mit der ekliptikalen Länge der Sonne im Frühlingspunkt in Bezug setzt und somit dafür sorgt, dass der Frühlingsvollmond stets möglichst dicht an der Tag-und-Nacht-Gleiche im Frühjahr stattfindet.

Die babylonische Plejaden-Schaltregel ist in den Zeilen acht bis elf der zweiten Tontafel der MUL.APIN-Serie festgehalten worden. Die Keilschriftzeichen der Anfänge von Zeile zehn und elf sind zwar nicht vollständig erhalten, können jedoch relativ zuverlässig und sinngebend rekonstruiert werden:[2]

8 Wenn am ersten Nisannu Plejaden und Mond sich die Waage halten, ist dieses Jahr normal.
9 Wenn am dritten Nisannu Plejaden und Mond sich die Waage halten, ist dieses Jahr voll.
10 Wenn am ersten Ajaru die Plejaden aufgehen, ist dieses Jahr normal.
11 Wenn am ersten Simanu die Plejaden aufgehen, ist dieses Jahr voll.

Sowohl die Zeilen 8 und 9 als auch die Zeilen 10 und 11 stellen unabhängig voneinander jeweils eine Regel dar, nach welcher das Jahr bestimmt werden kann, in dem ein Schaltmonat einzuführen ist.

Nisannu, Ajaru und Simanu heißen die ersten drei synodischen Monate des babylonischen Kalenders. Diese Monatsnamen sind akkadische Bezeichnungen. Akkadisch ist die stark vom noch älteren Sumerisch beeinflusste protosemitische Sprache, aus der zahlreiche semitische Sprachen hervorgegangen sind, wie zum Beispiel Phönizisch, Aramäisch, Syrisch, Arabisch, Maltesisch, aber auch Hebräisch. So finden sich diese Monatsbezeichnungen in sehr ähnlicher Form auch im religiösen Lunisolarkalender des Judentums wieder: Nisan, Ijjar und Siwan.

Ein normales Jahr hat zwölf synodische Monate und ein volles (respektive übergroßes) Jahr wird um einen Schaltmonat erweitert. Nach dem zwölften Monat des Jahres mit der Bezeichnung Addaru (hebräisch Adar) gab es dann noch einen 13. Monat mit der Bezeichnung Addaru II. Im Hebräischen heißen diese beiden Monate Adar aleph ("Adar A") oder Adar rischon (erster Adar) sowie Adar beth ("Adar B") oder Adar scheni (zweiter Adar).

"Sich die Waage halten" bedeutet, dass die Plejaden und die Mondscheibe in Konjunktion stehen. Hierbei bleibt offen, welche der beiden üblichen Definitionsmöglichkeiten für eine Konjunktion bei den Babyloniern zur Anwendung gekommen war, denn

  • entweder handelt es sich um das Erreichen der gleichen Horizonthöhe im horizontalen Koordinatensystem,
  • oder es handelt es sich um das Erreichen der gleichen ekliptikalen Länge im ekliptikalen Koordinatensystem.

Die Wahl der Definition hat jedoch keine große Auswirkung auf die Datierung der astronomischen Ereignisse, da sie am Abend über dem westlichen Horizont beide innerhalb von wenigen Stunden auftreten. Ferner kann berücksichtigt werden, dass die Ekliptik beim Untergang der Plejaden in Mesopotamien zur Tag-und-Nacht-Gleiche im Frühling fast senkrecht auf dem Horizont steht und es deswegen in diesem Himmelsausschnitt nur zu sehr geringe Unterschieden zwischen Höhenwinkeln und ekliptikalen Längen kommt.

Zur Interpretation der beiden Plejaden-Schaltregeln sind noch einige weitere Punkte als bekannt vorauszusetzen:

  • Alle Monate beginnen an dem Tag mit dem Neulicht des Mondes beim Abenderst über dem westlichen Horizont. Hier hat die Mondsichel ein Mondalter von ein bis zwei Tagen nach Neumond, und der Mond hat demzufolge in Bezug auf die Sonne eine östliche Elongation von 15 bis 25 Bogengrad erreicht.
  • Mit "aufgehen" ist der heliakische Aufgang der Plejaden am östlichen Horizont beim Morgenerst gemeint, nachdem sie nach ihrem Abendletzt beim akronychischen Untergang ungefähr vierzig Tage lang nicht beobachtet werden konnten, weil sie während dieser Zeit zu sehr in Sonnennähe standen, von der Sonne überstrahlt wurden und die Sonne retrograd an ihnen vorbeigezogen ist. Da der offene Sternhaufen der Plejaden eine nördliche ekliptikale Breite von ungefähr vier Bogengrad hat, steht die Sonnenscheibe nach zwanzig Tagen der Unsichtbarkeit der Plejaden bei der Konjunktion von Sonne und Plejaden vier Bogengrad südlich vom Sternhaufen.
  • Die Tag-und-Nacht-Gleiche im Frühjahr (Frühlingsäquinoktium) wurde von den Babyloniern auf den Frühlingspunkt festgelegt, an dem sich der erste Vollmond des Jahres zeigt. Ein ähnlicher Ansatz mit dem Frühlingsvollmond gilt übrigens auch heute noch für die Festlegung des jüdischen Pessach-Festes, das am Seder, dem Vorabend des 15. Nisan beginnt, beziehungsweise für die Festlegung des christlichen Osterfestes, das am Sonntag nach dem ersten Frühlingsvollmond stattfindet.

Im tatsächlichen Frühlingsäquinoktium hat die Sonne in allen Epochen exakt die ekliptikale Länge Null. Ein gleichzeitig auftretender Neumond hat dann ebenfalls die ekliptikale Länge Null. Da nach der babylonischen Definition der Frühlingsbeginn jedoch immer mit dem Vollmond in der Mitte des Monats zusammenfällt, befindet sich die retrograd entlang der Ekliptiklinie laufende Sonne zu Beginn des Monats, also rund 14 Tage vorher noch mit der Differenz bei einer kleineren ekliptikalen Länge vor dem Frühlingspunkt von ungefähr

,

wenn eine Jahreslänge von 365,25 Tagen angesetzt wird.

Der Mond bewegt sich ebenfalls ständig retrograd entlang der Ekliptik, wobei er innerhalb eines siderischen Monats 360 Bogengrad durchläuft. Da ein siderischer Monat die Dauer von 27,322 Tagen hat, ergibt sich eine mittlere tägliche Mondbewegung von:

Der Mond bewegt sich an einem Tag also fast genauso weit wie die Sonne in zwei Wochen. Die folgende Tabelle gibt an, wie sich die Mondsichel in den ersten Tagen nach Neumond (Mondalter gleich Null) im Mittel entwickelt, wenn sowohl Mond als auch Sonne zum Startzeitpunkt im Frühlingspunkt stehen (ekliptikale Länge gleich Null):

Mondphasen nach Neumond
Mondalter
in Tagen
Mondsichel
in Prozent
Ekliptikale Länge
Mond
in Bogengrad
Ekliptikale Länge
Sonne
in Bogengrad
Östliche Elongation
des Mondes
in Bogengrad
Anzahl der Tage
bis die Sonne
die ekliptikale Länge
des Mondes erreicht
0,0 0,0 0,0 0,0 0,0 0
0,5 0,3 6,6 0,5 6,1 6
1,0 1,1 13,2 1,0 12,2 12
1,5 2,5 19,8 1,5 18,3 19
2,0 4,5 26,4 2,0 24,4 25
2,5 6,9 32,9 2,5 30,5 31
3,0 9,8 39,5 3,0 36,6 37
3,5 13,2 46,1 3,4 42,7 43
4,0 17,0 52,7 3,9 48,8 49

Durch die schwankenden Bahngeschwindigkeiten von Mond und Erde können sich je nach betrachtetem Jahr Abweichungen von diesen mittleren Werten ergeben.

Die Plejaden können mit ihrer scheinbaren Helligkeit von 1,5m freiäugig erst beobachtet werden, wenn sie gut zwei Bogenengrad über dem Horizont stehen. Die Sonne muss gleichzeitig (zum Ende der astronomischen Dämmerung) noch tief genug unter dem Horizont stehen, um durch ihr Streulicht in der Atmosphäre das Sternenlicht nicht zu überstrahlen.

Für den ersten mesopotamischen Monat Nisannu stellt sich die Situation anhand der ersten Plejaden-Schaltregel in drei aufeinanderfolgenden Jahren auf der geographischen Breite von Babylon folgendermaßen dar:

Die Plejaden-Schaltregel im Monat Nisannu beim abendlichen Untergang von Mond und Plejaden (weißer Sternhaufen) im Westen. Die Sonne (gelb) ist zu diesem Zeitpunkt bereits untergegangen und steht so weit unter dem Horizont (dunkelgrün), dass hellere Sterne zu sehen sind. Die Ekliptik (rot gepunktet) steht in Mesopotamien um die Tag-und-Nacht-Gleiche im Frühjahr fast senkrecht auf dem westlichen Horizont:
- Im Jahr X ist das Neulicht des Mondes beim akronychischen Untergang zum Abenderst am 1. Nisannu noch gerade so über dem westlichen Horizont neben den Plejaden zu sehen. Dieser Zeitpunkt fällt mit dem akronychischen Untergang der Plejaden bei ihrem Abendletzt zusammen. Dieses Jahr gilt im babylonischen Kalender als ein normales Jahr.
- Im Jahr X steht die Sonne am 15. Nisannu neben den Plejaden im Frühlingspunkt (Epoche J-2600). An diesem Tag herrscht Vollmond, der zur dargestellten Tageszeit nach Sonnenuntergang am Abend im Osten gerade eben aufgegangen ist.
- Im Jahr X+1 steht die Mondsichel am 2. Nisannu neben den Plejaden.
- Im Jahr X+2 steht die Mondsichel am 3. Nisannu neben den Plejaden. Am Ende dieses Jahres wird nach dem 12. Monat Addaru ein 13. Schaltmonat mit der Bezeichnung Addaru II eingefügt, um Mondjahr und Sonnenjahr wieder zu synchronisieren. Dieses Jahr gilt im babylonischen Kalender als ein volles (übergroßes) Jahr.
Die Plejaden-Schaltregel am östlichen Horizont (dunkelgrün, Ekliptik rot gepunktet) anhand der Beobachtung des heliakischen Aufgangs der Plejaden. Die Sonne (gelb) befindet sich noch 12 Bogengrad unterhalb des Horizonts:
- Im normalen Jahr findet der heliakische Aufgang der Plejaden einen Monat später als der akronychische Untergang (Abendletzt) am 1. Nisannu statt, also am 1. Ajaru (Neulicht des Mondes am Abend).
- Ein Jahr später findet der heliakische Aufgang der Plejaden am 15. Ajaru statt, während der gleichzeitig auftretende Vollmond gegenüber im Westen untergeht.
- Zwei Jahre später, im vollen (übergroßen) Jahr, findet der heliakische Aufgang der Plejaden einen Monat später als im normalen Jahr statt, nämlich am 1. Simanu (Neulicht des Mondes am Abend). Am Ende dieses Jahres wird nach dem 12. Monat Addaru ein 13. Schaltmonat mit der Bezeichnung Addaru II eingefügt, um Mondjahr und Sonnenjahr wieder zu synchronisieren.

Die zweite Plejaden-Schaltregel betrachtet ebenfalls in diesem Dreijahreszeitraum, aber unabhängig von einer Konjunktion zwischen Mond und Plejaden den heliakischen Aufgang der Plejaden über dem östlichen Horizont beim Morgenerst. Die Ekliptik steht in Mesopotamien um die Tag-und-Nacht-Gleiche im Frühjahr morgens deutlich flacher zum Horizont als abends, so dass der Aufgang der Plejaden nicht so schnell erfolgt wie der Untergang.

Aus den Fakten ergibt sich unter der Berücksichtigung des Wanderns der Frühlingspunktes durch den vollen Kreis der Ekliptik innerhalb von rund 25800 Jahren, dass beide von den MUL.APIN-Tafeln bekannten Plejaden-Schaltregeln der Babylonier bereits in der Mitte des dritten Jahrtausends vor Christus ihre Gültigkeit hatten und demzufolge zu diesem Zeitpunkt schon bekannt und in Verwendung gewesen sein muss.[2] Der Frühlingspunkt befand sich zur Epoche J-2600 im Goldenen Tor der Ekliptik im heutigen Sternbild Stier (Taurus, die Sumerer kannten den Himmelsstier), und der Hauptstern der Plejaden, Alkyone, hatte damals eine ekliptikale Länge von 356,4 Bogengrad. Zum Zeitpunkt der Herstellung der überlieferten MUL.APIN-Tafeln war der Frühlingspunkt schon erheblich weiter in Richtung Sternbild Widder (Aries) gewandert, so dass die Plejaden-Regeln im strengen Sinn keine Gültigkeit mehr hatten. Heute befindet sich der Frühlingspunkt bereits noch ein Sternbild weiter, nämlich im Sternbild Fische (Pisces), so dass die babylonischen Schaltregeln in der überlieferten Form nicht mehr angewendet werden können.

Diese schon auf die Sumerer zurückgehende und einfach zu befolgende Schaltregel wurde vermutlich bereits zu Beginn des ersten vorchristlichen Jahrtausends aus dem Neuassyrischen Großreich in das Nordreich Israel gebracht.[50]

Schlussbemerkung[Bearbeiten]

Indessen mögen diese Bemerkungen zur Bestätigung des Satzes dienen, dass die Schriften der Alten, wozu die blosse Sprachkenntnis nicht ausreicht, um so vollkommener verstanden werden, jemehr wir mit der Archäologie der Urwelt vertraut werden.

Schlusssatz aus:
Erklärung einer Stelle in Sanchuniathons Geschichte nach Philo Byblius Uebersetzung bei Eusebius (Praeparat. Evangel. L. I. cap. X) von  Gustav Seyffarth, ausserordentlicher Professor der Archäologie zu Leipzig.,
in: Neue Jahrbücher für Philologie und Pädagogik oder Kritische Bibliothek für das Schul- und Unterrichtswesen.,
herausgegeben von  Gottfried Seebode,  Johann Christian Jahn und  Reinhold Klotz,
zweiter Supplementband. Erstes Heft. Leipzig, Benedictus Gotthelf Teubner Verlag, 1833.

Es bleibt hinzuzufügen, dass die "Archäologie der Urwelt" mit Hilfe der Archäoastronomie ein wesentlich umfassenderes und somit nutzbringend erweitertes Bild des Altertums geben kann.

Einzelnachweise[Bearbeiten]

  1. Walter Eichin und Andreas Bohner: Das Belchen-System, Universitätsbibliothek Freiburg im Breisgau, in: Das Markgräflerland: Beiträge zu seiner Geschichte und Kultur, 47, 1985, Heft 2, Seiten 176 bis 185
  2. 2,0 2,1 2,2 2,3 Werner Papke: Zwei Plejaden-Schaltregeln aus dem 3. Jahrtausend, Archiv für Orientforschung, 31. Band, 1984, Seiten 67-70
  3. 3,0 3,1 3,2 Ernst von Bunsen: Die Plejaden und der Thierkreis oder: Das Geheimnis der Symbole, Verlag von Mitscher und Röstell, Berlin, 1879
  4. Dirk Lorenzen: Fomalhaut im Südlichen Fisch - Der Herbststern, Deutschlandfunk, 9. November 2016
  5. Dirk Lorenzen: Astronomie in der Höhle, Deutschlandfunk, 11. September 2015
  6. Sternenkarten in der Eiszeithöhle – Astronomie in den Höhlenmalereien von Lascaux?, scinexx, 1. Februar 2008
  7. Kiril Kirilov: The origin of civilizations according to the prehistoric paintings of Magura cave, 29. Juni 2017
  8. Peter Kurzmann: Die Plejaden in Gold auf einem keltischen Schwert, Archäologische Informationen 39, 2016, 239-246
  9. Euan W. MacKie: Professor Challenger and His Lost Neolithic World: The Compelling Story of Alexander Thom and British Archaeoastronomy, Archaeopress Publishing Limited, Februar 2021, ISBN 9781784918347
  10. Euan W. MacKie: The Prehistoric Solar Calendar: An Out-offashion Idea Revisited with New Evidence, in: Time and Mind: The Journal of Archaeology, Consciousness and Culture, Band 2, Ausgabe 1, March 2009, Seiten 9 bis 46
  11. Angelika Merk-Schäfer: Der Diskos von Phaistos - ein Venus- und Mondkalender im Kontext der minoischen Altpalastzeit auf Kreta. Die mit Symbolen gestempelte Scheibe aus gebranntem Ton ist höchstwahrscheinlich ein Agrar- und Ritualkalender im Dienste der Mond- und Venus-Gottheiten im minoischen Kreta., drmerkschaefer.files.wordpress.com, Juni 2015
  12. Lillianes Plan des Sorcières, roche à cupules, La Società valdostana di Preistoria e Archeologia
  13. Irene Hager, Hans Katzgraber, Karl Aigner, Stefan Borovits, Ernst Bellant: Die Darstellung von (konkreten oder symbolischen?) Himmelsobjekten auf dem Plateau des Kalendersteins in Leodagger (Niederösterreich), in: Himmelswelten und Kosmovisionen, Imaginationen, Modelle, Weltanschauungen, Abstractbook 2019, Seite 5 und 6, Gesellschaft für Archäoastronomie, Wien
  14. The Pleiades carved by prehistoric people in the Alps, ANSA, Virgilio Notizie, 12 January 2008
  15. Umzeichnung nach der Filmszene von Erwin Wiedergrüsser: Licht und Steine - Maltas Tempel zur Wintersonnenwende, YouTube, 9:00 Minuten bis 10:04 Minuten, 24. Januar 2016
  16. Friedhelm Pedde: Götter und Planeten im Alten Orient – Die Sterne und ihre Götter, Mitteilungen, Ausgabe 13, Seite 7, Februar 2022, Wilhelm-Foerster-Sternwarte e.V. / Zeiss-Planetarium am Insulaner
  17. Wübbe Ulrich Jütting: Phonetische, Etymnologische und Orthographische Essays über Deutsche und Fremde Wörter mit Harten und Weichen Verschlusslauten, Seite 266, Verlag R. Herrosé, Gräfenhainichen / Wittenberg, 1884
  18. J. E. Rivola: Ueber die griechischen Sternbilder insbesondere die Plejaden, Astronomisch-mythologische Abhandlung, Seite 27, Verlag Malsch und Vogel, Karlsruhe, 1858
  19. Ferdinand Freiherr von Andrian-Werburg: Die Siebenzahl im Geistesleben der Völker, in: Mittheilungen der Anthropologischen Gesellschaft in Wien, Band 31, Seiten 225 bis 274, 1901
  20. 20,0 20,1 Jacob Grimm: Kapitel XXII - Himmel und Gestirne, Abschnitt Gestirne / Plejaden, in: Deutsche Mythologie, zweite Ausgabe von 1844
  21. 21,0 21,1 Siehe auch: Handwörterbuch des deutschen Aberglaubens, Band 9, Sternbilder II, 3. Plejaden, Göschen'sche Verlagshandlung, 1941
  22. 22,0 22,1 The Pleiades in mythology, Pleiade Associates, Bristol, United Kingdom
  23. Siehe auch: Pleiades in folklore and literature in der englischsprachigen Wikipedia
  24. Teru Karasawa: Abe no Seimei, Doppelseite 58, Shinseikan, Tokio, 1912
  25. Emilie Savage-Smith: A Descriptive Catalogue of Oriental Manuscripts at St John's College, Seite 132, St. John's College, University of Oxford, Oxford University Press, 2005, ISBN 9780199201952
  26. Sergei Rjabchikov: The Ancient Astronomy of Easter Island: Aldebaran and the Pleiades, 2016
  27. 27,0 27,1 Ernst von Bunsen: Die Überlieferung. Ihre Entstehung und Entwicklung, sechstes Kapitel "Früheste astronomische Beobachtungen", Friedrich Arnold Brockhaus, Leipzig, 1889
  28. 28,0 28,1 28,2 28,3 28,4 28,5 Siehe hierzu auch: Upon the constellations which are spoke of in the book of Job, Dissertation III., Seite 395 ff., in: The Origin of Laws, Arts, and Science and their Prograss Among the Most Ancient Nations., Band I, Edinburgh, Alexander Donaldson and John Reid, 1761
  29. Emil G. Hirsch: Constellations, Jewish Encyclopedia, 2002-2021
  30. René Nyffenegger: Hiob 9, Kommentare zur Bibel
  31. Hesiodos: Werke und Tage (ΕΡΓΑ ΚΑΙ ΗΜΕΡΑΙ), Egon und Gisela Gottwein, 13. Juni 2019
  32. Hesiod: Hauslehren II. (’Έργα καὶ ‛ημέραι), Projekt Gutenberg.de, übersetzt von Johann Heinrich Voß
  33. Christian Schulz: Handbuch der Physik: für diejenigen welche Freunde der Natur sind, ohne jedoch Gelehrte zu seyn, Band 2, Kapitel 11, Seite 254, Hilscher, Leipzig, 1791
  34. Genesis, Kapitel 8, Vers 6, bibleserver.com, Einheitsübersetzung (2016)
  35. Exodus, Kapitel 24, Vers 18, bibleserver.com, Einheitsübersetzung (2016)
  36. Evangelium nach Matthäus, Kapitel 4, bibleserver.com, Einheitsübersetzung (2016)
  37. Evangelium nach Lukas, Kapitel 4, bibleserver.com, Einheitsübersetzung (2016)
  38. Evangelium nach Markus, Kapitel 1, Vers 12 und 13, bibleserver.com, Einheitsübersetzung (2016)
  39. First Stories - Devils Tower National Monument (U.S. National Park Service), Devils Tower National Monument Visitor Center, 17. März 2019
  40. Carl Strehlow: Mythen, Sagen und Märchen des Loritja-Stammes, Baer & Company, 1907
  41. Oskar Dähnhardt: 3. Entstehung des Kuckucks: 1 Aus Ostpreußen / 2 Aus Mecklenburg / 3 Aus Pommern, Natursagen. Eine Sammlung naturdeutender Sagen, Märchen, Fabeln und Legenden]], 4 Bände, Leipzig/Berlin, 1907 bis 1912, Seiten 426 bis 428
  42. Richard Wossidlo: Mecklenburgische Volksüberlieferungen, 2 Die Tiere im Munde des Volkes, Verlag Hinstorff, Seite 411, 1899
  43. Oskar Dähnhardt: 3. Entstehung des Kuckucks: 4 a) und 4 b) Aus Dänemark, Natursagen. Eine Sammlung naturdeutender Sagen, Märchen, Fabeln und Legenden]], 4 Bände, Leipzig/Berlin, 11907 bis 1912, Seiten 426 bis 428
  44. Evald Tang Kristensen: Jayske Folkeminder IV, 335, Nummer 428
  45. Gerhard Köbler: althochdeutsch s, in: Althochdeutsches Wörterbuch, 6. Auflage, 2014
  46. Eduard Adolf Jacobi: septemtriones, Seite 830, in: Handwörterbuch der griechischen und römischen Mythologie, Band 2, Sinner'sche Hofbuchhandlung, Koburg und Leipzig, 1835
  47. Hermann Güntert: Indogermanisch und Semitisch, Kapitel V. Sprachliche Beziehungen der Indogermanen zu anderen Völkergruppen, in: Kultur und Sprache / Der Ursprung der Germanen, Seite 56, Carl Winter, Heidelberg, 1934
  48. Siehe auch: Heinrich Wagner: Indogermanisch-Vorderasiatisch-Mediterranes, in: Zeitschrift für vergleichende Sprachforschung auf dem Gebiete der Indogermanischen Sprachen, 75. Band, Seiten 58 bis 75, Vandenhoeck & Ruprecht, 1957
  49. Otto Keller: Zur lateinischen Sprachgeschichte - Septentrio, Seite 102 bis 104, Verlag Teubner, 1893
  50. Matthias Albani: Sterne / Sternbilder / Sterndeutung / Orion (כְּסִיל) und Plejaden / Siebengestirn (כִּימָה), WiBiLex, das wissenschaftliche Bibellexikon im Internet, September 2014