Zurück zum Inhaltsverzeichnis
Ein Drehparaboloid entsteht durch Rotation einer in einer Ebene liegenden Parabel um eine Achse.
Zum Beispiel wenn die in der x-z liegende Parabel z=x2 (Definitionsbereich begrenzt) um die z-Achse rotiert.
Durch die Rotation ist der Rand der Fläche ein Kreis.
x
→
=
v
cos
u
e
→
1
+
v
sin
u
e
→
2
+
A
⋅
v
2
e
→
3
{\displaystyle {\vec {x}}=v\cos u{\vec {e}}_{1}+v\sin u{\vec {e}}_{2}+A\cdot v^{2}{\vec {e}}_{3}}
v
∈
[
0
,
2
π
]
,
u
∈
[
−
π
,
π
]
,
A
∈
R
{\displaystyle v\in [0,2\pi ],u\in [-\pi ,\pi ],A\in \mathbb {R} }
Zurück zum Inhaltsverzeichnis
Siehe Gaußsches Dreibein
g
→
1
=
x
→
u
=
−
v
sin
u
⋅
e
→
1
+
v
cos
u
⋅
e
→
2
{\displaystyle {\vec {g}}_{1}={\vec {x}}_{u}=-v\sin u\cdot {\vec {e}}_{1}+v\cos u\cdot {\vec {e}}_{2}}
g
→
2
=
x
→
v
=
cos
u
⋅
e
→
1
+
sin
u
⋅
e
→
2
+
2
A
v
⋅
e
→
3
{\displaystyle {\vec {g}}_{2}={\vec {x}}_{v}=\cos u\cdot {\vec {e}}_{1}+\sin u\cdot {\vec {e}}_{2}+2Av\cdot {\vec {e}}_{3}}
g
→
3
=
x
→
u
(
u
)
×
x
→
v
(
v
)
|
|
x
→
u
(
u
)
×
x
→
v
(
v
)
|
|
=
2
A
v
cos
u
4
A
2
v
2
+
1
⋅
e
→
1
+
2
A
v
sin
u
4
A
2
v
2
+
1
⋅
e
→
2
−
1
4
A
2
v
2
+
1
⋅
e
→
3
{\displaystyle {\vec {g}}_{3}={\frac {{\vec {x}}_{u}(u)\times {\vec {x}}_{v}(v)}{||{\vec {x}}_{u}(u)\times {\vec {x}}_{v}(v)||}}={\frac {2Av\cos u}{\sqrt {4A^{2}v^{2}+1}}}\cdot {\vec {e}}_{1}+{\frac {2Av\sin u}{\sqrt {4A^{2}v^{2}+1}}}\cdot {\vec {e}}_{2}-{\frac {1}{\sqrt {4A^{2}v^{2}+1}}}\cdot {\vec {e}}_{3}}
Siehe hier :
g
11
=
x
→
u
⋅
x
→
u
=
x
→
u
=
v
2
sin
2
u
+
v
2
cos
2
u
=
v
2
{\displaystyle g_{11}={\vec {x}}_{u}\cdot {\vec {x}}_{u}={\vec {x}}_{u}=v^{2}\sin ^{2}u+v^{2}\cos ^{2}u=v^{2}}
g
12
=
G
21
=
x
→
u
⋅
x
→
v
=
−
v
sin
u
cos
u
+
v
cos
u
sin
u
=
0
{\displaystyle g_{12}=G_{21}={\vec {x}}_{u}\cdot {\vec {x}}_{v}=-v\sin u\cos u+v\cos u\sin u=0}
g
22
=
x
→
v
⋅
x
→
v
=
cos
2
u
+
sin
2
u
+
4
A
2
v
2
{\displaystyle g_{22}={\vec {x}}_{v}\cdot {\vec {x}}_{v}=\cos ^{2}u+\sin ^{2}u+4A^{2}v^{2}}
G
=
(
g
11
g
12
g
21
g
22
)
=
(
v
2
0
0
1
+
4
A
2
v
2
)
{\displaystyle \mathbf {G} ={\begin{pmatrix}g_{11}&g_{12}\\g_{21}&g_{22}\end{pmatrix}}={\begin{pmatrix}v^{2}&0\\0&1+4A^{2}v^{2}\end{pmatrix}}}
G
−
1
=
(
g
11
g
12
g
21
g
22
)
=
1
v
2
+
4
A
2
v
4
(
1
+
4
A
2
v
2
0
0
v
2
)
{\displaystyle \mathbf {G} ^{-1}={\begin{pmatrix}g^{11}&g^{12}\\g^{21}&g^{22}\end{pmatrix}}={\frac {1}{v^{2}+4A^{2}v^{4}}}{\begin{pmatrix}1+4A^{2}v^{2}&0\\0&v^{2}\end{pmatrix}}}
g12 ist Null, die Parameterlinien stehen also senkrecht aufeinander.
x
→
u
u
=
−
v
cos
u
⋅
e
→
1
−
v
sin
u
⋅
e
→
2
{\displaystyle {\vec {x}}_{uu}=-v\cos u\cdot {\vec {e}}_{1}-v\sin u\cdot {\vec {e}}_{2}}
x
→
u
v
=
−
sin
u
⋅
e
→
1
+
cos
u
⋅
e
→
2
{\displaystyle {\vec {x}}_{uv}=-\sin u\cdot {\vec {e}}_{1}+\cos u\cdot {\vec {e}}_{2}}
x
→
v
v
=
x
→
v
u
=
2
A
⋅
e
→
3
{\displaystyle {\vec {x}}_{vv}={\vec {x}}_{vu}=2A\cdot {\vec {e}}_{3}}
Hier nachschauen!
b
11
=
x
→
u
u
⋅
n
→
=
−
2
A
v
2
4
A
2
v
2
+
1
{\displaystyle b_{11}={\vec {x}}_{uu}\cdot {\vec {n}}={\frac {-2Av^{2}}{\sqrt {4A^{2}v^{2}+1}}}}
b
12
=
b
21
=
x
→
u
v
⋅
n
→
=
0
{\displaystyle b_{12}=b_{21}={\vec {x}}_{uv}\cdot {\vec {n}}=0}
b
21
=
x
→
v
v
⋅
n
→
=
−
2
A
4
A
2
v
2
+
1
{\displaystyle b_{21}={\vec {x}}_{vv}\cdot {\vec {n}}={\frac {-2A}{\sqrt {4A^{2}v^{2}+1}}}}
B
=
(
b
11
b
12
b
21
b
22
)
=
(
L
M
M
N
)
=
(
−
2
A
v
2
4
A
2
v
2
+
1
0
0
−
2
A
4
A
2
v
2
+
1
)
{\displaystyle \mathbf {B} ={\begin{pmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{pmatrix}}={\begin{pmatrix}L&M\\M&N\end{pmatrix}}={\begin{pmatrix}{\frac {-2Av^{2}}{\sqrt {4A^{2}v^{2}+1}}}&0\\0&{\frac {-2A}{\sqrt {4A^{2}v^{2}+1}}}\end{pmatrix}}}
Siehe hier . Mit u1 = u, u2 = v.
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
1
:=
1
2
g
11
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
=
1
2
1
v
4
+
4
A
2
v
6
⋅
(
0
+
0
+
0
)
+
1
2
⋅
0
=
0
{\displaystyle \Gamma _{11}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})={\frac {1}{2}}{\frac {1}{v^{4}+4A^{2}v^{6}}}\cdot (0+0+0)+{\frac {1}{2}}\cdot 0=0}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
12
1
:=
1
2
g
11
(
∂
g
11
∂
u
2
+
∂
g
12
∂
u
1
−
∂
g
21
∂
u
1
)
+
1
2
g
12
(
∂
g
12
∂
u
2
+
∂
g
22
∂
u
1
−
∂
g
21
∂
u
2
)
=
1
2
v
2
⋅
2
v
=
1
v
{\displaystyle \Gamma _{12}^{1}:={\frac {1}{2}}g^{11}({\frac {\partial g_{11}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{12}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{1}}}-{\frac {\partial g_{21}}{\partial u^{2}}})={\frac {1}{2v^{2}}}\cdot 2v={\frac {1}{v}}}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
1
{\displaystyle \gamma =1}
Γ
11
2
:=
1
2
g
21
(
∂
g
11
∂
u
1
+
∂
g
11
∂
u
1
−
∂
g
11
∂
u
1
)
+
1
2
g
22
(
∂
g
12
∂
u
1
+
∂
g
21
∂
u
1
−
∂
g
11
∂
u
2
)
=
0
+
1
2
(
1
+
4
A
2
v
2
)
⋅
(
−
2
v
)
=
−
v
1
+
4
A
2
v
2
{\displaystyle \Gamma _{11}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{11}}{\partial u^{1}}}+{\frac {\partial g_{11}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{12}}{\partial u^{1}}}+{\frac {\partial g_{21}}{\partial u^{1}}}-{\frac {\partial g_{11}}{\partial u^{2}}})=0+{\frac {1}{2(1+4A^{2}v^{2})}}\cdot (-2v)=-{\frac {v}{1+4A^{2}v^{2}}}}
α
=
1
{\displaystyle \alpha =1}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
1
=
Γ
12
1
{\displaystyle \Gamma _{21}^{1}=\Gamma _{12}^{1}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
1
{\displaystyle \beta =1}
,
γ
=
2
{\displaystyle \gamma =2}
,
Γ
12
2
:=
1
2
g
11
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
12
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
=
0
{\displaystyle \Gamma _{12}^{2}:={\frac {1}{2}}g^{11}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{12}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})=0}
α
=
1
{\displaystyle \alpha =1}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
21
2
=
Γ
12
2
{\displaystyle \Gamma _{21}^{2}=\Gamma _{12}^{2}}
α
=
2
{\displaystyle \alpha =2}
,
β
=
2
{\displaystyle \beta =2}
,
γ
=
2
{\displaystyle \gamma =2}
Γ
22
2
:=
1
2
g
21
(
∂
g
21
∂
u
2
+
∂
g
12
∂
u
2
−
∂
g
22
∂
u
1
)
+
1
2
g
22
(
∂
g
22
∂
u
2
+
∂
g
22
∂
u
2
−
∂
g
22
∂
u
2
)
=
1
2
(
1
+
4
A
2
v
2
)
⋅
8
A
2
v
=
4
A
2
1
+
4
A
2
v
2
{\displaystyle \Gamma _{22}^{2}:={\frac {1}{2}}g^{21}({\frac {\partial g_{21}}{\partial u^{2}}}+{\frac {\partial g_{12}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{1}}})+{\frac {1}{2}}g^{22}({\frac {\partial g_{22}}{\partial u^{2}}}+{\frac {\partial g_{22}}{\partial u^{2}}}-{\frac {\partial g_{22}}{\partial u^{2}}})={\frac {1}{2(1+4A^{2}v^{2})}}\cdot 8A^{2}v={\frac {4A^{2}}{1+4A^{2}v^{2}}}}
Zurück zum Inhaltsverzeichnis