Statistik: Druckversion

Aus Wikibooks
Wechseln zu: Navigation, Suche

<< Statistik


Statistik



Wikibooks


Druckversion des Buches Statistik
  • Dieses Buch umfasst derzeit etwa 121 DIN-A4-Seiten einschließlich Bilder (Stand: September 2017).
  • Wenn Sie dieses Buch drucken oder die Druckvorschau Ihres Browsers verwenden, ist diese Notiz nicht sichtbar.
  • Zum Drucken klicken Sie in der linken Menüleiste im Abschnitt „Drucken/exportieren“ auf Als PDF herunterladen.
  • Mehr Informationen über Druckversionen siehe Hilfe:Fertigstellen/ PDF-Versionen.
  • Hinweise:
    • Für einen reinen Text-Ausdruck kann man die Bilder-Darstellung im Browser deaktivieren:
      • Internet-Explorer: Extras > Internetoptionen > Erweitert > Bilder anzeigen (Häkchen entfernen und mit OK bestätigen)
      • Mozilla Firefox: Extras > Einstellungen > Inhalt > Grafiken laden (Häkchen entfernen und mit OK bestätigen)
      • Opera: Ansicht > Bilder > Keine Bilder
    • Texte, die in Klappboxen stehen, werden nicht immer ausgedruckt (abhängig von der Definition). Auf jeden Fall müssen sie ausgeklappt sein, wenn sie gedruckt werden sollen.
    • Die Funktion „Als PDF herunterladen“ kann zu Darstellungsfehlern führen.


Inhalt



0.  Was ist Statistik?
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 0 vom Inhaltsverzeichnis

Was ist Statistik?

Durchschnittliche Tageskurse der Firma Dachs AG im Januar 2005

Statistik begegnet uns überall im täglichen Leben:

  • Die Lebenshaltungskosten sind gegenüber dem Vorjahr um 2 Prozentpunkte gestiegen.
  • Im Januar 2005 erzielte die Firma Dachs im Durchschnitt die täglichen Aktienkurse, wie in der Grafik angegeben.
  • Hochrechnung von Wahlergebnissen
  • Wieviel Gewinn kann eine Lottogesellschaft auswerfen, damit ihr noch Überschuss bleibt?

Was haben diese Beispiele gemeinsam? Sie basieren auf Daten, und zwar sehr vielen Daten. In diese Daten wird Ordnung gebracht: Mit einer Grafik, mit Wahrscheinlichkeiten, mit Durchschnittsberechnungen, mit Vergleichen. Das ist angewandte Statistik.

Wir kommen damit zu einer Definition der Statistik, die relativ kurz und schnörkellos ist, aber im Wesentlichen alles sagt:

Statistik ist die Gesamtheit der Methoden, die für die Untersuchung von Massendaten angewendet werden können.

Ziel der Statistik ist es also, Massendaten zu reduzieren und zu komprimieren, um Gesetzmäßigkeiten und Strukturen in den Daten sichtbar zu machen.


Anwendung im wirtschaftlichen Kontext

Die Lage der Unternehmen heute ist geprägt von Globalisierung, Konkurrenz und Kostendruck. Einsame Manager-Entscheidungen aus dem Bauch heraus führen häufig zum Ruin des Unternehmens. Die Analyse von Wirtschafts- und Unternehmensdaten erlaubt rationale und fundierte Unternehmensentscheidungen. In der Realität sind jedoch Informationen über Unternehmensprozesse nur teilweise bekannt. Gründe dafür sind beispielsweise

  1. Die Informationen sind zu komplex, um vollständig erhoben zu werden. Beispiel: Der Papierverbrauch in einem großen Unternehmen hängt von vielen Faktoren ab, wie der Zahl der Kopien eines Schreibens, der Neigung der Mitarbeiter, sich alles ausdrucken zu lassen (E-Mails!), dem Umfang des Verteilers für bestimmte Schreiben etc. Man kann den Verbrauch nicht analytisch bestimmen.
  2. Zukünftige Unternehmenszahlen sind nicht bekannt und müssen geschätzt werden, z. B. der Cash-Flow einer geplanten Investition für die Finanzierungsrechnung.
  3. Umwelteinflüsse können nicht vorherbestimmt werden, etwa die Möglichkeit einer Steuererhöhung oder die Akzeptanz eines neuen Produkts durch den Kunden.

In solchen Fällen können keine exakten Entscheidungsgrundlagen geliefert werden. Die resultierenden Lösungen sind „unscharf“. Ein Hilfsmittel für die Entscheidung unter Unsicherheit ist die Statistik.

Da in der heutigen informationsbasierten Gesellschaft eher zu viel als zu wenig Daten verfügbar sind, gewinnt die Statistik als Werkzeug der Entscheidungsfindung immer mehr an Bedeutung.

Einteilung der statistischen Methoden

  1. Deskriptive (beschreibende, empirische) Statistik: Man untersucht ein Phänomen und fasst die Daten zusammen, ordnet sie, stellt sie grafisch dar. Auf wissenschaftliche Aussagen wird verzichtet.
  2. Induktive (schließende, folgernde, mathematische, analytische) Statistik: Grundlage ist die Wahrscheinlichkeitstheorie. Ergebnisse der deskriptiven Statistik dienen häufig als Ausgangspunkt für verallgemeinernde Aussagen.

Die mathematische Statistik selbst ist wie die Wahrscheinlichkeitstheorie ein Teilgebiet der Stochastik.



1.  Wahrscheinlichkeitsrechnung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 1 vom Inhaltsverzeichnis

Was ist Wahrscheinlichkeit?

Das weiß niemand. Sie ist ein Produkt menschlicher Bemühungen, Ereignisse in der Zukunft vorherzusagen. Sie soll eine Vorstellung über den Grad der Sicherheit vermitteln, mit der ein Ereignis auftritt. Jeder weiß, was es bedeutet, wenn gesagt wird: Die Wahrscheinlichkeit, eine Sechs zu würfeln ist größer als die Wahrscheinlichkeit, beim Skat einen Grand zu gewinnen. Aber trotzdem kann man Wahrscheinlichkeit nicht exakt definieren. So könnte man Wahrscheinlichkeitstheorie als Stochern im Nebel bezeichnen. Das hat aber nichts mit dem Begriff Stochastik zu tun!



1.1.  Zufallsvorgang und Wahrscheinlichkeit
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 1 vom Inhaltsverzeichnis

Pizzaecken-Beispiel zum Begriff der Wahrscheinlichkeit

Harry und Paula gehen in die Pizzeria. Sie sind frisch verliebt. Paula bestellt sich eine Pizzaecke mit Salami und Harry eine mit Schinken. Dann tauschen sie jeweils eine Hälfte, wobei anzumerken ist, dass die Ecken sich in Rand- und Mittelstück teilen lassen. Obwohl Harry normalerweise Randstücke lieber mag, achtet er in seinem aktuellen Zustand nicht darauf. Und auch Paula gibt ihre Hälfte rein nach Zufall ab.

Pizzaecke

Wie groß ist eigentlich die Wahrscheinlichkeit, dass Harry zwei Randstücke auf dem Teller hat?

Die Meisten antworten richtig: 1/4.

Aber wieso beträgt die Wahrscheinlichkeit ausgerechnet 1/4?

Betrachten wir den Vorgang:

Bei gleicher Ausgangslage (Bedingungskomplex) kann der Versuch, zwei halbe Pizzaecken zufällig auszutauschen, beliebig oft wiederholt werden. Jeder Versuch hat einen unsicheren Ausgang. Es handelt sich hier um einen Zufallsvorgang (Experiment, Versuch).

Der Zufallsvorgang wird also beschrieben durch:

  • Gleicher Bedingungskomplex
  • Unsicherer Ausgang
  • Beliebig oft wiederholbar


Ein bestimmtes Paar Eckhälften auf Harrys Teller ist ein Ergebnis. Ein Ergebnis wäre beispielsweise: Die erste Hälfte ist ein Randstück, die zweite Hälfte ist ein Mittelstück,

(R;M) oder kurz RM,

wobei das „linke“ Stück von Harry stammt und das „rechte“ von Paula.

Alle möglichen Paare fasst man in der Ergebnismenge Ω zusammen:

Ω = {RR, RM, MR, MM}.

Ω ist also die Menge aller möglichen Ergebnisse, die bei einem Zufallsvorgang auftreten können. Führt man diesen Zufallsvorgang unendlich oft durch, müssten vermutlich in 25% aller Versuche zwei Randstücke resultieren, denn man könnte davon ausgehen, dass jedes Paar die gleiche Wahrscheinlichkeit hat, gezogen zu werden. Die Zahl der Ergebnisse, |Ω| genannt, ist also vier. Deshalb ist die Wahrscheinlichkeit für ein Paar Randstücke

Wenn nun bei einem Versuch beispielsweise „RM“ resultiert, ist das ein Ereignis.

Bei „RM“ handelt es sich um ein Elementarereignis. Es ist ein Ereignis, das nur ein Element der Ergebnismenge enthält.

Es gibt auch kompliziertere, zusammengesetzte Ereignisse:

A: Mindestens ein Mittelstück: A = {RM, MR, MM}
B: Eine komplette Pizzaecke: B = {RM, MR}

Diese Ereignisse beinhalten mehrere Ergebnisse von Ω; ein Ereignis ist immer eine Teilmenge von Ω.

Das zusammengesetzte Ereignis A tritt also genau dann ein, wenn eines der Elementarereignisse {RM}, {MR} oder {MM}, die in A enthalten sind, eintritt.

Die Wahrscheinlichkeit als theoretisches Konzept

Kurzer geschichtlicher Überblick

Es werden vermutlich schon so lange Wahrscheinlichkeiten angewendet, wie es den Homo Sapiens gibt. Am letzten Tag der Schlacht im Teutoburger Wald (9 n. Chr.) gab es ein Gewitter. Die Römer deuteten es als warnenden Hinweis von Merkur, des Gottes von Blitz und Donner. Die Germanen sahen es als Aufmunterung des Kriegsgottes Thor. Wie man weiß, hatten beide Parteien recht.

Im 17. Jahrhundert, dem Zeitalter des Rationalismus, befasste sich Blaise Pascal (1623 - 1662) systematisch mit Wahrscheinlichkeiten im Glücksspiel und begründete so die Wahrscheinlichkeitsrechnung als eigenständige Disziplin.

Jakob Bernoulli (1654 - 1705) befasste sich ebenfalls mit Fragen der diskreten Wahrscheinlichkeiten und gab vermutlich das erste Buch über Wahrscheinlichkeitsrechnung heraus.

Mit Abraham de Moivre (1667 - 1754) und Pierre Simon Laplace (1749 - 1827) wurde bereits die Normalverteilung entwickelt und von Carl Friedrich Gauß (1777 – 1855) weiter bearbeitet.

Richard Edler von Mises (1883 - 1953) lieferte wertvolle Beiträge zur Schätzung von Wahrscheinlichkeiten und zur mathematischen Statistik.

1933 schlug der russische Mathematiker Andrej Nikolajewitsch Kolmogorow (1903 - 1987) eine axiomatische Definition der Wahrscheinlichkeit vor, auf der die heutige Wahrscheinlichkeitstheorie basiert. Diese Definition ist eine Anwendung der Maßtheorie.

Ergebnisse und Ereignisse

Das heutige Konzept der Wahrscheinlichkeitsrechnung präsentiert sich folgendermaßen:

Gegeben ist die Ergebnismenge (Ereignisraum, Stichprobenraum) Ω eines Zufallsvorgangs. Diese Menge enthält alle möglichen Ergebnisse, die ein Zufallsvorgang hervorbringen kann. Je nach Art des Zufallsvorgangs muss man verschiedene Ergebnismengen betrachten:

Ω enthält endlich viele Ergebnisse.

Beispiele:

  • Zufallsvorgang: 1x Würfeln. Ω = {1, 2, 3, 4, 5, 6}.
  • Zufallsvorgang: Augenfarbe der nächsten Person, die bei einem Casting vorspricht. Ω = {blau, grün, braun}.


Ω enthält abzählbar unendlich viele Ergebnisse.

Beispiele:

  • Zufallsvorgang: Zahl der Autos, die eine Stunde lang ab 12 Uhr bei einer Fahrzeugzählung an einer bestimmten Zählstelle vorbeifahren. Ω = {0, 1, 2, 3, ...}.
  • Zufallsvorgang: Zahl der Anforderungen an einen Server innerhalb einer Stunde. Ω = {0, 1, 2, ...}.
Man kann zwar die Ergebnisse durchzählen, aber es kann keine vernünftige Obergrenze angegeben werden, deshalb lässt man die Obergrenze offen.


Ist Ω weder abzählbar noch abzählbar unendlich, so enthält Ω überabzählbar viele Ergebnisse. Man könnte auch sagen, die Ergebnismenge ist ein Intervall der reellen Zahlen.

Beispiele:

  • Zufallsvorgang: Eine erwachsene Person wird gewogen (in kg). Ω = {x|30 ≤ x ≤ 200; x ∈ }.
  • Zufallsvorgang: Cash-Flow eines Unternehmens (in €). Ω = .
Cash-Flow bezeichnet übrigens die Differenz Einnahmen - Ausgaben, bzw. präziser: Einzahlungen - Auszahlungen.
Hier können die Ergebnisse nicht mehr abgezählt werden. Ein beliebig kleines Intervall der Ergebnismenge enthält unendlich viele Elemente. Was ist das nächstgrößere Element von 50 kg: 51 kg, 50,01 kg oder 50,000000001 kg? Im Intervall [50, 51] sind also unendlich viele Elemente.
Man könnte hier einwenden, dass doch beispielsweise Cash-Flow als kleinste Einheit Cent hat, also doch eigentlich abzählbar ist. Das stimmt natürlich, aber bei sehr vielen, nah zusammenliegenden Elementen vereinfacht man die Analyse, indem man die Menge als stetig annimmt. Man spricht hier von Quasistetigkeit.


Hat ein Zufallsvorgang ein konkretes Ergebnis erbracht, ist ein Ereignis eingetreten. Es gibt einfache Ereignisse, die lediglich ein Ergebnis enthalten, so genannte Elementarereignisse und es gibt komplexere Ereignisse, die sich aus mehreren Ergebnissen zusammensetzen. Ein Ereignis A ist immer eine Teilmenge der Ergebnismenge Ω.

Da Ereignisse Mengen sind, können alle Operationen der Mengenalgebra, die mit der Booleschen Algebra (auch Schaltalgebra) gleichgesetzt werden kann, angewendet werden. Grundlegende Operationen für Mengen der Booleschen Algebra sind - („nicht“ als Komplement), ∩ und ∪. Alle anderen Operationen können daraus hergeleitet werden.

Alle interessierenden Ereignisse fasst man nun in einer so genannten Ereignismenge (Ereignissystem) E zusammen. E ist also eine Menge von Teilmengen. Damit diese Menge mit der Booleschen Algebra bearbeitet werden kann, muss sie entsprechende Forderungen erfüllen:

  • Wenn das Ereignis in enthalten ist, muss auch sein Komplement enthalten sein.
  • Wenn und enthalten sind, muss auch enthalten sein (Man kann ausrechnen, dass dann auch A ∩ B enthalten ist).
  • Es muss das „Null-Element“ Ø enthalten sein (Das impliziert, dass auch „1-Element“ Ω , welches das Komplement von Ø ist, enthalten ist).

Eine Ereignismenge, bei der die zweite Forderung auch für abzählbar viele Teilmengen erfüllt ist (die Vereinigung abzählbar vieler Teilmengen des Mengensystems ist in der Ereignismenge enthalten) nennt man -Algebra. Die umfassendste Ereignismenge ist die Potenzmenge P, die alle Teilmengen von Ω enthält. Die Potenzmenge wird in der Litatur zuweilen auch als bezeichnet.

Beispiel einer Potenzmenge:

Zufallsvorgang: Aus einer Urne mit einer blauen (b), einer roten (r) und einer gelben (g) Kugel wird eine Kugel gezogen. Wir interessieren uns für die Farbe der Kugel.

Ergebnismenge: Ω = {g, b, r}

Potenzmenge: P = {Ø, {r}, {g}, {b}, {r, g}, {r, b}, {g, b}, {r, g, b}}


Ausgehend von dieser Konstellation hat Kolmogorow mit seinen Axiomen ein Wahrscheinlichkeitsmaß konstruiert, d.h. eine Abbildung der Ergebnismenge Ω auf die Menge der reellen Zahlen im Intervall [0;1]:


F: Ω → ; A → P(A)


Eine Funktion P, die jedem Ereignis A aus E eine reelle Zahl zuordnet, heißt Wahrscheinlichkeit, wenn sie folgende Axiome erfüllt:


Axiome der Wahrscheinlichkeiten:

Gegeben sind zwei Ereignisse A,B ⊂ Ω.

  1. Nichtnegativität
  2. Normiertheit
  3. falls A und B disjunkt sind. Additivität


Dieses Axiomensystem kann nur auf endlich viele Ereignisse angewendet werden. Für unendlich viele Ereignisse Ai (i = 1, 2, ...) erhält man statt der endlichen Ereignismenge die σ-Algebra. Sie enthält alle geforderten Eigenschaften der Ereignismenge auf unendlich viele Ereignisse Ai ausgeweitet. Hier wird das 3. Axiom entsprechend angepasst:

3. Sind die Ereignisse Ai sämtlich paarweise disjunkt, ist bei ihrer Vereinigung
(σ-Additivität).

Berechnung der Wahrscheinlichkeit eines Ereignisses

Es müssen nun noch die Ereignisse mit Wahrscheinlichkeiten ausgestattet werden. Auf welche Weise das geschehen soll, ist in den Axiomen nicht angegeben. Es gibt hier verschiedene Verfahren. Man erhält schließlich die Wahrscheinlichkeitsverteilung.


Wie ordnen wir den Ereignissen am besten Wahrscheinlichkeiten zu?

Betrachten wir im Pizzaecken-Beispiel das Ereignis A: Mindestens ein Mittelstück. Es ist A = {RM, MR, MM}. A belegt in Ω drei von vier möglichen Ergebnissen, also ist die Wahrscheinlichkeit P(A) = 3/4. Diese Vorgehensweise entspricht der Klassischen Wahrscheinlichkeitsauffassung. Man bezeichnet sie als Symmetrieprinzip oder Prinzip nach LAPLACE:

Jedes Ergebnis ist gleich häufig. |A| ist die Zahl der Ergebnisse, die durch A belegt werden (Anzahl der günstigen Ergebnisse), |Ω| ist die Zahl aller möglichen Ergebnisse. Es ist

Das Symmetrieprinzip hat allerdings den Nachteil, dass es nicht bei allen Zufallsvorgängen angewendet werden kann, z.B. bei unendlich vielen Ergebnissen. Oft ordnet man auch Ergebnissen unterschiedliche Wahrscheinlichkeiten zu, z.B.

Zufallsvorgang: Wetter von heute.
Ergebnismenge Ω = {schön, schlecht}.
P(„schön“) = 0,6, P(„schlecht“) = 0,4.

Wie kommt man auf diese Wahrscheinlichkeiten 0,4 und 0,6? Man hat in diesem Fall etwa die Wetteraufzeichnungen der letzten 100 Jahre ausgewertet und hat festgestellt, dass der Anteil der schönen Tage 60 % betrug. Wir haben hier eine Anwendung der Statistischen Wahrscheinlichkeitsauffassung: Man führt ein Zufallsexperiment sehr oft durch. Mit steigender Zahl der Versuche nähert sich der Anteil der Versuche, die das Ereignis A hervorgebracht haben, der „wahren “ Wahrscheinlichkeit P(A), formal ausgedrückt

mit n(A) als Zahl der Versuche, die das Ereignis A hervorgebracht haben. Man bezeichnet diesen Zusammenhang als Gesetz der großen Zahlen. Er liefert die Begründung, dass man unbekannte Wahrscheinlichkeiten mit Hilfe von empirischen Beobachtungen schätzen kann, wobei hier gilt: Viel hilft viel!


Bei manchen Fragestellungen versagen die beiden obigen Wahrscheinlichkeitskonzepte. Z.B. bei Ereignissen, die sehr selten auftreten, für die man also auch keine Versuchsreihen zur Verfügung hat, etwa die Wahrscheinlichkeit für den Erfolg eines neu auf dem Markt platzierten Produkts. Es möchte beispielsweise ein Unternehmen ein neues Spülmittel auf den Markt bringen. Es steht vor der Alternative, Fernsehwerbung einzusetzen oder nicht. Es ist mit den Ereignissen konfrontiert: Wenn Fernsehwerbung eingesetzt wird, ist das Spülmittel ein Erfolg/kein Erfolg. Wenn keine Fernsehwerbung eingesetzt wird, ist das Spülmittel ein Erfolg/kein Erfolg. Für diese vier Ereignisse sollen Wahrscheinlichkeiten ermittelt werden. Da man keine verlässlichen Informationen darüber hat, wird man aus dem Bauch heraus, eventuell unter Berücksichtigung ähnlicher Erfahrungen bestimmte Wahrscheinlichkeiten zuordnen. Dieses Vorgehen entspricht der Subjektiven Wahrscheinlichkeitsauffassung.


Da Ereignisse als Mengen definiert sind, kann man auch in vielen Fällen Ereignisse und ihre Wahrscheinlichkeiten in Venn-Diagrammen veranschaulichen. Die Wahrscheinlichkeit ist dann die Fläche der entsprechenden Menge. Manchmal ist es hilfreich, das Venn-Diagramm maßstabsgetreu auf kariertes Papier abzutragen, indem die Mengen rechteckig dargestellt werden.

Pizzeria-Beispiel zur Berechnung von Wahrscheinlichkeiten

Aufteilung der Gäste nach Bestellung

Jetzt schauen wir uns in der Pizzeria etwas genauer um: Der Inhaber Carlo Pommodore ist ein mitleidiger Mensch und duldet auch arme Gäste, die sich nichts bestellen. Deshalb ist das Lokal mit seinen 50 Gästen eigentlich schon überfüllt. 20 Personen haben sich Pizza bestellt und 10 Lasagne. Das Essen ist so reichlich, dass niemand zwei Mahlzeiten bestellt. 40 Gäste trinken Wein und 20 Gäste trinken Mineralwasser, aber 15 trinken Wasser und Wein.

Wir ziehen zufällig einen Gast aus der fröhlich lärmenden Menge. Wie groß ist die Wahrscheinlichkeit, einen Pizza-Esser zu erhalten?

Wir haben |Ω| = 50 verschiedene Ergebnisse. Man kann davon ausgehen, dass jeder Gast die gleiche Wahrscheinlichkeit hat, gezogen zu werden.

Wir definieren nun die Ereignisse:

A: Der Gast isst Pizza; B: Der Gast isst Lasagne;
C: Der Gast trinkt Wein; D: Der Gast trinkt Wasser.

Nach dem Symmetrieprinzip ist

und


Wir können berechnen:

Wahrscheinlichkeit, dass jemand Wasser und Wein trinkt:


Wahrscheinlichkeit, dass ein zufällig ausgewählter Gast kein Wasser trinkt ():


Anteil der Leute, die Wasser oder Wein trinken:

Diese Beziehung gilt immer für zwei Ereignisse!


Wahrscheinlichkeit, dass ein Gast Pizza oder Lasagne isst:

Die Mengen A und B sind disjunkt.

Wahrscheinlichkeit, dass der zufällig ausgewählte Gast kein Wasser oder keinen Wein trinkt:

Hier ist die direkte Berechnung der Wahrscheinlichkeit analog zu oben umständlich. Man verwendet am besten die

DE MORGANsche Regel:

Was gelernt werden muss

Ein Ereignis A (A ⊂ Ω) :


Zwei Ereignisse A und B (A,B ⊂ Ω) :

A und B sind im allgemeinen nicht disjunkt, also ist die Wahrscheinlichkeit, dass A oder B eintritt, nach dem Additionssatz für zwei Ereignisse:

Falls A und B disjunkt sind, ist


DE MORGANsche Regeln:

und


Für drei Ereignisse Ai (i=1, 2, 3) aus Ω gilt analog zu obigen Überlegungen:


Mehrere Ereignisse Ai (i endlich oder unendlich):

Sind die Ereignisse Ai sämtlich paarweise disjunkt, ist bei ihrer Vereinigung

Übung

Zeigen Sie anhand eines Venn-Diagramms die Gültigkeit einer der DeMorganschen Regeln.



1.2.  Gemeinsame Wahrscheinlichkeit mehrerer Ereignisse
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 1 vom Inhaltsverzeichnis

Stochastische Unabhängigkeit

Ein häufiges Untersuchungsobjekt in der Statistik ist, ob verschiedene Ereignisse abhängig oder unabhängig voneinander sind, d.h. ob das Zustandekommen eines Ereignisses durch ein anderes begünstigt wird. So untersucht man beispielsweise in der Marktforschung, ob Status und Bildung eines Konsumenten die Ausgaben für eine bestimmte Zeitschrift beeinflussen.

Beispiel zum Begriff der stochastischen Unabhängigkeit

Grafik 1: Die Ereignisse: Studentin wohnt bei den Eltern - Die Studentin wohnt woanders

Eine umfangreiche Marketingstudie über Zahnputzgewohnheiten von Konsumenten hat ergeben, dass 50 % der Studierenden einer kleinen Hochschule bei ihren Eltern wohnen. Ebenso, dass 50 % der Studierenden Zahnpasta mit roten Streifen und 50 % andersfarbige Zahnpasta bevorzugen.

Betrachten wir den Zufallsvorgang: Eine Studentin kommt in einen Laden und kauft Zahnpasta. Es seien folgende Ereignisse definiert:

E: Die Studentin wohnt bei ihren Eltern.
R: Die Studentin kauft Zahnpasta mit roten Streifen.

Frage: Hat der Wohnort der Studentin einen Einfluss auf die Farbpräferenz?

Vermutlich nein, die Ereignisse E und R sind stochastisch unabhängig, d.h. in wahrscheinlichkeitstheoretischer Hinsicht unabhängig.

Wir interessieren uns zunächst für den Wohnort der Studierenden. In der Grafik 1 ist die Ergebnismenge nach dem Wohnort aufgeteilt.

Frage: Wieviel Prozent der Studierenden wohnen bei ihren Eltern und werden voraussichtlich Zahnpasta mit roten Streifen kaufen?

Da sich bei Unabhängigkeit der Ereignisse die Studierenden in Bezug auf ihre Farbpräferenz gleichmäßig auf die Wohnorte verteilen, werden wohl 50 % der Rotkäufer bei ihren Eltern wohnen und 50 % woanders. Das heißt 50 % von 50 % der Studierenden wohnen bei ihren Eltern und bevorzugen rote Zahnpasta. Es gilt also:

Die Grafik 2 zeigt, wie sich bei Unabhängigkeit der Variablen Wohnort und Farbpräferenz die Wahrscheinlichkeiten der Farbpräferenz auf die Wohnorte aufteilen.

Ist nun beispielsweise P(E) = 40 % und P(R) = 60 %, ergibt sich bei Unabhängigkeit die Aufteilung wie in der Grafik 3, denn auch hier müssten 60 % der „Nesthocker” und 60 % der „Nestflüchter” gleichermaßen Zahnpasta mit roten Streifen kaufen.

Grafik 2: Die Ereignisse Wohnort und Farbe der Zahnpasta durchmischen sich
Grafik 3: Die Ereignisse: Studentin wohnt bei den Eltern - Die Studentin wohnt woanders

Beispiel zum Begriff der stochastischen Abhängigkeit

Oben haben wir den Fall betrachtet, dass zwei Ereignisse unabhängig sind. Im Allgemeinen muss man aber davon ausgehen, dass Ereignisse, die man gemeinsam analysiert, abhängig sind.

Im Rahmen der Marketingstudie wurden Daten eines Gesundheitsamtes in Musterstadt verwendet, die die Zahngesundheit von Schulkindern betraf. Man weiß aus dieser Studie, dass 50 % der Schulkinder Karies haben und 50 % der Schulkinder sich regelmäßig die Zähne putzen.

Wir betrachten den Zufallsvorgang: Es wird ein Schulkind zufällig ausgewählt.

Wir definieren als Ereignisse

Z: Das Schulkind putzt sich regelmäßig die Zähne.
K: Das Schulkind hat Karies.
Grafik 4: Aufteilung von Zähneputzern und Kariesfällen

Ist nun

Ist also die Wahrscheinlichkeit, ein Kind zu erhalten, das sich regelmäßig die Zähne putzt und Karies hat, größer als die Wahrscheinlichkeit, ein Kind zu erhalten, das sich regelmäßig die Zähne putzt und keine Karies hat, oder ist es umgekehrt, oder sind vielleicht die Wahrscheinlichkeiten gleich?

Es ist vermutlich

denn Zähneputzen und Karies sind bekanntlich nicht unabhängig voneinander zu betrachten. Also sind Z und K stochastisch abhängige Ereignisse. Wir werden vermutlich eine Aufteilung der gemeinsamen Wahrscheinlichkeiten erhalten, die ähnlich der Grafik 4 ist. Besonders groß sind P(Z ∩ K) und P(Z ∩ K).

Die gemeinsamen Wahrscheinlichkeiten können allerdings nicht mit unseren Informationen bestimmt werden, sie hängen von der Stärke der Abhängigkeit ab.

Bei stochastisch abhängigen Ereignissen interessiert man sich häufig für das bedingte Auftreten eines Ereignisses, z.B. für die bedingte Wahrscheinlichkeit

dass ein zufällig ausgewähltes Schulkind Karies hat, wenn man weiß, dass es sich nicht regelmäßig die Zähne putzt.

Bedingte Wahrscheinlichkeiten

Beispiel

Wie hängen Kariesfälle und Zahnputzgewohnheit zusammen?

Einige Jahre später wurde in der Grundschule von Musterdorf zu Forschungszwecken wieder an 200 Kindern eine Reihenuntersuchung zur Zahngesundheit durchgeführt. Jetzt putzten sich 60 % der Kinder regelmäßig die Zähne. Von diesen Kindern hatten 40 Karies. Bei den Zahnputzmuffeln hatten 60 Kinder Karies.

Wir wollen ein maßstabsgetreues Venndiagramm konstruieren. Jedes Kästchen steht für 5 Kinder. Es sind

Wir interessieren uns nun für die bedingte Wahrscheinlichkeit, dass ein Kind Karies hat, wenn bekannt ist, dass es sich die Zähne putzt:

In andere Worte gekleidet: Der Anteil der Kinder mit Karies an den Kindern, die sich regelmäßig die Zähne putzen.

Es gilt für die bedingte Wahrscheinlichkeit

Wie ist diese Wahrscheinlichkeit zu verstehen?

Es werden zunächst alle Kinder, die sich regelmäßig die Zähne putzen, in die Aula geschickt. Aus diesen 120 Kindern wird nun zufällig eins ausgewählt. Mit welcher Wahrscheinlichkeit hat dieses Kind Karies? Wir betrachten also 120 zahnputzende Kinder, davon haben 40 Kinder Karies.

Genau diese Vorgehensweise ist das Prinzip der bedingten Wahrscheinlichkeiten!

Es ergibt sich:

Ein Drittel der zähneputzenden Kinder hat Karies: Dann haben natürlich zwei Drittel der zähneputzenden Kinder keine Karies. Wir sehen sogleich, dass die obige Rechnung die schon bekannte Formel

Wie teilen sich die Kariesfälle bezüglich der Zahnputzgewohnheiten auf?


darstellt. Entsprechend erhalten wir

Vergleichen Sie das Venndiagramm mit dem vorhergehenden! Wieso unterscheiden sich beide Diagramme?

Übung

Es ist bekannt, dass die Aktienkurse des Unternehmens Dachs an 55% aller Börsentage gestiegen sind.

Ereignisse: K1: Der Kurs steigt am ersten Tag K2: Der Kurs steigt am zweiten Tag

Man hat folgende Gesetzmäßigkeit der Kursentwicklung festgestellt: In 40 % aller Beobachtungen stieg der Kurs am ersten Tag und am zweiten Tag, in 15 % der Beobachtungen stieg der Kurs am ersten Tag und fiel am zweiten Tag. Dagegen fiel in 15 % der Beobachtungen der Kurs am ersten Tag und stieg am zweiten Tag. An den restlichen Tagespaaren fiel der Kurs an beiden Tagen.

  1. Stellen Sie die gemeinsamen Wahrscheinlichkeiten im Venndiagramm grafisch dar.
  2. Sind die Ereignisse K1 und K2 stochastisch unabhängig? (Begründen Sie die Antwort formal mit Hilfe der Wahrscheinlichkeitstheorie.)
  3. Am heutigen Tag ist der Kurs gestiegen.
    • Mit welcher Wahrscheinlichkeit wird er morgen steigen (Gesucht: P(K2|K1))?
    • Mit welcher Wahrscheinlichkeit wird er dagegen fallen?
  4. Mit welcher Wahrscheinlichkeit wird der Kurs morgen steigen, wenn er heute gefallen ist?

Bayessches Theorem

Häufig liegen die Informationen über zwei Ereignisse nur als bedingte Wahrscheinlichkeiten vor. Wie kann man sie weiter verwenden?

Beispiel für zwei Ereignisse

Ein bekannter Vergnügungspark verbraucht täglich große Mengen an Glühbirnen für die Dekoration der Stände. Damit die Verbrauchskosten nicht so hoch werden, setzen sich die Glühbirnen nur zu 60% aus Markenware und zu 40 % aus markenfreier Ware zusammen. Aufgrund langjähriger Beobachtungen weiß man, dass von den Marken-Glühbirnen pro Monat 5% defekt werden. Jedoch werden von den markenfreien Glühbirnen monatlich 10% defekt.

Zunächst wollen wir das Gegebene grafisch (Grafik 5) darstellen: Wenn von den Markenglühbirnen 5 % defekt werden, bleiben 95% heil. 5% ist also Anteil der defekten Glühbirnen an den Markenglühbirnen, d.h. es handelt sich um die bedingte Wahrscheinlichkeit P(D|M) usw.

Grafik 5

Der Betreiber des Vergnügungsparks braucht für die Kostenplanung des nächsten Sommers die Information, wie groß der Anteil der Markenglühbirnen an den defekten Glühbirnen ist, d.h. er sucht P(M|D). Das bedeutet: Alle defekten Glühbirnen eines Tages werden in einem Korb gesammelt. Es wird eine Glühbirne zufällig entnommen. Mit welcher Wahrscheinlichkeit erhält man eine Markenbirne?

Wir wissen, dass gilt:

.

Leider sind aber die Komponenten des Bruchs unbekannt. Wir werden nun eine Methode finden, sie doch zu berechnen.

Zunächst suchen wir den Zähler P(M ∩ D): Wir kennen P(D|M). Bekanntlicherweise berechnet es sich als

.

Also ist der gesuchte Zähler auch in P(D|M) enthalten und kann ganz einfach durch Auflösung der Gleichung berechnet werden als

.

also

.

Jetzt fehlt noch der Nenner P(D). Betrachten wir das Venndiagramm Grafik 6. D setzt sich aus den Schnittmengen und zusammen.

Grafik 6

Die gesamte Wahrscheinlichkeit von D ist also die Summe

.

eine Erkenntnis, die man auch als Satz der totalen Wahrscheinlichkeit bezeichnet, und das gibt, wie wir oben gesehen haben,

,

in unserem Beispiel

.

Es sind also 7% aller Glühbirnen defekt.

Die gesuchte bedingte Wahrscheinlichkeit ist nun

,

Diese Formel wird als Bayessches Theorem bezeichnet.

Die gesuchte Wahrscheinlichkeit beträgt

.

Diese Wahrscheinlichkeit fällt deshalb so überraschend hoch aus, weil 50% mehr Markenbirnen als markenfreie verwendet werden. Entsprechend ist der Anteil der markenfreien Glühbirnen an den defekten 0,5714.

Wir wollen nun mehr als zwei Ereignisse analysieren.

Beispiel für mehr als zwei Ereignisse

Eine Spedition beschäftigt drei LKW-Fahrer, die Herren Ahorn, Behorn und Zehorn. Ahorn fährt 50% aller Fuhren, Behorn 20% und Zehorn 30%. Aus Erfahrung weiß man, dass Ahorn bei 10% aller Fahrten eine Beule verursacht, Behorn bei 15% aller Fahrten und Zehorn bei 20% aller Fahrten (Grafik 7).

Wir definieren die Ereignisse:

F1: Ahorn ist gefahren, F2: Behorn ..., F3: Zehorn ...
B: Eine Beule wurde gefahren.

Wir wollen zuerst das Gegebene festhalten: Wenn Ahorn in 10 % aller Fahrten eine Beule fährt, wickelt er die restlichen 90 % ohne Schaden ab usw.

Grafik 7

Man interessiert sich für die Wahrscheinlichkeit, dass Ahorn gefahren ist, wenn wieder ein Mal eine Beule in einem LKW auftaucht, d.h. für P(F1|B).

Es ist wieder

.

Nach dem Multiplikationssatz der Wahrscheinlichkeiten muss

sein, also

.

Aber wie erhalten wir P(B)? Auch hier gilt wieder der Satz von der totalen Wahrscheinlichkeit, z.B.:

.

Wir erhalten dann für P(B)

,

also

.

Unsere gesuchte Wahrscheinlichkeit beträgt

.

Entsprechend sind

und

.

Also hat Zehorn mit größter Wahrscheinlichkeit die Beule gefahren.

Wir fassen nun das Gelernte dieser Seite zusammen:

Theoretische Erkenntnisse

Zwei Ereignisse A und B aus Ω:

Sind zwei Ereignisse A und B stochastisch unabhängig, ist ihre gemeinsame Wahrscheinlichkeit gleich dem Produkt der Einzelwahrscheinlichkeiten:

Man beachte: Ereignisse sind grundsätzlich nicht als unabhängig zu betrachten!

Die bedingten Wahrscheinlichkeiten für A und B sind

und .

Allgemeiner Multiplikationssatz der Wahrscheinlichkeiten:

.

Theorem von BAYES:

.

Verallgemeinerung für m Ereignisse Ai (i =1,...,m):

Diese m Ereignisse zerlegen die Ergebnismenge, d.h. sie sind disjunkt und füllen Ω aus. Enthält Ω noch ein Ereignis B, so schneidet B mindestens ein Ereignis Ai, und B ist dann

.

Es gilt hier das Bayessche Theorem:

.

Übung:

Was ist P(A|B), falls A und B disjunkt sind?
Was ist P(A|B), falls A und B stochastisch unabhängig sind?

Lösungen der Übungen

Beispiel mit den Kursverläufen

1. Darstellung der verschiedenen Wahrscheinlichkeiten

 



aus Summe der Zeile




aus Summe der Zeile


2. Bei stochastischer Unabhängigkeit müsste die gemeinsame Wahrscheinlichkeit gleich dem Produkt der Einzelwahrscheinlichkeiten sein.

,

aber

.

Also sind die Ereignisse stochastisch abhängig.

3. Es ist

und

4.

Übungen zu Theoretische Erkenntnisse

Lösung: 0; P(A).


1.3.  Kombinierte Zufallsvorgänge
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 1 vom Inhaltsverzeichnis

Kombinierte Zufallsvorgänge (insbesondere wiederholte oder mehrfache Versuche).


Allgemeines

Beispiele für kombinierte Zufallsvorgänge:

  • Eine Münze werfen, dann einmal würfeln.
  • Aus einer Urne ohne Zurücklegen 3 Kugeln ziehen.
  • Aus einer Lostrommel 10 Gewinner ziehen.
  • Gewinnspiel: Aus drei Toren eines wählen. Falls richtiges Tor, Wahl zwischen zwei Umschlägen.
  • 5x auf ein Ziel schießen.


Beispiel für die formale Definition

Es sollen nacheinander drei Zufallsexperimente durchgeführt werden. Die Wahrscheinlichkeit, dass beim ersten Versuch das Ereignis A, beim zweiten Versuch das Ereignis B und beim dritten Versuch das Ereignis C resultiert, wird bezeichnet als P(A(1) ∧ B(2) ∧ C(3)). A, B und C können verschiedenen Ergebnismengen entstammen! Der hochgestellte Index kann unter Umständen weggelassen werden.

Beispiel für unabhängige Versuche

Wir betrachten den Zufallsvorgang: Wir werfen zuerst eine Münze und würfeln dann.

Die beiden Versuche haben jeweils die Ergebnismenge

ΩM = {Wappen (W); Zahl (Z)} bzw. ΩW = {1,2,3,4,5,6}

Es ergibt sich für diesen kombinierten Versuch die Ergebnismenge Ω* als kartesisches Produkt von ΩM und ΩW :

Ω* = {(W; 1), (W; 2), (W; 3), ... , (W; 6), (Z; 1), (Z; 2), ..., (Z; 6)}.

Ω* hat 12 Elemente. Jedes Element hat die selbe Wahrscheinlichkeit, gezogen zu werden.


Wir suchen nun die Wahrscheinlichkeit für das Ereignis A*: Es wird erst Wappen geworfen und dann mindestens Fünf (F) gewürfelt:

Das Ereignis A* = W(1) ∧ F(2) belegt in Ω* 2 Elemente. Wir erhalten dann für die Wahrscheinlichkeit nach dem Symmetrieprinzip

Würfeln und Münzwurf sind jedoch stochastisch unabhängig und die Wahrscheinlichkeit muss nicht umständlich über die Ergebnismenge ermittelt werden. Also ist dann


Übung

Sie würfeln 3 mal. Mit welcher Wahrscheinlichkeit erhalten Sie zuerst zwei mal Sechs und dann höchstens Zwei?

Lösung: .


Wiederholte Versuche können aber oft stochastisch abhängig sein.

Aus einer Urne mit 2 roten und 1 schwarzen Kugeln sollen zwei Kugeln ohne Zurücklegen gezogen werden.

Das zweite Ergebnis ist vom ersten natürlich nicht mehr unabhängig, weil sich je nach erster gezogener Kugel der Inhalt der Urne ändert. Es sei: R: eine rote Kugel wird gezogen und S: eine schwarze Kugel wird gezogen.

Wir wollen zuerst die Ergebnismenge der abhängigen Versuche analysieren. Nummerieren wir die beiden roten Kugeln in R1 und R2. Man kann dann bei zwei mal ziehen folgende Ergebnisse erhalten:

Ω* = {(R1; R2), (R1; S), (R2; R1), (R2; S), (S; R1), (S; R2)}

Ω* hat insgesamt 6 Ergebnisse.


Wir definieren das Ereignis A: Zuerst wird eine rote (R), dann eine schwarze Kugel (S) gezogen, also A = R(1) ∧ S(2).

Es gibt in Ω* zwei Ergebnisse, die A betreffen, also ist die Wahrscheinlichkeit


Dieses Beispiel war einfach. Aber kann jetzt bei abhängigen Versuchen auch die Wahrscheinlichkeit für das kombinierte Ereignis unter Verzicht auf die vollständige Darstellung der Ergebnismenge bestimmt werden?

Bei stochastisch abhängigen Versuchen können die Wahrscheinlichkeiten nicht mehr ohne weiteres als Produkt der Einzelwahrscheinlichkeiten der Ereignisse bestimmt werden. Man kann aber sukzessiv den Multiplikationssatz der Ereignisse anwenden, der von den bedingten Wahrscheinlichkeiten bekannt ist: P(A∩B) = P(A)·P(B|A). Die Wahrscheinlichkeit, dass beim ersten Mal A und beim zweiten Mal B resultiert, ist also


Es ist nach der obigen Formel

 
  Beim ersten Versuch sind 3 Kugeln in der Urne; zwei sind rot Beim zweiten Versuch sind noch 2 Kugeln in der Urne; eine ist schwarz.  


Diese Regel lässt sich auch auf mehr als zwei Ereignisse erweitern:

Beispiel

Aus einer Urne mit 10 roten (R) und 5 schwarzen (S) Kugeln sollen ohne Zurücklegen nacheinander drei rote Kugeln gezogen werden. Die Wahrscheinlichkeit dafür ist


Für mehr als zwei Ereignisse kann der allgemeine Multiplikationssatz der Wahrscheinlichkeiten angewendet werden. Er gilt auch für Ereignisse, die nicht aus einer gemeinsamen Ergebnismenge stammen:


Falls die A(i) (i = 1, 2, ... ,m) stochastisch unabhängig sind, ist natürlich wieder

.


Je nachdem, wie die Problemstellung ist, gibt es für die Berechnung von Wahrscheinlichkeiten kombinierter Zufallsvorgänge also verschiedene Möglichkeiten:

  1. Wir bestimmen alle Elemente von Ω*, falls das möglich und durchführbar ist. Dann wenden wir das Symmetrieprinzip an.
  2. Wir überlegen uns, beispielweise mit Hilfe der Kombinatorik, die Zahl der Elemente in Ω* und wenden dann das Symmetrieprinzip an.
  3. Wir verwenden den allgemeinen Multiplikationssatz der Wahrscheinlichkeiten und können vielleicht sogar stochastische Unabhängigkeiten ausnützen.

Urnenmodelle

Bei wiederholten Versuchen greift man häufig auf das so genannte Urnenmodell zurück: Dieses Modell funktioniert im Prinzip folgendermaßen: Eine Urne enthält N viele Kugeln, die sich voneinander unterscheiden lassen. Es werden n viele Kugeln gezogen. Man interessiert sich für die Zahl von Kugeln mit einem bestimmten Merkmal unter den n gezogenen.


Wir unterscheiden grundsätzlich

  • das Urnenmodell mit Zurücklegen: Eine Kugel wird gezogen und wieder zurückgelegt
  • das Urnenmodell ohne Zurücklegen: Eine Kugel wird gezogen und nicht wieder zurückgelegt


Viele Zufallsvorgänge, speziell die wiederholter Versuche, können auf das Urnenmodell zurückgeführt werden. Den Anfänger mag die Vorstellung, eine Kugel zu ziehen und wieder zurückzulegen, eigenartig anmuten, aber so kann man unabhängige Versuche modellieren: Betrachten wir den Zufallsvorgang, zwei mal zu würfeln, so kann man stattdessen auch aus einer Urne mit 6 verschiedenen Kugeln zwei mal jeweils eine ziehen und wieder zurücklegen.

Kombinatorik

Wir haben eine Urne mit N Kugeln gegeben. Es sollen n Kugeln gezogen werden. Wir befassen uns nun mit der Zahl der möglichen Ergebnisse bei wiederholten Versuchen. Hier müssen wir die verschiedenen Arten der Anordnung gezogener Kugeln im Urnenmodell berücksichtigen.


Zur Verdeutlichung dieser Aufgabenstellung betrachten wir eine Urne mit 3 Kugeln A, B, C. Es sollen n = 2 Kugeln gezogen werden. Wie viel verschiedene Paare würden wir erhalten?

Wir unterscheiden die Aufgabenstellungen


Mit Wiederholung - Mit Berücksichtigung der Reihenfolge

Die Buchstaben werden mit Zurücklegen gezogen; ein Buchstabe kann also mehrmals im Paar auftauchen. Es kommt auf die Reihenfolge der Buchstaben an. Es sind folgende verschiedene Paare möglich:

(A,A), (A,B), (A,C), (B,A), (B,B), (B,C), (C,A), (C,B), (C,C).

Es gibt insgesamt viele verschiedene Ergebnisse, wie man leicht sieht.


Mit Wiederholung - Ohne Berücksichtigung der Reihenfolge

Es sind folgende verschiedene Paare möglich:

(A,A), (A,B), (A,C), (B,B), (B,C), (C,C).

Es gibt insgesamt viele verschiedene Ergebnisse.

Ohne Wiederholung - Mit Berücksichtigung der Reihenfolge

Die Buchstaben werden ohne Zurücklegen gezogen; ein Buchstabe kann nur einmal im Paar auftauchen. Es sind folgende verschiedene Paare möglich:

(A,B), (A,C), (B,A), (B,C), (C,A), (C,B).

Es gibt insgesamt viele verschiedene Ergebnisse.

Ohne Wiederholung - Ohne Berücksichtigung der Reihenfolge

Es sind folgende verschiedene Paare möglich:

(A,B), (A,C), (B,C).

Es gibt insgesamt viele verschiedene Ergebnisse.

Übungsbeispiel

Aus vier Personen Anna (A), Balduin (B), Cäcilie (C), Dagobert (D) werden zwei zum Geschirrspülen ausgelost, wobei eine Person abspült und eine abtrocknet.

Handelt es sich um ein Modell mit oder ohne Zurücklegen? Theoretisch wäre auch ein Modell mit Zurücklegen denkbar. Da das aber als unfair empfunden wird, gehen wir vom Modell ohne Zurücklegen (M. o. Z.) aus.


  • Mit welcher Wahrscheinlichkeit erwischt es zuerst Cäcilie und dann Balduin (Ereignis E)?

Hier kommt es auf die Reihenfolge der gezogenen „Kugeln“ an.


Methode a: Direkt über die Ergebnismenge

Die Ergebnismenge ergibt Ω* =

-

(A,B)

(A,C)

(A,D)

(B,A)

-

(B,C)

(B,D)

(C,A)

(C,B)

-

(C,D)

(D,A)

(D,B)

(D,C)

-

Jedes Paar hat die gleiche Wahrscheinlichkeit, gewählt zu werden. Es gibt insgesamt |Ω*| = 12 verschiedene Paare.


Methode b: Über die Zahl der Ergebnisse Es handelt sich um ein Modell ohne Zurücklegen mit Beachtung der Reihenfolge. Es gibt

verschiedene Paare. Es gibt nur ein Ergebnis für das Ereignis E. Es ist also


Methode c: Über den Multiplikationssatz der Wahrscheinlichkeiten


  • Mit welcher Wahrscheinlichkeit müssen die zwei Männer abwaschen (Ereignis F)?


Methode a:

Es ist F = {(B,D), (D,B)}. Dieses Ereignis belegt in Ω* zwei Elemente. Also ist


Methode b:

M.o.Z, ohne Beachtung der Reihenfolge. Es gibt

verschiedene Paare . Es ist also

Methode c:

.



2.  Zufallsvariablen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Beispiel zum Begriff der Zufallsvariablen

Die fränkische Druckerei Printzig nennt 10 multifunktionelle Hochleistungsdrucker ihr Eigen. Drei Drucker sind von der Firma Alpha, zwei sind von Beta, vier von Gamma und einer stammt von der Firma Delta. Da die Drucker auch von Kunden bedient werden, fallen sie aufgrund unsachgemäßer Handhabung häufig aus. Man hat festgestellt, dass alle Drucker in gleichem Maße anfällig sind. Wegen der Gewährleistung wird bei jedem Ausfall ein Wartungstechniker der betreffenden Firma geholt. Die Kosten für die Wiederherstellung eines Druckers hängen vom Hersteller ab, wobei die Drucker der Firma Gamma in der Reparatur am billigsten sind.

Am liebsten ist es natürlich Herrn Printzig, wenn ein Drucker mit den geringsten Reparaturkosten ausfällt.

Überlegen wir:

  • Welche Ergebnismenge gehört zu dem Zufallsvorgang: Ein Drucker fällt zufällig aus?
  • Mit welcher Wahrscheinlichkeit entstehen Herrn Printzig die geringsten Kosten?

Wir erhalten die Ergebnismenge

Ω = {A1, A2, A3, B1, B2, G1, G2, G3, G4, D1},

wobei z.B. B2 Drucker Nr. 2 der Firma Beta bedeutet. G sei das Ereignis, die geringsten Reparaturkosten zu haben. Jeder Drucker hat die gleiche Wahrscheinlichkeit, auszufallen. Dann ist nach dem Symmetrieprinzip

Die Kosten für die Reparatur eines Druckers betragen je nach Hersteller wie folgt:

Hersteller Alpha Beta Gamma Delta
Kosten (Euro) 50 60 30 100


Überlegen wir: Wieviel muss Herr Printzig pro Ausfall im Durchschnitt bezahlen?

Ordnen wir nun der Ergebnismenge die entsprechenden Kosten zu:

A1 A2 A3 B1 B2 G1 G2 G3 G4 D1
50 50 50 60 60 30 30 30 30 100

Ω hat 10 Ergebnisse und jedes Elementarereignis hat die Wahrscheinlichkeit 1/10. Jeder Drucker fällt dann auch mit der Wahrscheinlichkeit 1/10 aus. Die durchschnittlichen Reparaturkosten sind also

Wir haben soeben eine Zufallsvariable konstruiert und zwar, indem wir allen Ergebnissen von Ω eine Zahl zugeordnet haben.

Den Durchschnitt konnten wir erst berechnen, nachdem wir die Drucker mit einer Zahl versehen hatten. Man kann je nach Interesse den Elementarereignissen beliebige Zahlen zuordnen. So könnten für die laufende Wartung wieder ganz andere Kosten gelten. Nur die Ergebnismenge ist festgelegt. Man könnte nun die Wahrscheinlichkeit berechnen, dass bei einem Ausfall 60 Euro fällig werden: Es gibt 10 Elementarereignisse und zwei davon entsprechen 60 Euro. Also beträgt diese Wahrscheinlichkeit 2/10.

Wir bezeichnen eine Zufallsvariable mit einem großen Buchstaben. Die Werte, die eine Zufallsvariable annehmen kann, nennt man Ausprägung. Eine bestimmte Ausprägung kennzeichnen wir mit einem Kleinbuchstaben. Nennen wir unsere Zufallsvariable „Reparaturkosten“ X. Wir fassen jetzt die verschiedenen Wahrscheinlichkeiten der Zufallsvariablen X in einer Wahrscheinlichkeitstabelle zusammen. Herr Printzig hat 4 mal die „Chance“, 30 Euro zu bezahlen, also ist die Wahrscheinlichkeit, dass X = 30 ist, gleich 4/10, usw.


Wahrscheinlichkeitstabelle:

  x1 x2 x3 x4
Ausprägung xi 30 50 60 100
Wahrscheinlichkeit f(xi) 0,4 0,3 0,2 0,1


Wahrscheinlichkeitsfunktion von X: Reparaturkosten

f(x) bezeichnet die zur bestimmten Ausprägung x gehörende Wahrscheinlichkeit. Es ist beispielsweise

P(X = 60) = f(x3) = f(60) = 0,2,

aber

P(X = 70) = f(70) = 0,

denn für X = 70 existiert kein Ergebnis.

Die Summe aller Wahrscheinlichkeiten ist

Man kann diese Wahrscheinlichkeiten auch grafisch als Stabdiagramm darstellen.

Man sieht, dass an den x-Stellen 30, 50, 60 und 100 die Wahrscheinlichkeitsfunktion die Werte 0,4, 0,3, 0,2 und 0,1 annimmt, aber an allen sonstigen Werten von x Null ist.

Wie groß ist nun aber die Wahrscheinlichkeit, dass Herr Printzig höchstens 50 Euro bezahlen muss?

P(X ≤ 50) = P(X = 30) + P(X = 50) = 0,4 + 0,3 = 0,7.

Das kann man auch aus der Graphik ersehen: Es ist die Summe der „Stäbchen“ für x ≤ 50.

Mit welcher Wahrscheinlichkeit muss Herr Printzig weniger als 100 Euro zahlen? Gefragt ist hier nach P(X < 100). Ein Blick auf die Grafik verrät uns, dass gilt

P(X < 100) = P(X ≤ 60) = P(X = 30) + P(X = 50) + P(X = 60) = 0,4 + 0,3 + 0,2 = 0,9.

DruckerLE50.png DruckerL100.png

Wieviel ist nun P(30 < X ≤ 60)?

Man kann hier wieder die „Stäbchenmethode“ anwenden:

P(30 < X ≤ 60) = 0,3 + 0,2 = 0,5.

Es gibt aber auch eine Rechenregel, die man mit Hilfe der Grafik leicht erkennt:

P(a < X ≤ b) = P(X ≤ b) - P(X ≤ a),

also

P(30 < X ≤ 60) = P(X ≤ 60) - P(X ≤ 30) = 0,9 - 0,4 = 0,5.

Die Wahrscheinlichkeiten P(X ≤ a) einer bestimmten Ausprägung a von X bilden die Verteilungsfunktion von X, die die Wahrscheinlichkeitsverteilung von X in eindeutiger Weise beschreibt. Das ist eine Festlegung, die die Statistiker als sinnvoll erachten. Die Verteilungsfunktionen werden grossbuchstabig als F(a) bezeichnet. Meist wird statt a das Symbol x verwendet. Wir wollen die Verteilungsfunktion konstruieren, indem wir die obige Graphik zu Hilfe nehmen und für einzelne Stützwerte x die Verteilungsfunktion berechnen.

Wie groß ist z.B. P(X ≤ 10)? Es ist P(X ≤ 10) = F(10) = 0.

Ebenso sind P(X ≤ 15) = 0 und P(X ≤ 20) = 0.

Es ist also F(a) = 0 für alle Werte von a mit - ∞ < a < 30.

Als nächstes untersuchen wir P(X ≤ 30):

P(X ≤ 30) = F(30) = 0,4 . Ebenso sind P(X ≤ 30,1) = 0,4 und P(X ≤ 49,99999) = 0,4.

Die Verteilungsfunktion hat also den Wert F(a) = 0,4 für 30 ≤ a < 50.

Es gilt weiter: P(X ≤ 50), P(X ≤ 59), ... P(X< 60) sind, siehe Graphik: 0,4 + 0,3 = 0,7.

...

Schließlich ist die Wahrscheinlichkeit P(X ≤ 100) oder auch P(X ≤ 110), P(X ≤ 1000) usw... gleich 1.

Wir können die Wahrscheinlichkeiten zusammenfassen in der Verteilungsfunktion

Verteilungsfunktion von X: Reparaturkosten


Man sieht, dass diese Verteilungsfunktion grafisch eine Treppenfunktion darstellt. Die Punkte links an den Stufen zeigen an, dass der Funktionswert dieser Stufe genau zum Punkt a gehört.

Man kann hier auch die Wahrscheinlichkeiten der Grafik entnehmen, z.B. ist P(X ≤ 70) = 0,9.

Besonders interessiert man sich bei einer Zufallsvariable für zwei Kennwerte, Parameter genannt, die die Zufallsvariable genauer beschreiben.

Einer ist der durchschnittliche Wert, den die Zufallsvariable „auf lange Sicht“ annimmt, wenn der Zufallsvorgang „sehr oft“ durchgeführt wird. Dieser Parameter wird Erwartungswert EX genannt, also der Wert, den man langfristig erwarten kann. Wir hatten ihn schon oben ermittelt als

die durchschnittlichen Reparaturkosten.

Ein weiterer Parameter ist die Streuung der X, ein Maß, wie stark die einzelnen Werte von X von EX abweichen, also 30-49, 50-49, 60-49, 100-49. Da z.B. 100 viel seltener auftritt als 30, gewichtet man auch diese Abweichungen mit ihrer Wahrscheinlichkeit. Eine Quadrierung sorgt dann einerseits dafür, dass sich positive und negative Abweichungen nicht aufheben, andererseits für eine überproportionale Berücksichtigung von besonders starken Abweichungen. Man erhält im Ergebnis als durchschnittliche quadratische Abweichung der X-Werte von EX die Varianz

wobei zu beachten ist, dass sich hier als Einheit Euro2 ergibt.

Die Wurzel der Varianz ist die Standardabweichung; man könnte sie salopp als mittlere Abweichung der Ausprägungen vom Durchschnitt bezeichnen. Sie beträgt in unserem Beispiel etwa 20,71.

Allgemeine Darstellung einer Zufallsvariablen

Gegeben ist ein Zufallsvorgang mit der Ergebnismenge Ω. Jedem Element aus Ω wird eine reelle Zahl x zugeordnet:

.

Die Elemente von X sind Realisationen, Ausprägungen, Werte. Die Verteilung der Zufallsvariablen kann festgelegt werden mit ihrer Verteilungsfunktion F, definiert als

.

Es gilt für die Verteilung jeder Zufallsvariablen:

  • F(x) ist für alle x ∈ definiert.
  • 0 ≤ F(x) ≤ 1 .
  • F(x) ist monoton steigend, also x1 < x2 → F(x1) ≤ F(x2)
  • F(x) ist rechtsseitig stetig.
  • P(a < X ≤ b) = P(X ≤ b) - P(X ≤ a) = F(b) - F(a).



2.1.  Diskrete Zufallsvariablen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Eine Zufallsvariable ist diskret, wenn sie in fast jedem beschränkten Intervall der reellen Zahlen nur endlich viele Ausprägungen annehmen kann. Die diskrete Zufallsvariable kann endlich oder abzählbar unendlich viele Werte xi ( i = 1,2,..., m bzw. i = 1,2,... ) annehmen.

Beispiele

  • Zahl der Schadensleistungen, die in einem Jahr bei einer Versicherung auftreten
  • Kinderzahl von Konsumenten
  • Zahl der defekten Kondensatoren in einem Fertigungslos

Ihre Wahrscheinlichkeitsfunktion ist

Es gilt

Die Verteilungsfunktion P(X ≤ a) = F(a) ist die Summe aller Wahrscheinlichkeiten f(xi) für xi ≤ a.

Der Erwartungswert einer Zufallsvariablen ist der Durchschnitt des Auftretens ihrer Realisationen. Bei einer diskreten Zufallsvariablen beträgt er

falls EX existiert, d.h. nicht unendlich wird.

Die Varianz einer diskreten Zufallsvariablen berechnet sich als

Nach dem sog.Verschiebungssatz ist auch

im Beispiel:



2.2.  Stetige Zufallsvariablen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Beispiel eines Zeitungskiosks

Dichtefunktion

Dichtefunktion von X

Die Zufallsvariable X: „An einem Tag verkaufte Menge an Tageszeitungen (in 100) eines Zeitungskiosks“ lässt sich beschreiben mit der (in diesem Fall frei erfundenen) Dichtefunktion

Diese Zufallsvariable X ist nun stetig, d.h. sie hat in jedem Intervall a ≤ X ≤ b unendlich viele Ausprägungen.

Eine Analyse der Grafik zeigt, dass diese Dichtefunktion symmetrisch bezüglich 8 ist, was die Berechnung von Wahrscheinlichkeiten sehr erleichtert.

W', dass X höchstens 7 ist

Wir wollen nun die Wahrscheinlichkeit bestimmen, dass an einem Tag höchstens 700 Zeitungen verkauft werden, also P(X ≤ 7). Wenn wir analog zu der diskreten Zufallsvariablen vorgehen, wo wir „die Summe der Stäbchen“ ermittelten, müsste die Wahrscheinlichkeit P(X ≤ a) hier „unendlich viele Stäbchen“, also eine Fläche ergeben.

Wir berechnen die Dreiecksfläche mit Hilfe der Geometrie:

Es ist übrigens auch

denn bei einer stetigen Zufallsvariablen ist P(X = x) = 0, da es als unmöglich angesehen wird, genau einen bestimmten Wert x zu „treffen“. Man betrachtet also bei einer stetigen Zufallsvariablen nur Wahrscheinlichkeiten der Art P(X ≤ x) o.ä.


Es ist P(X ≤ 8) = 0,5, wie man der Grafik sofort entnimmt.


W', dass X mindestens 9 ist

denn wie man sieht, ist die Fläche von P(X ≥ 9) genau gleich der Fläche P(X ≤ 7).


Außerdem ist


Bestimmen wir die Wahrscheinlichkeit eines Intervalls. Es ergibt

P(8 < X ≤ 9) = P(X ≤ 9) - P(X ≤ 8) = 0,875 - 0,5 = 0,375,

wenn man die Rechenregel für P(a < X ≤ b) anwendet.


W', dass X höchstens 9 ist
W', dass X zwischen 8 und 9 liegt

Verteilungsfunktion

Man kann Wahrscheinlichkeiten von X auch als Verteilungsfunktion darstellen. Sucht man die Wahrscheinlichkeit P(X a), muss also das Integral von -∞ bis a berechnet werden:

Bei unserem Beispiel sind wir mit verschiedenen Bereichen konfrontiert:

1. a < 6

2. 6 ≤ a ≤ 8

3. 8 < a ≤ 10

4. a > 10

Verteilungsfunktion von X


Wir erhalten beispielsweise durch Einsetzen in F(x)


Quantil

Das Quantil x(p) gibt die Ausprägung x an, die zu einem bestimmten Verteilungswert p = F(x) gehört. Es handelt sich beim Quantil x(p) also gerade um die Umkehrfunktion der Verteilungsfunktion F(x).

Beispiele

x(0,875) = 9, d.h. zur Wahrscheinlichkeit 0,875 gehört der x-Wert 9.

Ebenso ist x(0,5) = 8. D.h. 8 ist der Median, also wurden an 50% aller Tage höchstens 800 Zeitungen verkauft.


Übung

Bestimmen Sie P(6,25 < X < 8,75). Mit welcher Wahrscheinlichkeit wurden an den 50% besten Tagen mindestens 900 Zeitungen verkauft? Gesucht ist hier P(X > 9| X > 8).

Was Sie speziell über stetige Zufallsvariablen wissen sollten

Eine stetige Zufallsvariable kann in jedem beschränkten Intervall unendlich viele Ausprägungen annehmen. Ihre Verteilung lässt sich durch eine Dichtefunktion f(x) beschreiben. f(x) ist keine Wahrscheinlichkeit, sondern eine Dichte.

  • Die Verteilungsfunktion ist
  • Es gilt: P(X = a) = 0.
  • Wegen P(X = a) = 0 ist P(X ≤ a) = P(X < a) und P(X > a) = P(X ≥ a)
  • Die Dichtefunktion f(x) ist die erste Ableitung der Verteilungsfunktion, falls diese an der Stelle x differenzierbar ist.
  • Die Dichtefunktion f(a) kann auch größer als 1 werden.
  • Ausgehend von ist das p-Quantil x(p) der Wert x, der zu einer gegebenen Wahrscheinlichkeit p gehört. Speziell x(0,5) ist der Median.
  • Der Erwartungswert einer stetigen Zufallsvariablen ist analog zu oben
falls EX existiert, d.h. nicht unendlich wird.
  • Ihre Varianz ist

wobei auch hier der Verschiebungssatz angewendet werden kann:

Bei symmetrisch verteilten Zufallsvariablen ist im Allgemeinen der Erwartungswert der Zufallsvariablen gleich dem Median.

In unserem Beispiel ist also EX = 8, denn die Verteilung ist symmetrisch. Das bedeutet, dass im Durchschnitt pro Tag 800 Zeitungen umgesetzt werden.

Wendet man die gegebene Formel für EX auf unser Beispiel an, so erhält man:

Entsprechend gilt für die Varianz:

Beispiel: Eingehende Anrufe bei Fernsehabstimmungen

Verteilung von lnx - ln2

Während einer Fernsehsendung wurden die Zuschauer aufgefordert, telefonisch abzustimmen. Die Leitungen wurden um 14 Uhr freigeschaltet. Dann konnten die Zuschauer bis ca. 17.30 Uhr anrufen. Für die eintreffenden Anrufe ergab sich näherungsweise die Verteilungsfunktion der stetigen Zufallsvariablen X: Zeitpunkt (Uhrzeit), an dem ein Anruf eintrifft, wie folgt:

Sei jetzt ein beliebiger Anruf.

Wir wollen nun bestimmen

  1. die Dichtefunktion f(x)
  2. die Wahrscheinlichkeit, dass bis höchstens 15 Uhr der Anruf eingegangen ist.
  3. die Wahrscheinlichkeit, dass zwischen 15 und 16 Uhr der Anruf eingegangen ist.
  4. die Uhrzeit, zu der 90% aller Anrufe eingetroffen sind
  5. den Median
  6. den Erwartungswert
  7. die Varianz

Die Grafik der Verteilung F(X) zeigt den typischen Verlauf einer logarithmischen Funktion.

1. Dichtefunktion f(x)

Dichtefunktion von lnx - ln2

Die Dichtefunktion ist immer die erste Ableitung der Verteilungsfunktion: f(x) = F'(x).

Unsere Verteilungsfunktion ist abschnittsweise definiert. Wir müssen bereichsweise ableiten (dass die Funktion an den Knickstellen möglicherweise nicht differenzierbar ist, tut im Allgemeinen nicht weh, Hauptsache, die Fläche ergibt 1).

Bereich x < 2:
Bereich 2 ≤ x ≤ 2e:
Bereich x > 2e:

Wir wollen jetzt f(x) noch ordentlich angeben:

Betrachten wir mal die Dichtefunktion: Man sieht hier deutlich, dass die meisten Anrufe in den ersten 1,5 Stunden nach Freischalten eingelaufen sind. Danach flaut die Zahl der Anrufe allmählich ab.


2. Wahrscheinlichkeit, dass bis höchstens 15 Uhr der Anruf ω eingegangen ist

Gesucht ist P(X ≤ 3). In der Dichtefunktion ist das die Fläche von 2 bis 3. Diese Fläche ist das Selbe wie der Funktionswert F(3). Wir erhalten

Man kann also sagen, dass in einer Stunde ab Freischalten der Leitungen 40% der Anrufe eingegangen sind.

Fläche der Dichtefunktion für P(X<3)
Verteilungsfunktion für P(X<3)
Fläche der Dichtefunktion für P(3 < X < 4)

3. Wahrscheinlichkeit, dass zwischen 15 und 16 Uhr der Anruf ω eingegangen ist

Gesucht ist hier P(3 ≤ X ≤ 4). Wir wissen schon, dass speziell für stetige Zufallsvariablen (bei diskreten muss man noch zwischen < und ≤ unterscheiden) gilt: P(3 ≤ X ≤ 4) = P(X ≤ 4) - P(X ≤ 3). Wir erhalten dann

 
 
 

4. Uhrzeit, zu der 90% aller Anrufe eingetroffen sind

Hier ist die Wahrscheinlichkeit 0,9 gegeben und wir suchen den X-Wert, der zu dieser Wahrscheinlichkeit passt, also P(X ≤ ?) = 0,9. Gesucht ist also das 90%-Quantil. Wir bilden den Ansatz

F(?) = 0,9 oder etwas professioneller: F(x(0,9)) = 0,9, also

,

d.h. etwa um 16.55 waren 90% der Anrufe eingegangen.


5. Median

Der Median ist das 50%-Quantil. Es ergibt sich also analog zu oben:


6. Erwartungswert

Der Erwartungswert der Zufallsvariablen X wird bei einer stetigen Zufallsvariablen integriert:

Wir müssen hier wieder bereichsweise vorgehen und bestimmen zunächst mal die Teilintegrale:

Bereich x < 2:
Bereich 2 ≤ x ≤ 2e: .
Bereich x > 2e:

Wir müssen nun die Teilintegrale addieren und erhalten

.

Es kam also ein Anruf im Durchschnitt um 15.30 an.


7. Varianz

Die Varianz berechnet sich nach der Formel

.

Analog zu oben erhalten wir

.



2.3.  Ungleichung von Bienaymé-Tschebyschew
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Mit der Ungleichung von Tschebyschew oder Biennaymé-Tschebyschew kann man Wahrscheinlichkeiten einer Zufallsvariablen mit unbekannter Verteilung abschätzen. Benötigt werden als Information der Erwartungswert und die Varianz der Zufallsvariablen, die im Allgemeinen geschätzt werden müssen.

Die Ungleichung lautet folgendermaßen:

.

Besser kann man sich die Beziehung vorstellen, wenn man die Betragsungleichung ausschreibt :

Diese Abschätzung ist naturgemäß sehr grob und kann manchmal nichtssagende Ergebnisse liefern.

Beispiel

Es ist bekannt, dass ein Kaffeeautomat im Durchschnitt 250 ml Kaffee ausschenkt mit einer Varianz von 100 ml2. Eine Tasse gilt als korrekt befüllt, wenn ihr Inhalt nicht mehr als 30 ml vom Durchschnitt abweicht. Der Anteil der inkorrekt befüllten Tassen beträgt höchstens

bzw.

.

Umgekehrt gilt dann auch

bzw.

.

Also wäre der Anteil der korrekt befüllten Tassen mindestens 8/9.



2.4.  Mehrdimensionale Zufallsvariablen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Beispiel für mehrdimensionale Zufallsvariablen

Abb. 1: Gemeinsame Wahrscheinlichkeit von Qualitätskontrolle X und Reklamationskosten Y
Abb. 2: Gemeinsame Wahrscheinlichkeit von Qualitätskontrolle X und Reklamationskosten Y

In einer Studie über Total Quality Management (TQM) wurde eine umfangreiche Befragung bei europäischen Produktionsbetrieben durchgeführt. Man erfasste zum einen den Aufwand für die Qualitätskontrolle während der laufenden Produktion in Prozent der Produktionskosten und zum anderen die Aufwendungen für Reklamationen prozentual zum Umsatz.

Wir definieren die folgenden zwei Zufallsvariablen:

  • X: Anteilige Kosten der Qualitätskontrolle [%].
  • Y: Anteilige Kosten der Reklamationen [%].

Es ergibt sich die nebenstehende gemeinsame Wahrscheinlichkeitstabelle (Abb. 1) mit der i-ten Zeile (i = 1, ... , n) und der j-ten Spalte (j = 1, ... , m). Siehe darunter die graphische Darstellung der Tabelle (Abb. 2). Man erkennt, wie bei steigendem Aufwand der Qualitätskontrolle die Ausgaben für die Reklamationen sinken.

Die gemeinsame Wahrscheinlichkeit P(X = 5 ∧ Y = 10) = 0,05 werde bezeichnet als fX,Y(5;10) .

Die spalten- bzw. zeilenweisen Summen der gemeinsamen Wahrscheinlichkeiten ergeben die Randwahrscheinlichkeiten oder auch Einzelwahrscheinlichkeiten der Zufallsvariablen X bzw. Y.

Es ergeben sich also für diese beiden Variablen die Wahrscheinlichkeitsverteilungen

xi

0%

5%

10%

fX(xi)

0,4

0,2

0,4

yj

0%

5%

10%

15%

fY(yj)

0,2

0,2

0,2

0,4

Die Einzelwahrscheinlichkeit berechnet sich als

also hier



2.4.1.  Abhängigkeit von Zufallsvariablen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Stochastische Unabhängigkeit

Falls X und Y stochastisch unabhängig sind, ist

.

Beispiel:

Z.B. ist P(X = 0 ∧ Y = 0) = 0, aber P(X = 0) · P(Y = 0) = 0,4 · 0,2 ≠ 0.

Also sind X und Y stochastisch abhängig. Es genügt schon, wenn die Unabhängigkeitsvoraussetzung für ein Paar nicht erfüllt ist.


Kovarianz

Man interessiert sich bei gemeinsam verteilten Variablen im allgemeinen auch dafür, inwieweit zwischen diesen Variablen ein Zusammenhang besteht. In unserer Wahrscheinlichkeitstabelle des Beispiels „Qualitätskontrolle“ stehen beispielsweise links unten und rechts oben die größeren Wahrscheinlichkeiten, also scheinen niedrige Ausprägungen von X eher mit hohen Ausprägungen von Y und hohe Ausprägungen von X eher mit niedrigen Ausprägungen von Y einherzugehen.

Wahrscheinlichkeitstabelle des Beispiels von oben
Gemeinsame Wahrscheinlichkeit von Qualitätskontrolle X und Reklamationskosten Y
x \ y 0 5 10 15
0 0,00 0,00 0,10 0,30 0,4
5 0,00 0,05 0,05 0,10 0,2
10 0,20 0,15 0,05 0,00 0,4
0,2 0,2 0,2 0,4 1,0

Ein Maß für einen linearen Zusammenhang zweier Zufallsvariablen X und Y ist beispielsweise die Kovarianz covXY. Sie ist für diskrete Zufallsvariablen definiert als

bzw. wegen des Verschiebungssatzes

Es ergibt für unser Beispiel

und

und damit die Kovarianz

 
 
 
 

Eine positive Kovarianz deutet daraufhin, dass eher ein proportionaler Zusammenhang zwischen X und Y besteht, eine negative Kovarianz dagegen, dass eher ein umgekehrt proportionaler Zusammenhang zwischen X und Y besteht.

Korrelationskoeffizient

Ist die Kovarianz null, sind die Zufallsvariablen unkorreliert, sonst korreliert.

Die Kovarianz ist nicht normiert. Ein normiertes Maß für den linearen Zusammenhang stellt der Korrelationkoeffizient nach BRAVAIS-PEARSON ρX,Y dar, der definiert ist als

.


Es gilt für den Korrelationskoeffizienten ρXY :

.

Ist ρXY 1 oder -1, besteht ein exakter linearer Zusammenhang zwischen X und Y.

Sind X und Y stochastisch unabhängig, ist covXY und damit ρXY gleich null. Der Umkehrschluss ist nicht zulässig, da eine nichtlineare Abhängigkeitsstruktur zwischen X und Y bestehen kann, die vom Korrelationskoeffizienten nicht erfasst werden kann.

Beispiel:

Wir berechnen zunächst die Varianz von X als

und entsprechend die Varianz von Y als

.

Damit erhalten wir

.

Bedingte Wahrscheinlichkeiten von Zufallsvariablen

Auch für Zufallsvariablen sind bedingte Wahrscheinlichkeiten angebbar, nämlich

die bedingte Wahrscheinlichkeit einer Zufallsvariablen als

und die bedingte Wahrscheinlichkeit zweier Zufallsvariablen

.

Entsprechendes gilt für ≥ und =.


Ebenso gilt:

Wenn X und Y stochastisch unabhängig sind, ist

für alle i,j.

Beispiele:

.

„Die Hälfte aller Unternehmen mit Reklamationskosten hatte mindestens 15% Aufwand.“


.

„Die Hälfte aller Unternehmen mit sehr viel Qualitätskontrolle hatte Reklamationskosten.“



2.4.2.  Funktionen von Zufallsvariablen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 2 vom Inhaltsverzeichnis

Funktion einer Zufallsvariablen

Lineare Transformation einer Zufallsvariablen

Der Student Bert hat eine kleine schicke Appartementwohnung, die er hin und wieder säubern muss. Die Intervalle der Reinigungsaktionen sind unterschiedlich und lassen sich folgendermaßen beschreiben: Die Zeit in Wochen, die nach der letzten Säuberungsaktion verstrichen ist, wird als Zufallsvariable X bezeichnet. Die Intervalle verteilen sich folgendermaßen:

Zahl der Wochen bis zur nächsten Putzaktion xi 0 1 2 3 4 5
Wahrscheinlichkeit f(xi) 0,1 0,2 0,2 0,3 0,1 0,1

X hat den Erwartungswert EX =2,4 und die Varianz 2,04. Rechnen Sie das zur Übung selber nach.

Wenn Bert putzen muss, hängt der Aufwand in Stunden von der Zahl der Wochen ab, die er seine Wohnung vernachlässigt hat. Er braucht jedesmal ca. 1 Stunde für das Bad und einmal Durchsaugen. Für die restlichen Arbeiten muss er pro verstrichener Woche noch eine halbe Stunde Arbeitszeit hinzugeben. Morgen kommen seine Eltern zu Besuch. Mit welcher Wahrscheinlichkeit muss Bert heute 2 Stunden putzen? Wie lange putzt er durchschnittlich jedes Mal?

Hier überlegen wir uns zunächst mal, dass die Putzzeit von der vorherigen „Karenzzeit“ X abhängt. Sie ist also auch eine Zufallsvariable. Man könnte sie so darstellen:

Wie ist nun Y verteilt? Y hängt direkt von X ab und wir erhalten die Wahrscheinlichkeitstabelle

Zahl der Wochen bis zur nächsten Putzaktion xi 0 1 2 3 4 5
Aufgewendete Putzzeit yi 1 1,5 2 2,5 3 3,5
Wahrscheinlichkeit f(yi) 0,1 0,2 0,2 0,3 0,1 0,1

Man kann sofort sehen, dass Bert mit einer Wahrscheinlichkeit von 20% 2 Stunden putzen wird.

Wir wollen nun Erwartungswert und Varianz von Y ermitteln. Der Erwartungswert berechnet sich wie gewohnt als

.

Das bedeutet er putzt durchschnittlich 2,2 Stunden.

Die Varianz ergibt sich analog als

Schön wäre es allerdings, wenn man die Parameter der Verteilung etwas einfacher ausrechnen könnte. Y hat die schöne Eigenschaft, dass es eine lineare Transformation von X ist der Art

.

Bei linearen Transformationen wie oben gilt

und

.

Rechnen wir nach:

und

.

Standardisierung

Eine spezielle lineare Transformation ist die Standardisierung einer Zufallsvariablen X durch

.

Man kann nämlich Z so umformen:

mit und , denn Erwartungswert und Varianz von X sind Konstanten.

Es ist dann EZ = 0 und varZ = 1.

Nichtlineare Funktion einer Zufallsvariablen

Lakonisch könnte man sagen: Eine nichtlineare Funktion ist eine Funktion, die nicht linear ist. Man kann sie also nicht in der Form Y = a + bx schreiben. Beispiele sind etwa

Hier kann man die Parameter im Allgemeinen nur über die Verteilung der Zufallsvariablen bestimmen.


Beispiel

Es hat sich herausgestellt, dass der Aufwand an Putzmitteln (ml pro qm) in Abhängigkeit von der verstrichenen Zeit quadratisch steigt mit der Funktion

Zahl der Wochen bis zur nächsten Putzaktion xi 0 1 2 3 4 5
Aufgewendete Putzmittel yi 2 3 6 11 18 27
Wahrscheinlichkeit f(yi) 0,1 0,2 0,2 0,3 0,1 0,1

Hier kann man Erwartungswert und Varianz von Y nur mit den bekannten Formeln ermitteln, etwa

.

Lineare Funktionen mehrerer Zufallsvariablen

Zwei Variablen

Gegeben sind zwei Zufallsvariablen X1 und X2 mit den Verteilungsparametern EX1, varX1 und EX2, varX2. Außerdem sind die beiden Zufallsvariablen korreliert mit der Kovarianz covX1X2. Es wird eine Zufallsvariable

gebildet. Analog zu oben errechnet sich der Erwartungswert von Y durch

.

Die Varianz von Y setzt sich aus den Einzelvarianzen der Zufallsvariablen zusammen. Hinzu kommt noch die Kovarianz:

.

Wenn die zwei Zufallsvariablen X1 und X2 stochastisch unabhängig sind, ist ihre Kovarianz Null. Dann reduziert sich die Formel für die Varianz auf

.

Beispiel

Die Versorgung mit Getränken in einem Fußballstadion mittlerer Größe wird bei Spielen von einem Gastronomieunternehmen betrieben. Man weiß aus Erfahrung, dass die Zahl der verkauften Bierbecher von der Zahl der vorbestellten Eintrittskarten abhängt, und zwar in unterschiedlicher Weise von einheimischen und auswärtigen Besuchern. Es sei X1: Zahl der bestellten Karten von Einheimischen und X2: Zahl der bestellten Karten von Auswärtigen.

Es hat sich herausgestellt, dass und sind.

Zudem sind X1 und X2 korreliert, denn je interessanter ein Spiel, desto mehr Einheimische und Auswärtige schauen das Spiel an. Es ist covX1X2 = 400.

Die Zahl der verkauften Getränke lässt sich angeben als

.

Es ist hier

und

Mehr als zwei Variablen

Gegeben sind n Zufallsvariablen Xi (i = 1, ..., n) mit den Erwartungswerten EXi, den Varianzen varXi und den paarweisen Kovarianzen covX1X2, covX1X3, ..., covXn-1Xn . covXiXj (i < j; i = 1, ..., n-1; j = i+1, ..., n). Es sei

.

Dann erhalten wir für den Erwartungswert

.

Die Varianz von Y können wir als Summe der Varianzen und paarweisen Kovarianzen ermitteln als

.

und, falls die Zufallsvariablen Xi stochastisch unabhängig sind, als Varianz

.



3.  Ausgewählte Verteilungen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Bei den ausgewählten Verteilungen handelt es sich um theoretische Zufallsverteilungen. Das sind Verteilungen, deren Form durch eine allgemein bekannte Funktion beschrieben wird. Oftmals kann beobachtet werden, dass die Verteilung bestimmter Zufallsvariablen annähernd durch eine theoretische Verteilung dargestellt werden kann, z. B. das Gewicht von Hähnchen einer Geflügelzucht ist meistens annähernd normalverteilt. Meist haben diese Verteilungen bestimmte Vorzüge, sie können leicht berechnet werden, und man kann auch wahrscheinlichkeitstheoretische Folgerungen ziehen. Hier bekannt ist bereits die Dreiecksverteilung.



3.1.  Diskrete Verteilungen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

3.1.1.  Binomialverteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Binomialverteilung

Das Urnenmodell mit Zurücklegen bestimmt die binomialverteilte Zufallsvariable.

Gegeben ist eine Urne mit zwei Sorten Kugeln. Man spricht von einer dichotomen (griech: zweigeteilten) Grundgesamtheit. Es sind insgesamt N Kugeln in der Urne und M Kugeln der ersten Sorte. Der Anteil der Kugeln erster Sorte ist also

,

(0 ≤ θ ≤ 1). Es werden n Kugeln mit Zurücklegen gezogen. Es ist die Zufallsvariable definiert:

X: Anzahl der Kugeln 1. Sorte unter den n gezogenen Kugeln.


Beispiele für binomialverteilte Zufallsvariablen

  • In einer Urne befinden sich 3 schwarze und 12 weiße Kugeln. Es werden fünf Kugeln gezogen, wobei jede Kugel sofort wieder zurückgelegt wird (Modell mit Zurücklegen). Wir definieren X als Zahl der weißen Kugeln bei n = 5 Entnahmen.
  • 10 mal Würfeln. X: Zahl der Würfe mit einer Augenzahl von mindestens 5.
  • Einem sehr großen Fertigungslos von Kondensatoren werden 10 Kondensatoren entnommen. Erfahrungsgemäß sind 15% der Kondensatoren schadhaft. X: Zahl der schadhaften Kondensatoren.
  • In einer Schulklasse mit 30 Schülern und Schülerinnen wird täglich ein Kind per Los zum Tafeldienst bestimmt. X: Zahl der Tage, die Paula innerhalb von n = 40 Tagen Tafeldienst machen musste.

Exkurs

Beispiel: Sie würfeln 5 mal. Mit welcher Wahrscheinlichkeit erhalten Sie zweimal Sechs?

Offensichtlich handelt es sich bei diesem Problem um ein Urnenmodell mit Zurücklegen. Es wäre beispielsweise die Wahrscheinlichkeit, dass die ersten zwei Würfe Sechs ergeben:

.

Insgesamt gibt es folgende Möglichkeiten, zwei Sechsen zu erhalten, nämlich:

(SSFFF), (FFFSS), (FFSFS), (FFSSF), (FSFFS), FSFSF), (FSSFF), (SFFFS), (SFFSF) und (SFSFF).

Hier bedeuten S: eine Sechs wird gewürfelt, F: keine Sechs wird gewürfelt. Es gibt insgesamt

verschiedene Möglichkeiten, zwei Sechsen zu erhalten. Wir erhalten für die gesamte Wahrscheinlichkeit P(X = 2), dass bei fünf Versuchen genau zwei Sechsen resultieren:

Formale Darstellung

Die Zufallsvariable X ist binomialverteilt mit den Parametern n und θ. Ihre Wahrscheinlichkeitsfunktion lautet (0 ≤ θ ≤ 1)

Der Binomialkoeffizient berechnet sich als

Siehe auch in der Wikipedia: Binomialkoeffizient

Die Verteilungsfunktion P(X ≤ a) = B(a|n; θ) ergibt sich als Summe der Wahrscheinlichkeiten einer diskreten Zufallsvariablen, wie in Zufallsvariablen und Diskrete Zufallsvariablen erläutert.

Wie man der obigen Formel entnehmen kann, ist zur Berechnung der Wahrscheinlichkeiten die Kenntnis von N und M nicht erforderlich, es genügt die Bekanntheit von θ .

Weitere Kennwerte der Binomialverteilung sind

EX = n ·θ   und   varX = n · θ·(1 - θ) .

Beispiel: Verkehrszählung

Der Anteil der LKWs an den Kraftfahrzeugen auf deutschen Autobahnen soll für unser Beispiel 20% betragen. Im Rahmen einer Verkehrszählung an einer Auffahrt der Autobahn werden während einer Stunde 5 einfahrende Fahrzeuge zufällig erfasst.

  1. Mit welcher Wahrscheinlichkeit befinden sich 2 LKWs in einer Stichprobe?
  2. In wieviel Prozent der Stichproben befanden sich mindestens 2 LKWs in einer Stichprobe?

Es handelt sich offensichtlich um ein Modell mit Zurücklegen, denn ein Fahrzeug kann theoretisch auch mehrmals diese Auffahrt nehmen. Da wir die Fahrzeuge in LKW und Nicht-LKW unterscheiden, ist die betrachtete Grundgesamtheit dichotom (zwei Sorten Kugeln in der Urne). Wir definieren als Zufallsvariable X: Zahl der LKWs bei fünf gezählten Fahrzeugen.

X ist also binomialverteilt mit den Parametern n = 5 und θ = 0,2 (20%), in Kurzschreibweise

.


Wir werden zunächst die Wahrscheinlichkeitsfunktion von X bestimmen:


X = 0 0,32768
X = 1 0,4096
X = 2 0,2048
X = 3 0,0512
X = 4 0,0064
X = 5 0,00032


Wahrscheinlichkeitsfunktion der Binomialverteilung
mit n = 5 und θ = 0,2

Wir erhalten dann die Wahrscheinlichkeitstabelle


xi 0 1 2 3 4 5
b(xi|5;0,2) 0,32768 0,4096 0,2048 0,0512 0,0064 0,00032


Wir können also die gesuchten Wahrscheinlichkeiten aus der Tabelle ablesen

  1. P(X = 2) = 0,2048
  2. P(X ≥ 2) = 1 - P(X ≤ 1) = 1- (0,3277 + 0,4096) = 0,2627

Eigenschaften der Binomialverteilung

Bei einem Urnenmodell mit Zurücklegen und zwei Sorten Kugeln (dichotome Grundgesamtheit) ist die Zahl der Kugeln erster Sorte bei n Entnahmen immer binomialverteilt.

Bei einem relativ kleinen Anteil θ ist die Verteilung rechtsschief (bzw. linkssteil), da die Wahrscheinlichkeit für ein kleines x groß ist. Bei einem relativ großen Anteil θ ist die Verteilung linksschief, da die Wahrscheinlichkeit für ein großes x eher groß ist.

Ist θ = 0,5, ist die Verteilung symmetrisch bezüglich .


Wahrscheinlichkeitsfunktion der Binomialverteilung
mit n = 5 und θ = 0,8
Wahrscheinlichkeitsfunktion der symmetrischen Binomialverteilung mit n = 5 und θ = 0,5

Bemerkung

Bei großem n wird die Berechnung der Binomialkoeffizienten ein numerisches Problem, das allerdings beispielsweise mit der Stirling-Formel gelöst werden kann. Bei der Berechnung von Verteilungswerten kann allerdings die Addition der Wahrscheinlichkeiten sehr umständlich werden. Unter Umständen kann man die Funktionswerte der Binomialverteilung durch die Poissonverteilung oder auch durch die Normalverteilung approximieren.

Siehe auch in der Wikipedia: Binomialverteilung



3.1.2.  Hypergeometrische Verteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Das Urnenmodell ohne Zurücklegen bestimmt die hypergeometrisch verteilte Zufallsvariable.

Gegeben ist eine Urne mit zwei Sorten Kugeln. Man spricht von einer dichotomen (griech: zweigeteilten) Grundgesamtheit. Es sind insgesamt N Kugeln in der Urne und M Kugeln der ersten Sorte. Der Anteil der Kugeln erster Sorte ist also

,

(0 ≤ θ ≤ 1). Es werden n viele Kugeln ohne Zurücklegen gezogen. Es ist die Zufallsvariable definiert:

X: Anzahl der Kugeln 1. Sorte unter den n gezogenen Kugeln.

Beispiele für Hypergeometrische Verteilungen

  • In einer Urne befinden sich 3 schwarze und 12 weiße Kugeln. Es werden fünf Kugeln ohne Zurücklegen gezogen (Modell ohne Zurücklegen). Wir definieren X als Zahl der weißen Kugeln bei n = 5 Entnahmen.
  • Einem Fertigungslos von 100 Kondensatoren werden 10 Kondensatoren entnommen. Erfahrungsgemäß sind 15% der Kondensatoren schadhaft. X: Zahl der schadhaften Kondensatoren unter den 10 gezogenen.


Eine Zufallsvariable X ist hypergeometrisch verteilt mit den Parametern N, M und n, wenn ihre Wahrscheinlichkeitsfunktion lautet

Die Verteilungsfunktion P(X ≤ a) = H(a|N; M; n) ergibt sich als Summe der Wahrscheinlichkeiten einer diskreten Zufallsvariablen, wie in Zufallsvariablen oder Diskrete Zufallsvariablen erläutert.

Weitere Kennwerte der hypergeometrischen Verteilung sind Erwartungswert und Varianz,

und

Der letzte Bruch wird Korrekturfaktor genannt; er korrigiert die Varianz bei einem Modell ohne Zurücklegen. Wir können leicht sehen, dass für eine sehr große Grundgesamtheit (N) dieser Faktor etwa 1 wird. Bei einer großen Grundgesamtheit kann man also das Modell ohne Zurücklegen durch ein Modell mit Zurücklegen annähern.


Beispiel:

Von den sechs Rettichen, die eine Marktfrau auf dem Wochenmarkt verkauft, sind vier holzig. Der Student Paul sucht sich 4 Rettiche aus. Man könnte sich nun fragen: Mit welcher Wahrscheinlichkeit erwischt er alle holzigen?

Hier haben wir es unzweifelhaft mit einem Modell ohne Zurücklegen zu tun. Da wir holzige und nicht holzige Rettiche vor uns haben, ist die betrachtete Grundgesamtheit dichotom (zwei Sorten Kugeln in der Urne).

Wir definieren als Zufallsvariable X: Zahl der holzigen Rettiche bei n = 4 Entnahmen.

X ist also hypergeometrisch verteilt mit den Parametern N = 6, M = 4 und n = 4, in Kurzschreibweise

.

Wir werden zunächst die Wahrscheinlichkeitsfunktion von X bestimmen:

X = 0 0
X = 1 0
X = 2
X = 3
X = 4

Überlegen Sie sachlogisch, warum die ersten beiden Wahrscheinlichkeiten Null sind.

Der Student Paul wird also mit einer Wahrscheinlichkeit von 1/15 alle vier holzigen Rettiche erwischen.

Bemerkung

Werden M oder N groß, wird die Berechnung der Binomialkoeffizienten ein numerisches Problem, das allerdings beispielsweise mit der Stirling-Formel gelöst werden kann. Da der Unterschied zwischen einem Modell ohne Zurücklegen und mit Zurücklegen bei großem N unerheblich wird (ob man bei einer Entnahme 10000 oder 10001 Kugeln in der Urne hat, macht zahlenmäßig wenig aus), kann man bei großem N auch näherungsweise ein Modell mit Zurücklegen (siehe hierzu Binomialverteilung) verwenden. Häufig ist auch N unbekannt, hier kann das Modell ohne Zurücklegen gar nicht berechnet werden.



3.1.3.  Poissonverteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Wir betrachten eine poissonverteilte Zufallsvariable X mit den Ausprägungen 0, 1, 2, ....

Typische Beispiele für eine poissonverteilte Zufallsvariable sind:

  • Es betreten in einer Minute durchschnittlich λ = 2 Kunden einen Kassenschalter. Wir definieren als X: Zahl der Kunden, die während einer bestimmten Minute an den Bankschalter kommen.
  • Die Studentin Paula kauft sich in der Cafeteria ein Stück Rührkuchen. Wir definieren als X: Zahl der Rosinen in diesem Kuchenstück. Der Bäcker rechnet bei 20 Stück Kuchen mit 100 Rosinen. X ist also poissonverteilt mit dem Parameter λ = 5.
  • Wir definieren als X: Zahl der Schadensfälle einer Versicherung im nächsten Jahr. Man weiß, daß pro Jahr durchschnittlich 500.000 Schadensfälle auftreten. Der Parameter ist hier λ = 500.000.

Man geht also typischerweise von den folgenden Fragestellungen aus: Anzahl des Auftretens eines Phänomens in einer Zeit- , Gewichts- oder sonstigen Einheit. Die Zufallsvariable X ist poissonverteilt mit dem Parameter λ.


Ihre Wahrscheinlichkeitsfunktion lautet ()


Die Verteilungsfunktion P(X≤a) = Px(a|λ) ergibt sich als Summe der Wahrscheinlichkeiten einer diskreten Zufallsvariablen, wie in Zufallsvariablen oder Diskrete Zufallsvariablen erläutert.

Es gilt bei der Poissonverteilung: EX = varX = λ.

Die Poissonverteilung ist reproduktiv: Eine Summe von n stochastisch unabhängigen poissonverteilten Zufallsvariablen Xi (i = 1, ... , n), mit jeweils dem Parameter λi, ist wiederum poissonverteilt, und zwar mit dem Parameter


Beispiel:

Von den mundgeblasenen Gläsern einer Glashütte ist bekannt, dass im Durchschnitt 0,2 Fehler pro Glas auftreten.

Es ist die diskrete Zufallsvariable X: „Die Zahl der Unreinheiten in einem Glas“ annähernd poissonverteilt:

.


a) Mit welcher Wahrscheinlichkeit hat ein Glas genau einen Fehler?


b) Mit welcher Wahrscheinlichkeit hat ein Glas mindestens zwei Fehler?


c) Mit welcher Wahrscheinlichkeit enthalten drei Gläser zusammen mindestens zwei Fehler? Man geht davon aus, dass die Fehler der Gläser stochastisch unabhängig sind.

Man definiert als neue Zufallsvariable Y = X1 + X2 + X3, mit X1 als Zahl der Fehler des ersten Glases usw. Es ist dann und



3.2.  Stetige Verteilungen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

3.2.1.  Normalverteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Was ist die Normalverteilung?

Normalverteilung des Gewichts von Eiern (g)

Beispiel:

Auf einer Hühnerfarm mit sehr vielen Hühnern werden eine Woche lang die einzelnen Eier gewogen. Definieren wir die Zufallsvariable X: Gewicht eines Eies in Gramm. Es stellt sich heraus, dass ein Ei im Durchschnitt 50 g wiegt. Der Erwartungswert ist daher 50. Außerdem sei bekannt, dass die Varianz varX = 25 g2 beträgt. Man kann die Verteilung des Gewichts annähernd wie in der Grafik darstellen. Man sieht, dass sich die meisten Eier in der Nähe des Erwartungswerts 50 befinden und dass die Wahrscheinlichkeit, sehr kleine oder sehr große Eier zu erhalten, sehr klein wird. Wir haben hier eine Normalverteilung vor uns. Sie ist typisch für Zufallsvariablen, die sich aus sehr vielen verschiedenen Einflüssen zusammensetzen, die man nicht mehr trennen kann, z.B. Gewicht des Huhns, Alter, Gesundheit, Standort, Vererbung usw.


Die Dichtefunktion der Normalverteilung ist definiert als

wobei und ist. Man sagt, X ist normalverteilt mit den Parametern μ und σ2, in Symbolschreibweise

oder kürzer

In unserem Beispiel ist

Die Normalverteilung ist symmetrisch bezüglich μ. Die Verteilung P(X ≤ a) von X ist wieder die Fläche unter dem Graphen der Dichtefunktion. Sie wird bezeichnet als

Beispielsweise beträgt die Wahrscheinlichkeit, dass ein Ei höchstens 55 g wiegt, 0,8413. Das entspricht der roten Fläche in der Abbildung.

Das Integral der Dichtefunktion kann nicht analytisch berechnet werden. Die Werte der Verteilungsfunktion liegen i. a. tabellarisch vor. Es besteht nun das Problem, dass für jeden Wert von μ und σ2 eine eigene Tabelle vorliegen müsste. Hier ist hilfreich, daß die aus X standardisierte Zufallsvariable Z wiederum normalverteilt ist und zwar mit den Parametern 0 und 1. Es kann jede beliebige Normalverteilung standardisiert werden. Mit Hilfe der standardisierten Zufallsvariablen wird dann die gesuchte Wahrscheinlichkeit bestimmt.

Standardnormalverteilung

Dichtefunktion der Standardnormalverteilung

Man definiert also eine neue Zufallsvariable

Diese Zufallsvariable Z ist normalverteilt mit EZ = 0 und varZ = 1. Ihre Dichtefunktion ist in der folgenden Grafik dargestellt. Es ist also

Die Dichtefunktion von Z ist

Ihre Verteilung, die man auch kurz als Φ(z) bezeichnet, ist (z const.)

Verteilungswerte

Es ist beispielsweise die Wahrscheinlichkeit

und

Wir wollen nun den Anteil der Eier mit höchstens 55 g bestimmen, also P(X ≤ 55). Wir standardisieren:

Es ist dann

Der Wert 0,8413 der Verteilungsfunktion wird in der Normalverteilungstabelle ermittelt. Der folgende Ausschnitt aus der Tabelle soll die Vorgehensweise verdeutlichen: In der ersten Spalte der Tabelle sind die zwei ersten signifikanten Stellen der Ausprägung z angegeben, in der ersten Tabellenzeile die zweite Nachkommastelle, so dass sich beispielsweise z = 1,00 zusammensetzt aus 1,0 + 0,00. Wo sich Zeile und Spalte des betreffenden Z-Wertes kreuzen, steht die gesuchte Wahrscheinlichkeit.

z

0,00

0,01

0,02

0,0

5000

5040

5080

0,1

5398

5438

5478

0,2

5793

5832

5871

0,3

6179

6217

6255

0,4

6554

6591

6628

0,5

6915

6950

6985

0,6

7257

7291

7324

0,7

7580

7611

7642

0,8

7881

7910

7939

0,9

8159

8186

8212

1,0

8413

8438

8461

1,1

8643

8665

8686

1,2

8849

8869

8888

Zsymmetrie.jpg

Der errechnete Wert z kann gerundet werden, falls die errechneten Stellen die Zahl der Stellen des tabellierten z-Wertes übertreffen. Da die Verteilung von Z symmetrisch bezüglich μ = 0 ist, genügt die Tabellierung der Verteilungswerte ab z = 0 bzw. Φ(z) = 0,5. Es gilt, wie man auch anhand der Grafik leicht sieht:

bzw.

.

Beispiel:

Quantil

Häufig sucht man zu einer gegebenen Wahrscheinlichkeit p den dazugehörigen z-Wert z(p). Er wird als p-Quantil bezeichnet.

Es gilt also:

.
97,5%-Quantil der Standardnormalverteilung

Beispielsweise ist z(0,975) = 1,96. Es ist also hier die Wahrscheinlichkeit 0,975 gegeben und der dazugehörige z-Wert wird gesucht. Man sucht in der Tabelle die Wahrscheinlichkeit 0,9750 und bestimmt dann am Rand den betreffenden z-Wert 1,96.

Liegt p zwischen zwei Tabellenwerten, genügt es, als p den Tabellenwert zu verwenden, der p am nächsten liegt.

Beispiel:


Gesucht: z(0,9)

  näher bei 0,9  
Wahrscheinlichkeit Φ 0,8997   0,9015
z-Wert oder Quantil 1,28   1,29


Es ist also z(0,9) ≈ 1,28.

Für eine Normalverteilung mit μ und σ2 berechnet sich das p-Quantil als


Beispiel:

Wie schwer sind höchstens die 2/3 leichtesten Eier? Gesucht ist also x(0,67):

Das schwerste der 67% leichtesten Eier wog also 52,2g .

Übung zur Berechnung von ΦZ(z)

Schraffieren Sie die gesuchte Wahrscheinlichkeit in der Grafik und berechnen Sie die gesuchten Werte:

P(Z ≤ 0,51)

Snv.png

P(Z ≤ 2,0) =

Snv.png

P(Z ≤ - 0,51)

Snv.png

P(1,5 ≤ Z ≤ 2,35)

Snv.png

P(- 0,8 ≤ Z ≤ 1,05)

Snv.png

P(Z ≥ -0,89)

Snv.png

P( Z ≤ -1,68 ∪ Z ≥ 2 )

Snv.png

P(Z ≤ -1,96 ∪ Z ≥ 1,96)

Snv.png

P(Z ≤ -5)

Snv.png

z(0,975)

Snv.png

z(0,8)

Snv.png

z(0,2)

Snv.png

Übungen zum Eier-Beispiel

  1. Wie groß ist die Wahrscheinlichkeit, daß ein Ei höchstens 60 g wiegt?
  2. Wieviel Prozent der Eier wiegen höchstens 50 g?
  3. Wie groß ist die Wahrscheinlichkeit, daß ein Ei mindestens 45 g wiegt?
  4. Wieviel Prozent der Eier liegen zwischen 45 und 55 Gramm?
  5. Mit welcher Wahrscheinlichkeit wiegt ein Ei genau 53 Gramm?
  6. Welches Mindestgewicht haben die 30% schwersten Eier?

Lösungen:

Übung zur Berechnung von Φz(z)

a) 0,6950 b) 0,9772 c) 0,3050 d) 0,0574 e) 0,6412 f) 0,8133 g) 0,0693 h) 0,05 i) 0 j) 1,96 k) 0,84 l) -0,84



3.2.1.1.  Zentraler Grenzwertsatz
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis
Histogramm einer gleichverteilten Zufallsvariablen

Gegeben sind die stochastisch unabhängigen Zufallsvariablen Xi (i = 1, 2,...). Die Verteilungen der Summen Yi

Y1 = X1 , Y2 = X1 + X2 , ..., Yn = X1 + X2 + ... + Xn , ...

streben mit wachsendem n gegen die Normalverteilung. Als Faustregel gilt, daß die Verteilung einer Summe von mehr als 30 stochastisch unabhängigen Zufallsvariablen schon sehr gut annähernd mit der Normalverteilung bestimmt werden kann (n > 30).

Diese Regel ermöglicht zum einen die Bestimmung von Wahrscheinlichkeiten unbekannt verteilter Zufallsvariablen, zum anderen kann die Bestimmung kompliziert zu berechnender Wahrscheinlichkeitswerte mit der Normalverteilung angenähert (approximiert) werden.

Als Beispiel wurden je 1000 Zufallszahlen von im Intervall [0;1] gleichverteilten Zufallsvariablen erzeugt. Der Graph ihrer Dichtefunktion bildet ein Rechteck. Das Histogramm der Zufallszahlen lässt bei 1000 Werten deutlich das Rechteck erkennen. Bei der Summe von zwei gleichverteilten Variablen zeichnet sich die unimodale symmetrische Struktur schon deutlich ab, wobei zu bemerken ist, dass die Summe von zwei gleichverteilten Zufallsvariablen eine Dreiecksverteilung ergibt. Bei 31 Variablen ist die Näherung zur Normalverteilung schon sehr ausgeprägt.


Histogramm der Summe von zwei gleichverteilten Zufallsvariablen
Histogramm der Summe von 31 gleichverteilten Zufallsvariablen



3.2.1.2.  Lineare Funktionen der Normalverteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Linearkombinationen normalverteilter Zufallsvariablen

Gegeben sind n normalverteilte Zufallsvariablen Xi (i = 1, ... , n), mit Xi ∼ N(μii2). Die Linearkombination (lineare Funktion)

ist ebenfalls normalverteilt (Reproduktivität der Normalverteilung), und zwar mit dem Erwartungswert

und, falls die Xi (i = 1, ... , n) stochastisch unabhängig sind, mit der Varianz

.

Da die Varianz jedoch echt größer Null sein muss, muss zudem für mindestens ein gefordert werden.

Verteilung des Stichprobendurchschnitts Sind speziell die n Zufallsvariablen Xi (i = 1, ... , n) sämtlich normalverteilt mit gleichem μ und gleichem σ2, ist die Linearkombination X mit a0 = 0, a1 = a2 = ... = an = 1/n, also

normalverteilt dem Erwartungswert

und, falls die Xi (i = 1, ... , n) stochastisch unabhängig sind, mit der Varianz

.

Beispiel

Die Firma Ziemlich&Unbekannt produziert die Güter Ix und Ypsi. Die monatliche Produktionsmenge schwankt zufällig, so dass für die produzierten Mengen die Zufallsvariablen definiert werden: X und Y [ME]. Man weiß:

X ∼ N(20;5) und Y ∼ N(100;10).

Es wird vermutet, dass X und Y stochastisch unabhängig sind.

Wir interessieren uns für die monatlichen Gesamtkosten K in Crœtos (C):

Die monatlichen Fixkosten betragen a = 10.000 C, die variablen Kosten für X: b = 500 C und für Y: c = 200 C.

Die monatlichen Gesamtkosten können also dargestellt werden als

K = a + bX + cY = 10000 + 500X + 200Y.

Wie ist also K verteilt? Wegen der Reproduktivitätseigenschaft der Normalverteilung müsste K wieder normalverteilt sein. Seine Parameter sind

EK = a + b EX + c EY = 10.000 + 500·20 + 200·100 = 40.000

und

varK = b2varX + c2varY = 5002·5 + 2002·10 = 1.650.000.

Also ist K ∼ N(40.000; 1.650.000).

Mit welcher Wahrscheinlichkeit entstehen der Firma Gesamtkosten von mindestens 42.000 C?

Es ergibt sich



3.2.1.3.  Nichtlineare Funktionen der Normalverteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

χ2-Verteilung

Beispiel

Wir haben 3 normalverteilte, paarweise stochastisch unabhängige Zufallsvariablen X1, X2 und X3 gegeben mit den Erwartungswerten μ1, μ2 μ3 und den Varianzen σ12, σ2232. Wir standardisieren diese Variablen und erhalten 3 standardnormalverteilte Zufallsvariablen Z1, Z2 und Z3,



Dichtefunktion der χ2-Verteilung mit ausgewählten Freiheitsgraden

Nun werden die standardnormalverteilten Zufallsvariablen quadriert und aufsummiert. Wir erhalten eine neue Zufallsvariable

Y ist χ2-verteilt mit 3 Freiheitsgraden.

Allgemein

Es gilt: Die Summe von m quadrierten, stochastisch unabhängigen, standardnormalverteilten Zufallsvariablen ist χ2-verteilt mit m Freiheitsgraden.

Man sieht anhand der Grafik, dass sich die Dichtefunktion mit wachsenden Freiheitsgraden einer symmetrischen Kurve nähert.

Die Wahrscheinlichkeit wird bezeichnet als P(Ya) = fY(a|n). Das p-Quantil ist χ2(p;n).

Die Verteilungsfunktion der χ2-Verteilung kann nicht analytisch ermittelt werden. Numerische Berechnungen können beispielsweise aus Tabellenwerken, etwa Tabelle der χ2-Verteilung ersehen werden. Da Y für jeden Freiheitsgrad eine eigene Verteilung besitzt, sind in kleineren Tabellen wie oben nur Quantile nach Freiheitsgraden und ausgewählten Wahrscheinlichkeiten aufgeführt. Es ist z. B. das 95%-Quantil (Spalte) der χ2-Verteilung mit 3 Freiheitsgraden (Zeile)

fY(0,95;3) = 7,81. Das bedeutet, die Wahrscheinlichkeit P(y ≤ 7,81) = 0,95.

Gilt n > 30, ist

näherungsweise standardnormalverteilt.

Nähere Erläuterungen zur χ2-Verteilung, beispielsweise ihre Dichtefunktion, findet man bei Wikipedia. Da die Dichtefunktion jedoch nicht für die Berechnung der Verteilungswerte unmittelbar verwendet werden kann, wird sie hier nicht angeführt.


Beispiele:

Sei Y χ2-verteilt mit 10 Freiheitsgraden. Es ist

  • 10%-Quantil von Y :
  • 95%-Quantil von Y :


Sei Y χ2-verteilt mit 61 Freiheitsgraden. Gesucht ist . Hier ist die Zahl der Freiheitsgrade k > 30. Es wird eine neue Zufallsvariable gebildet. X ist näherungsweise normalverteilt wie . entspricht also

Es ist

Bemerkung


Die χ2-Verteilung ist reproduktiv, d. h. die Summe von zwei stochastisch unabhängigen χ2-verteilten Zufallsvariablen mit m und n Freiheitsgraden ist wieder χ2-verteilt mit m+n Freiheitsgraden.

Die χ2-Verteilung ist eine so genannte Stichprobenverteilung.


Übung

  1. Die Zufallsvariable X ist χ2-verteilt mit 12 Freiheitsgraden.
    1. Bestimmen Sie die Wahrscheinlichkeit, dass X kleiner als 6,30 ist.
    2. Bestimmen Sie die Wahrscheinlichkeit, dass X mindestens 18,55 beträgt.
    3. Bestimmen Sie das 5%-Quantil der Verteilung.
  2. Die Zufallsvariable Y ist χ2-verteilt mit 40 Freiheitsgraden.
    1. Bestimmen Sie die Wahrscheinlichkeit, dass Y kleiner als 40 ist.
    2. Bestimmen Sie das 95%-Quantil der Verteilung.
  3. Es sei U=X+Y.
    1. Bestimmen Sie den Erwartungswert von U.
    2. Bestimmen Sie die Wahrscheinlichkeit, dass U kleiner als 40 ist.


F-Verteilung

Dichtefunktion der F-Verteilung mit m und n Freiheitsgraden

Beispiel


Wir haben die drei standardnormalverteilten Zufallsvariablen von oben und vier weitere Z4, Z5, Z6 und Z7 gegeben. Alle Variablen sind wieder stochastisch unabhängig. Der Quotient

ist dann F-verteilt mit 3 und 4 Freiheitsgraden.


Allgemein

Der Quotient aus zwei χ2-verteilten Zufallsvariablen, jeweils geteilt durch ihre Freiheitsgrade, wobei die Zufallsvariable im Zähler m und die im Nenner n Freiheitsgrade hat, ist F-verteilt mit m und n Freiheitsgraden. Einzelheiten dazu gibt es auch in der Wikipedia. Man schreibt

Die Wahrscheinlichkeit wird bezeichnet als P(Fa) = fF(a|m;n). Das p-Quantil ist F(p;m;n).

Auch die F-Verteilung liegt tabelliert vor und ist meistens nach ausgewählten Freiheitsgraden und Quantilen tabelliert. Eine nützliche Beziehung ist dabei

Die F-verteilung ist ebenfalls eine Stichprobenverteilung. Sie ist aber nicht reproduktiv.

t-Verteilung Beispiel

Gegeben sind die standardnormalverteilten Zufallsvariablen von oben.

Der Quotient

ist t-verteilt mit 4 Freiheitsgraden.

Allgemein

Der Quotient aus einer standardnormalverteilten Zufallsvariablen und der Wurzel einer χ2-verteilten Zufallsvariablen mit n Freiheitsgraden, geteilt durch ihre Freiheitsgrade, ist t-verteilt mit n Freiheitsgraden.

Die Wahrscheinlichkeit wird bezeichnet als P(ta) = ft(a|n). Das p-Quantil ist t(p;n).

Die Dichtefunktion der t-Verteilung ist, ähnlich wie die der Standardnormalverteilung, symmetrisch bezüglich des Erwartungswertes 0. Es gilt daher für die Berechnung der Verteilungswerte:

mit

aR.

Auch die t-Verteilung ist meistens nach Freiheitsgraden und ausgewählten Quantilen tabelliert: t-Verteilung

Für n > 30 kann man die Wahrscheinlichkeiten der t-Verteilung approximativ mit der Normalverteilung berechnen:

Bemerkungen:

  • Das Quadrat einer t-verteilten Zufallsvariablen ist F-verteilt.
  • Die t-Verteilung ist eine Stichprobenverteilung
  • Weitere Eigenschaften können in der Wikipedia nachgelesen werden.



3.3.  Approximation von Verteilungen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 3 vom Inhaltsverzeichnis

Approximation: Approximation heißt Näherung, wie ja beispielsweise Alpha Proxima Centauri der uns am nächsten gelegene Stern ist. Wir wollen also Verteilungswerte, bei deren Berechnung wir heftige Unlustgefühle entwickeln, mit Hilfe anderer Verteilungen annähern. Sie werden nun mit Recht einwenden, dass das ja heutzutage mit der Entwicklung schneller Rechner eigentlich überflüssig sei. Nun hat man aber nicht immer einen Computer dabei (etwa in einer Klausur) oder es fehlt die Software zur Berechnung. MS-Excel bietet zwar solche Funktionen, aber die Umsetzung ist etwas verquer, so dass häufig ein erhöhter Verstehensaufwand betrieben werden muss. Bei bestimmten Funktionswerten, wie großen Binomialkoeffizienten gehen schon mal Taschenrechner in die Knie.

Approximation diskreter Verteilungen durch diskrete Verteilungen

Die Wahrscheinlichkeitsfunktion der Hypergeometrischen Verteilung sieht so aus:

Haben wir als Anwendung eine Kiste mit 10 Ü-Eiern gegeben, von denen 3 den gesuchten Obermotz enthalten, kann man etwa die Wahrscheinlichkeit, bei 5 Versuchen zwei Obermotze zu erhalten, leicht errechnen - naja, relativ leicht.

Aber betrachten wir den Fall: In einer Sendung von 500 speziellen Chips sind 100 Stück defekt. Bei der Eingangskontrolle werden 20 Chips getestet. Wenn jetzt die Wahrscheinlichkeit verlangt wird, dass genau 10 defekte Chips gezogen werden, erhält man

Spüren Sie schon Unlustgefühle? Vielleicht können wir uns hier die Berechnung mit der Binomialverteilung erleichtern. Vergleichen wir die beiden Verteilungen, fällt auf, dass beide den gleichen Erwartungswert haben: EX = nθ. Nur in den Varianzen unterscheiden sie sich,

Binomialverteilung: und hypergeometrische Verteilung:

nämlich im Korrekturfaktor. Wird nun N sehr groß, ist der Korrekturfaktor fast Eins und wir erhalten approximativ die Varianz der Binomialverteilung. Wie groß ist jetzt ein großes N? Das kommt darauf an, wie genau wir die Näherung haben wollen. Für die Approximation der Hypergeometrischen Verteilung durch die Binomialverteilung gibt es mehrere empfohlene Faustregeln, je nach Geschmack der Autoren. Eine der einfacheren Faustregeln, die man sich auch einigermaßen merken kann, ist

ist. Da in unserem Beispiel diese Voraussetzungen erfüllt sind, berechnen wir die gesuchte Wahrscheinlichkeit als

Wir haben also das Modell ohne Zurücklegen durch ein Modell mit Zurücklegen angenähert. Man könnte so argumentieren: Wenn etwa 10000 Kugeln in einer Urne sind, macht es kaum einen Unterschied, ob beim 2. Versuch noch 9999 oder 10.000 Kugeln übrig sind. Analoges gilt für die Zahl der Kugeln 1. Sorte. Deshalb genügt auch die Angabe des Anteils θ dieser Kugeln an der Gesamtheit der Kugeln:

Noch eine Bemerkung: Stellt man sich allerdings bei der Berechnung dieser Binomialkoeffizienten ein bisschen dumm an, protestiert die Software, weil man einen Überlauf erhält. Man kann allerdings hier mit der Stirling-Formel noch etwas ausrichten. Oder man logarithmiert die Fakultäten.

Für sehr kleines θ (oder sehr kleines 1-θ) und sehr großes n ist die Binomialverteilung wiederum annähernd Poisson-verteilt. Es ist nämlich die Poissonverteilung die Grenzverteilung der Binomialverteilung für n → ∞ und θ → 0. Die Berechnung der Poissonverteilung ist einfacher als die Berechnung der Binomialverteilung. Eine Faustregel wäre hier etwa, dass eine binomialverteilte Zufallsvariable durch die Poisson-Verteilung angenähert werden kann, wenn θ ≤ 0,05 und n ≥ 50 ist. Dann ist

Über den Umweg der Binomialverteilung kann dann auch die hypergeometrische Verteilung gegebenenfalls mit der Poisson-Verteilung approximiert werden:

ist.

Weiter unten folgt eine tabellarische Zusammenfassung ausgewählter Approximationen.

Approximation diskreter Verteilungen durch die Normalverteilung

Was ist nun aber, wenn wir wissen wollen, wie groß die Wahrscheinlichkeit ist, dass höchstens 15 defekte Chips gefunden werden: P(X ≤ 15)? Hier müssen wir auf die oben beschriebene Weise 16 Wahrscheinlichkeiten ermitteln und addieren. Spätestens hier wünscht man sich eine Möglichkeit, so etwas schneller errechnen zu können. Es wäre doch angesagt, wenn man da die Normalverteilung verwenden könnte.

Binomialverteilung mit n = 15 und θ = 0,5 und darübergelegte Normalverteilungsdichte
Binomialverteilung mit n = 15 und θ = 0,3 und darübergelegte Normalverteilungsdichte
Binomialverteilung mit n = 15 und θ = 0,1 und darübergelegte Normalverteilungsdichte


Binomialverteilung mit n = 45 und θ = 0,3 und darübergelegte Normalverteilungsdichte

Vergleichen wir die Grafiken der Binomialverteilungen. Es wurden hier die Wahrscheinlichkeiten als benachbarte Säulen dargestellt, was ja am optischen Erklärungswert nichts ändert.

Wir können deutlich erkennen, dass die Binomialverteilung für θ = 0,5 symmetrisch ist. Hier passt sich die Normalverteilung am besten an. Je weiter θ von 0,5 abweicht, desto schlechter ist die Anpassung der Normalverteilung. Die so gut wie immer verwendete Faustregel ist, dass man mit der Normalverteilung approximieren darf, wenn

ist. Dürfen heißt natürlich nicht, dass es sonst verboten ist, sondern dass sonst die Anpassung unbefriedigend ist.

Eine Normalverteilung hat den Erwartungswert μ und die Varianz σ2. Wie soll man diese Parameter bei der Approximation ermitteln? Nun wissen wir ja, dass der Erwartungswert der Binomialverteilung und ihre Varianz

und

sind, also nehmen wir doch einfach diese Parameter für die Normalverteilung, also

und .

Etwas fehlt uns noch: Wir nähern hier eine diskrete Verteilung durch eine stetige Verteilung an. Diskrete und stetige Verteilungen sind zwei völlig unterschiedliche Konzepte. Wir betrachten hier das Beispiel einer Binomialverteilung mit n = 45 und θ = 0,3.

Nähern wir P(X ≤ 12) = B(12|45;0,3) durch Φ(12|45·0,3; 45·0,3·0,7) an, wird nur die halbe Säule addiert, denn die stetige Verteilung kennt keine Säulen. Soll die ganze Säule einbezogen werden, müssen wir bis 12,5 gehen, also P(X ≤ 12) = B(12|45;0,3) durch Φ( 12,5|45·0,3; 45·0,3·0,7).

Wenn man mit der Normalverteilung P(X ≤ 12) berechnet, wird nur die halbe Säule addiert
Wenn man mit der Normalverteilung P(X ≤ 12,5) berechnet, wird die ganze Säule addiert

Den addierten Wert 0,5 nennt man Stetigkeitskorrektur.

Speziell gilt für die Wahrscheinlichkeit P(X = a):

P(X = a) = b(a|n;θ) ≈ Φ(a+0,5|nθ; nθ(1-θ)) - Φ(a -0,5|nθ; nθ(1-θ)).

StetKorr.png

Approximation stetiger Verteilungen durch die Normalverteilung

Jetzt haben wir also auch noch stetige Funktionen, die wir mit der Normalverteilung annähern wollen. Was gibt es denn da für welche? Nun, welche die man oft braucht, etwa für Schätzen und Testen, als da wären die χ2-Verteilung, die F-Verteilung und die t-Verteilung.

Nehmen wir uns doch mal die χ2-Verteilung vor. Ein Blick auf ihre Dichtefunktion verrät, dass diese mit wachsendem n immer symmetrischer wird, sich also der Normalverteilung annähert. Wir wissen, dass die χ2-Verteilung eine Summe von Zufallsvariablen, nämlich standardnormalverteilten, quadrierten, ist und wir erinnern uns (gell?), dass nach dem zentralen Grenzwertsatz sich die Verteilung einer Summe von Zufallsvariablen der Normalverteilung annähert. Betrachten wir die mit n Freiheitsgraden χ2-verteilte Zufallsvariable X. Wir bilden eine neue Zufallsvariable

Eine gängige Faustregel besagt für die Approximation für die Wahrscheinlichkeit P(Y ≤ y):

Die Dichtefunktion t-Verteilung dagegen hat eine ähnliche Form wie die Standardnormalverteilung, denn auch sie ist symmetrisch bezüglich der Null. Hier genügt eine einfache Faustregel: Wenn n > 30 ist, kann man die Verteilungswerte der t-Verteilung annähernd mit Hilfe der Standardnormalverteilung bestimmen:

Tabelle der Approximationen


Gesuchte Verteilung Approximation durch
Binomial Poisson Normal
Binomial
---


Hypergeometrische

über Binomialverteilung

Poisson
--- ---
χ2-Verteilung
--- ---
t-Verteilung
--- ---
F-Verteilung
--- ---



4.  Deskriptive Statistik
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Die Verfahren der deskriptiven Statistik (beschreibende Statistik, empirische Statistik) haben als Grundlage die Erhebung bzw. Beobachtung von Daten. Es geht hier darum, diese Daten in geeigneter Weise zusammenzufassen, sie zu ordnen, sie grafisch darzustellen usw. Ziele der deskriptiven Statistik:

  1. Die Daten einer empirischen Untersuchung möglichst übersichtlich zu präsentieren, so dass die wesentlichen Informationen schnell und optimal aufgenommen werden können. Beispiele: Tabellen, Säulendiagramme, Durchschnitte, Prognosen etc. Auf eine verteilungstheoretische Analyse wird verzichtet.
  2. Man interessiert sich für die unbekannte Verteilung eines statistischen Merkmals, für Kennwerte der Verteilung usw. Da eine vollständige Erfassung dieses Merkmals meist zu teuer oder auch unmöglich ist, wird man sich auf eine Teilerhebung, eine Stichprobe, beschränken. Man schätzt nun mit Hilfe dieser Stichprobe die gesuchten Werte. Dabei versucht man, die Wahrscheinlichkeit einer Fehlschätzung miteinzubeziehen.

Die Analyse einer Variablen hängt u.a. davon ab, welche Informationen man wünscht:

  • Verteilung: Ist sie symmetrisch oder schief, ein- oder mehrgipflig?
  • Niveau der Daten: Ist es hoch oder niedrig?
  • Streuung der Einzelwerte: Streuen sie stark oder schwach?
  • Sind mehrere Merkmale abhängig oder unabhängig voneinander?



4.1  Zentrale Begriffe in der deskriptiven Statistik
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Wir wollen ein paar Begriffsdefinitionen der deskriptiven Statistik kennenlernen. Schauen wir uns ein Beispiel an.

Beispiel:

Es wurden n = 7 Hunde befragt, wie gut ihnen das neue Fröhlix-Trockenfutter schmecke. Die Eingabe der Fragebögen in eine Datei ergab die unten folgende Liste. Anhand dieser Liste sollen Begriffe der deskriptiven Statistik erklärt werden.

Die Eigenschaften, die erhoben werden, sind die Merkmale (statistische Variablen) x, y, .... Das Objekt, dessen Eigenschaften erhoben (erfragt, gemessen) werden, ist die Untersuchungseinheit (Merkmalsträger). Die Menge aller statistischen Einheiten ist die Grundgesamtheit (statistische Masse). Die möglichen Werte, die eine Variable annehmen kann, sind die Ausprägungen (Realisationen). Die konkrete Merkmalsausprägung von x, die eine Untersuchungseinheit Nummer i aufweist, ist der Merkmalswert (Beobachtungswert, Beobachtung) xi (i=1,2, ..., n).

Name

Geschlecht
Merkmal
1=w, 2=m
u

Rasse
x

Alter
Merkmal
y

Note für Futter
1, ..., 5
Ausprägungen
z

Rex
Merkmalsträger

2

Schäferhund

3

1

Rexona

1

Mischling

5

4
Merkmalswert

Lassie

1

Collie

1

2

Hasso

2

Neufundländer

2

1

Strolchi
Merkmalsträger

2

Schnauzer

7

2

Susi

1

Spaniel

2

3

Waldi

2

Dackel

1
Merkmalswert

5

Es sind die Ausprägungen des Merkmals

Note: 1, 2, 3, 4, 5

und die Ausprägungen des Merkmals

Geschlecht: 1, 2.

Skalierung des Merkmals

Beispiel

Grundlage des Beispiels ist die Hundetabelle von oben. Der Student Paul leistet beim Hersteller von Fröhlix ein Praktikum ab. Er soll die Ergebnisse der Befragung präsentieren. Er fasst die Hundetabelle von oben zusammen und erhält u.a.

Durchschnittliches Alter eines Hundes:

Ein befragter Hund war also im Durchschnitt 3 Jahre alt.

Durchschnittliches Geschlecht eines Hundes:

Ein Hund hatte also im Durchschnitt 1,57 Geschlecht. ????? Würden Sie den Studenten Paul später in dieser Firma einstellen?

Es ist natürlich höherer Schwachsinn, vom Merkmal Geschlecht den Durchschnitt zu bilden. Man kann damit keinen Durchschnitt bilden, denn seine Ausprägungen sind keine Zahlen. Geschlecht ist ein qualitatives Merkmal. Es ist anders skaliert als Alter.

Es gibt also Merkmale mit unterschiedlichen Messbarkeitsarten. Die Vorschrift für die Messbarkeit ist in einer Skala festgehalten.


Nominalskala

Merkmale wie

  • Haarfarbe: braun, blond, ...;
  • berufstätig ja/nein;
  • Margarinemarke: Panorama, Botterama, ...

sind nominalsskaliert. Die Ausprägungen des nominalskalierten Merkmals können nicht geordnet werden, man kann sie nur vergleichen und abzählen. Es handelt sich um qualitative Merkmale. Erhalten die Ausprägungen Ziffern zugeordnet, handelt es sich nur um eine Verschlüsselung (Codierung): 1 = männlich, 2 = weiblich.


Ordinalskala

Zwischen den Ausprägungen des ordinalskalierten (rangskalierten) Merkmals existiert eine Beziehung der Form mehr oder weniger, < oder >, besser oder schlechter o.ä., also eine Art natürlicher Reihenfolge.

Beispiele

  • Sterne eines Hotels: *; **; ***; ...
  • Beurteilung eines Produktes durch einen Konsumenten: Sehr gut, eher gut, eher schlecht, ganz schlecht
  • Noten: 1, 2, 3, 4, 5

Für die Ausprägungen läßt sich also eine Rangordnung feststellen, aber die Abstände zwischen den Rängen sind nicht festgelegt. So ist beispielsweise die Note Vier nicht doppelt so schlecht wie Zwei.

Metrische Skala

Die Abstände zwischen den Ausprägungen des metrisch skalierten (quantitativen) Merkmals können gemessen werden. Es handelt sich bei den Ausprägungen um (reelle) Zahlen.

Beispiele: Kinderzahl, Einkommen, Temperatur, ...

Die metrischen Variablen werden noch in diskret und stetig unterschieden:

Ein Merkmal ist diskret (=unterschieden), wenn man die Ausprägungen abzählen kann.

Beispiel
  • Kinderzahl: 0, 1, 2, ... , 20.
  • Mein „Einkommen“, wenn ich falsch parke: 3 Euro (gesparte Parkgebühr) oder -10 Euro (Strafzettel).

Es gibt auch abzählbar unendlich viele Ausprägungen:

  • Zahl der Ausfälle einer Maschine in einem Jahr: 0, 1, 2, ...


Ein Merkmal ist stetig (kontinuierlich), wenn sich in einem beschränkten Intervall der reellen Zahlen unendlich viele Ausprägungen (überabzählbar viele) befinden.

Beispiele: Wasserstand in einem Stausee; Gewicht eines Goldstücks; Temperatur; Körpergröße.

Bemerkung: Oft sind Merkmale eigentlich diskret, aber mit sehr vielen, nah beieinanderliegenden Ausprägungen, z.B. Einwohnerzahl, Preise (in Cents), usw. Hier definiert man das Merkmal zweckmäßigerweise als stetig, da es sich so besser analysieren läßt (quasistetig).

Übung

Wie sind die folgenden Merkmale skaliert?

  • Täglicher Bierkonsum der Studentin Paula
    • - in Flaschen
    • - in Litern
  • Bekenntnis: 1= röm.-kath., 2 = evang., 3 = sonst
  • Gewicht von Bernhardinern
  • Aufgabe: schwer - leicht
  • Zahl der zustehenden Urlaubstage
  • Jeansmarke



4.2.  Analyse von Daten eines metrischen Merkmals mit wenigen verschiedenen Beobachtungen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Behandelt wird hier ein metrisch skaliertes Merkmal, von dem nur wenige verschiedene Beobachtungen vorliegen, beispielsweise das Gewicht von 10 Schlachthähnchen oder die abgefüllte Menge von Kakao in 6 „250“-g Päckchen. Diese Konstellation wurde deshalb eigens hervorgehoben, weil sich damit viele Methoden der deskriptiven Statistik einfach erklären lassen.



4.2.1.  Häufigkeitsverteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Urliste

Beispiel

n = 10 „Pfundschalen“ Erdbeeren wurden nachgewogen. Es ergab sich durch Nachwiegen die Urliste


x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
480 500 510 450 400 490 505 510 480 480

mit dem Merkmal x: Gewicht eines Schälchens (g). Die Werte wurden in der Reihenfolge der Erhebung, also ungeordnet, als Urliste erfasst. Diese Art der Darstellung ist unübersichtlich und daher nur für wenige Beobachtungen geeignet.

Urlisten können auch mehrere, unterschiedlich skalierte Merkmale enthalten. Beispielsweise ist die Tabelle mit den Hunden eine Urliste.

Häufigkeitsverteilung

Liegt ein metrisch skaliertes Merkmal oder ein ordinalskaliertes Merkmal mit vielen Ausprägungen vor, kann man zunächst einmal die Urliste der Größe nach ordnen, um einen gewissen Eindruck zu erhalten.

Beispiel

Die Indizes in den eckigen Klammern bedeuten, dass die Beobachtungen der Größe nach geordnet wurden.

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]
400 450 480 480 480 490 500 505 510 510

Man erkennt nun, dass über die Hälfte der Schälchen untergewichtig waren.

Allerdings ist das Sortieren mühsam, fehleranfällig und doch nicht sehr informativ. Mit dem Zweig-Blätter-Diagramm (stem-and-leaf display) kann man jedoch sowohl metrische Beobachtungen relativ leicht sortieren als auch eine erste Häufigkeitsverteilung erzeugen.

Zweig-Blätter-Diagramm

Beispiel:

Für das Jahr 2003 liegt das reale Wachstum des Bruttoinlandsprodukts für 38 europäische Staaten vor (© Statistisches Bundesamt, Wiesbaden 2003 [1])

 4,7  1,1  3,9 -0,1  4,7  1,8  0,2  4,8  1,4  1,9  0,3  5,2  7,4  9,0  2,6  0,4  0,7  7,2 -0,8
 0,3  0,7  3,7 -1,3  4,9  7,3  1,6 -0,5  4,0  4,2  2,3  2,4  2,9  5,8  4,8  2,9  2,1  4,7  2,0

Wir wollen die Daten ordnen und einen Eindruck von der Häufigkeitsverteilung gewinnen. Dazu werden wir jetzt ein Zweig-Blätter-Diagramm oder, für Anglophile, ein Stem-and-Leaf-Display erzeugen.

Zuerst wird der Zweig gemacht - aus den Einsern:

Dann hängen wir die Blätter an den Zweig, und zwar, indem wir von links nach rechts durch die Daten wandern:

Der erste Wert ist 4,7. Das Blatt 7 wird an den Zweig 4 gehängt

 

 

Der zweite Wert ist 1,1, das Blatt 1 wird an die 1 gehängt

Es folgen 3,9 -0,1 4,7 1,8 ...

 

 

Schließlich erhalten wir

Diese Prozedur war schnell erledigt. Wir bekommen schon einen guten Eindruck von der Verteilung der Beobachtungswerte. Kippen wir das Diagramm um 90°, erkennen wir eine Art Säulendiagramm. Außerdem können wir nun die Werte schnell der Größe nach sortieren. Wir erhalten nun unser Stengel-Blätter-Diagramm:

 

 

Für unsere Zwecke ist das Stem-and-Leaf-Display jetzt ausreichend. Ein Stem-and-Leaf-Display kann aber auch noch mehr Einzelheiten enthalten. Ist die Zahl der erhobenen Beobachtungen sehr groß, können die Werte in Klassen tabellarisch zusammengefaßt werden. Diese Art der Analyse erfolgt weiter unten.

Summenfunktion

absolute Summenfunktion

Beispiel

Ein Autohaus hat von seinen n = 10 Filialen die Zahl der verkauften LKWs des letzten Jahres vorliegen. Es folgt die Urliste mit den xi geordnet:

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]
1 5 8 8 10 10 10 17 22 24

Wir wollen die absolute Summenfunktion S(a) bestimmen. S(a) gibt an, wieviel Beobachtungen xi ≤ a sind:

Zum Beispiel:

  • S(17) = 8, also sind 8 Beobachtungen höchstens 17
  • S(8) = 4, also gibt es 4 Filialen, die höchstens 8 LKWs verkauft haben

Wir leiten nun die Summenfunktion her, von links nach rechts:

  • Zum Beispiel: S(0,1) = 0, denn keine Filiale hat höchstens 0,1 LKW verkauft. Ebenso ist S(0,9) = 0, usw... also
S(a) = 0 für a < 1.


  • Zum Beispiel: S(1) = 1, denn genau eine Filiale hat höchstens einen LKW verkauft. Ebenso ist S(3) = 1, denn es hat auch eine Filiale höchstens drei LKWs verkauft. Ebenso S(4,9999) = 1 ..., also
S(a) = 1 für 1 ≤ a < 5.
  • Zum Beispiel:S(5) = 2, also
S(a) = 2 für 5 ≤ a < 8.

usw... schließlich erhalten wir

S(a) = 10 für a ≥ 24.

Tragen wir die ermittelten Funktionswerte in die Grafik ein, sehen wir sofort, dass wir eine Treppenfunktion erhalten.

Die absolute Summenfunktion S(a) ist die Zahl der Beobachtungen xi ≤ a . Die relative Summenfunktion gibt stattdessen die Anteile der Beobachtungen an der Urliste an:

Der Informationswert der kumulierten Häufigkeit S(n) in der Grafik erschließt sich Ungeübten eher weniger. Aber man kann anhand der Grafik sofort Aussagen über die Verteilung machen. Man sieht beispielsweise sofort, daß z.B. 7 Werte kleiner als 14 sind, es haben also 70% der Filialen höchstens 14 LKWs verkauft.



4.2.2.  Lageparameter
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Lageparameter

Der Lageparameter gibt an, auf welchem Niveau die Daten liegen.


Arithmetisches Mittel

Das arithmetische Mittel ist landläufig als „Durchschnitt“ bekannt. Es ist eigentlich nur für metrisch skalierte Merkmale (Problem Notendurchschnitt) geeignet. Es berechnet sich als

Beispiel Pfundschalen Erdbeeren:

.

Es waren die Schälchen also im Durchschnitt untergewichtig.

Median oder Zentralwert

Sind die Beobachtungswerte der Größe nach geordnet, also x[1] , x[2] , x[3] , ... , x[n], ist der Median z die Stelle, die die Teilgesamtheit in zwei gleiche Hälften teilt. Er kann für rang- und metrisch skalierte Merkmale verwendet werden.


n ungerade

Beispiel für n = 7

Es wurden 7 Autofahrer nach ihren Fahrtkosten befragt. Es ergab sich für das Merkmal x: Monatliche Ausgaben für Benzin (in Euro) die Liste

x[1] x[2] x[3] x[4] x[5] x[6] x[7]
20 50 100 170 200 200 280

Es ist also der Median z = 170.


n gerade

Beispiel für n = 10 (Erdbeeren)

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]
400 450 480 480 480 z 490 500 505 510 510

Der Median liegt zwischen dem 5. und 6. Beobachtungswert. Man nimmt hier den mittleren Wert


Wir berechnen also den Median so:

n ungerade: z ist der te Wert x[i], also

n gerade: z liegt zwischen dem ten und dem ten Beobachtungswert x[i], also


Bemerkungen:

  • Der Median kann für ordinal- und metrisch skalierte Werte verwendet werden.
  • Bei sehr großem und geradem n kann man vereinfachend
setzen.

Vergleich Median - arithmetisches Mittel


Beispiel:

Eine Autozeitschrift hat n = 7 PKWs einer bestimmten Marke getestet. Unter anderem wurde auch untersucht, ob das Auto zuverlässig anspringt.

Es ergab sich die geordnete Urliste

1 1 1 1 1 2 14

Wir erhalten als durchschnittliche Zahl der Startversuche

.

Wir würden hier also als Ergebnis erhalten: „Ein PKW sprang im Durchschnitt erst nach 3 Versuchen an“. Irgendwie erscheint einem das nicht gerechtfertigt. Bis auf einen PKW, der offensichtlich einen Ausreißer darstellt, sprangen ja alle Fahrzeuge zuverlässig an.

Wir verwenden nun den Median als Lageparameter: Der Median ist der 4. Wert, also z = 1. Hier ist also der Median eher zutreffend, doch so ganz zufrieden sind wir auch nicht, denn immerhin gab es ja auch 2 und 14 Versuche.

Wir sehen also, dass bei Verwendung des Median sehr viel Information der Daten verloren geht, andererseits reagiert aber das arithmetische Mittel empfindlich auf Ausreißer in den Daten.

Es gibt aber auch Kompromisse zwischen diesen beiden Extremen, beispielsweise das getrimmte Mittel:

.

Es werden in der geordneten Urliste links und rechts jeweils ein oder mehrere Werte gestrichen. Aus den restlichen Beobachtungen berechnet man dann ein arithmetisches Mittel. Dieser Mittelwert erscheint eher die Sachlage zutreffend zu beschreiben. Man nennt Parameter, die nur schwach auf Ausreißer reagieren, resistente Parameter. Neben dem getrimmten Mittel gibt es noch mehrere andere Ansätze.

Der Vergleich des Medians mit dem arithmetischen Mittel kann als Ausreißeranalyse verwendet werden. Weicht der Median auffällig vom arithmetischen Mittel ab, sollten die Daten auf Ausreißer oder stark schiefe Verteilungen hin überprüft werden.

Weitere Lageparameter sind etwa der Modalwert, geometrisches Mittel oder harmonisches Mittel.



4.2.3.  Streuungsparameter
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Varianz als Streuungsparameter

Der Lageparameter allein reicht für die Beschreibung einer Datenmenge nicht aus (analoges Problem wie bei Zufallsverteilungen). Information über die Streuung der Beobachtungswerte liefert ein Streuungsparameter. Es kommen verschiedene Kennwerte als Streuungsparameter in Betracht, beispielsweise die Varianz, die Spannweite, der Quartilsabstand und der Variationskoeffizient.


Varianz

Am häufigsten wird als Kennwert die Varianz verwendet, da sie wahrscheinlichkeitstheoretisch am besten zu untersuchen ist. Die Varianz sind die mittleren quadratischen Abweichungen der Einzelwerte xi vom arithmetischen Mittel

Der Nenner n-1 wirkt vielleicht etwas befremdlich. Allerdings hat die Verwendung von n-1 statt n wahrscheinlichkeitstheoretische Vorzüge, wenn man die Varianz der Verteilung eines Merkmals mit s2 schätzen möchte. Man nennt dieses Art der Varianz inferentielle Varianz.

Beispiel

Eine Firma möchte einen Kachelofen auf den Markt bringen, der für einen Komplettpreis zu erwerben ist. Für die Kalkulation dieses Preises benötigt die Firma Informationen über die Montagezeit für einen Kachelofen. Bei der Endmontage von 11 Kachelöfen ergaben sich die Zeiten

2,5  3  3  3,3  3,6  3  2,3  3  3,1  3,2  3

Die Varianz der Montagezeiten soll bestimmt werden. Nach der obigen Formel muss zunächst das arithmetische Mittel bestimmt werden:

.

Dann erhalten wir als Varianz

.

Verzichtet man auf eine Schätzung, kann man auch die deskriptive Varianz

für die Beschreibung von statistischen Daten verwenden, was aber hier zur Vermeidung von Verwechslungen unterlassen wird.

Bei der manuellen Berechnung von s2 ist es oftmals mühsam, erst die einzelnen Differenzen xi - x zu bilden und dann zu quadrieren. Mit Hilfe des Verschiebungssatzes kann die laufende Differenzenbildung vermieden werden. Betrachten wir die Summe

.

Diese Summe lässt sich zerlegen in

.

Setzt man den Ausdruck oben ein, erhält man für die Varianz


Beispiel:

.

Da die Varianz ein quadratischer Ausdruck ist, hat sie z.B. auch die Einheit h2, wenn die xi die Einheit h haben. Um die Varianz anschaulicher zu machen, kann man ihre Quadratwurzel, die Standardabweichung s betrachten:

Beispiel

,

also ca. 20 Minuten. Man könnte etwas flapsig sagen, dass die Montagezeit eines Ofens im Mittel 3 Stunden +/- 20 Minuten beträgt.

Auch die Varianz reagiert empfindlich auf Ausreißer. Es gibt hier resistente Streuungsparameter, die weiter unten behandelt werden.



4.3.  Analyse von Daten, die in Häufigkeitstabellen zusammengefasst sind
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

In den letzten Abschnitten lernten wir, wie man Daten eines stetigen, metrischen Merkmals, die als Urliste vorlagen, analysiert. Wir wollen nun Daten untersuchen, die man in Häufigkeitstabellen zusammenfassen kann. Im Gegensatz zur obigen Urliste können hier die Daten übersichtlich grafisch dargestellt werden. Man unterscheidet im Wesentlichen Daten eines metrischen Merkmals mit wenigen verschiedenen Ausprägungen und große Mengen von Daten mit vielen verschiedenen Ausprägungen, die man in Klassen zusammenfasst.



4.3.1.  Merkmale mit wenig Ausprägungen
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Zu den Merkmalen mit wenig verschiedenen Ausprägungen gehören nominal skalierte, ordinal skalierte und metrisch skalierte Merkmale. Da sie nur wenig Kategorien haben, kann man sie in Häufigkeitstabellen zusammenfassen. Man nennt sie häufbare Merkmale.

Beispiele für Merkmale mit wenigen möglichen Ausprägungen:

  • nominal skaliert: Augenfarbe von Studierenden
  • ordinal skaliert: Note der Kundenzufriedenheit
  • metrisch skaliert: Zahl der Autos in einem Haushalt

Bemerkung: Metrisch skalierte stetige Merkmale sind nicht unmittelbar häufbar, weil zu viele verschiedene Beobachtungen vorliegen.



4.3.1.1.  Verteilung
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Wenn man vorliegende Daten analysiert, wird man sich zunächst für die Verteilung des Merkmals interessieren:

Ist die Verteilung der Variablen einigermaßen symmetrisch oder stark schief? Sind Ausreißer in den Daten? Ist die Verteilung eingipflig oder mehrgipflig? Der Statistiker freut sich meistens über eine symmetrische Verteilung, weil man hier häufig die Vorteile der Normalverteilung ausnützen kann.

Werkzeuge für die Analyse sind hierbei die Häufigkeitstabelle, die Summenfunktion und diverse Grafiken, denn bei einem Merkmal mit wenig Ausprägungen können attraktive Diagramme erstellt werden.



4.3.1.1.1.  Häufigkeit
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Häufigkeitstabelle

Um eine Urliste von Beobachtungen eines Merkmals mit wenig Ausprägungen aufzubereiten, wird als erster Schritt der Analyse das Zählen des Auftretens der Realisationen stehen. Die Ergebnisse können in einer Häufigkeitstabelle zusammengefasst werden. Anhand der Daten eines nominalskalierten Beispiels wollen wir uns das Prinzip einer Häufigkeitstabelle ansehen.


Nominalskaliertes Merkmal

Beispiel

Es wurden 50 Personen telefonisch bezüglich gewisser Konsumpräferenzen befragt. Unter anderem erhob man den Familienstand. Es ist das Merkmal

x: Familienstand - mit den Ausprägungen 1=ledig, 2=verheiratet, 3=geschieden, 4=verwitwet.

Es ergab sich die Urliste

2 2 1 2 3 3 1 2 3 2 3 4 4 1 2 1 1 2 3 2 1 2 2 1 2 
2 2 1 4 2 2 4 3 1 2 2 1 3 2 3 1 2 2 3 2 2 2 1 3 3

Wir wollen nun die Daten in einer Häufigkeitstabelle zusammenstellen:

j Familienstand absolute Häufigkeit relative Häufigkeit
1 ledig 12 0,24
2 verheiratet 23 0,46
3 geschieden 11 0,22
4 verwitwet 4 0,08
Σ   50 1,00


Es sind insgesamt n = 50 Untersuchungseinheiten erhoben worden. Die (absoluten) Häufigkeiten nj (j = 1, ... , 4) verteilen sich auf m = 4 Kategorien (kategoriale Variable), wie in der Häufigkeitstabelle aufgelistet.

Wenn man sich für den Anteil der einzelnen Ausprägungen an der Gesamtheit interessiert, kann man auch die relativen Häufigkeiten bestimmen:

Es ist natürlich

bzw.


Für die Verteilung von Merkmalen mit wenig Ausprägungen kann man sehr ansprechende Grafiken erstellen.

Ordinalskaliertes Merkmal

Beispiel:

Bei der letzten Wiki-Matheklausur der Wikiversity ergaben sich die Noten wie folgt:

12 x 1, 15 x 2, 8 x 3, 3 x 4, 2 x 5

Hier erhält man die unten folgende Häufigkeitstabelle:

j Note
xj
absolute Häufigkeit
nj
relative Häufigkeit
pj
1 sehr gut 12 12/40=0,3
2 gut 15 0,375
3 befriedigend 8 0,2
4 ausreichend 3 0,075
5 ungenügend 2 0,05
Σ   40 1

Auch hier bieten sich zur Veranschaulichung der Häufigkeiten Grafiken wie oben an.

Metrisch skaliertes Merkmal

Beispiel

Eine mainfränkische Weinbaustadt feiert ihr alljährliches Weinfest, bei dem auch die Winzerei Wavoma ihre Produkte anbietet. Sie verkauft Wein in Flaschen mit 0,5, 0,7, 1 und 2 Litern zu je 4, 5, 7 und 10 Euro. Es wurden am Sonntag Vormittag eingenommen (Merkmal x: Preis einer Flasche Wein (Euro)):

4 4 4 7 7 7 7 10 5 5 5 10 4 4 7 7 5 5 5 5 5 10 10 10 7

Wir erhalten die unten folgende Häufigkeitstabelle.

j Preis für eine Weinflasche
xj
absolute Häufigkeit
nj
relative Häufigkeit
pj
1 4 5 5/25=0,2
2 5 8 0,32
3 7 7 0,28
4 10 5 0,2
Σ   25 1


Grafische Darstellungen

Eine weitere Art, Verteilungen eines Merkmals übersichtlich darzustellen, ist die grafische Darstellung. Mit hoher Aussagekraft der Grafik geht meist ein Informationsverlust einher, so daß die Grafik die Tabelle nicht ersetzen, sondern nur unterstützen kann.

Da Grafiken auf einen Blick informieren sollen, sollen sie nicht überladen sein. Häufig verwendet werden heute Piktogramme, d.h. Diagramme, die den Sachverhalt optisch anschaulich verdeutlichen.

Für beliebig skalierte Merkmale mit wenigen Ausprägungen bieten sich eine Vielzahl grafischer Darstellungen an, darunter insbesondere Stabdiagramm, Säulendiagramm, Kreisdiagramm. Diese Diagramme eignen sich nicht für Urlisten mit vielen verschiedenen Beobachtungswerten.

Übung: Warum nicht?


Stabdiagramm bzw. Säulendiagramm

Auf der „x-Achse“ werden die verschiedenen Ausprägungen des Merkmals markiert. Dann werden die entsprechenden Häufigkeiten als Stab oder Säule senkrecht auf der Abszisse abgetragen.

Es sind hier anhand des obigen Beispiels bezüglich des Familienstandes die Säulendiagramme für die absoluten und relativen Häufigkeiten dargestellt. Wir sehen, dass die Struktur der Diagramme identisch ist.

Absolute Häufigkeiten des Familienstandes
Relative Häufigkeiten des Familienstandes

Kreisdiagramm

Kreisdiagramm: Relative Häufigkeiten des Familienstandes

Im Kreisdiagramm wird n als Gesamtfläche festgelegt. Die Häufigkeiten für die einzelnen Kategorien des Merkmals werden als „Tortenstücke“ eingetragen, wobei deren Fläche proportional zur Häufigkeit ist. Der zur Häufigkeit nj gehörende Winkel αj eines Segments berechnet sich dann aus der Verhältnisgleichung

Sollen zwei verschiedene Gesamtheiten mit verschiedenen Gesamthäufigkeiten nI und nII mittels zweier Kreisdiagramme verglichen werden, kann man die Flächen der Kreise proportional zu den nI und nII darstellen.

Für die Darstellung von Kreisdiagrammen gibt es heutzutage genügend Anwendersoftware, so dass eine genauere Erläuterung unterbleiben kann.




4.3.1.1.2.  Summenfunktion
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Summenfunktion

Man interessiert sich für Fragen wie „Wieviel % der Kunden gaben höchstens 5 Euro für eine Flasche Wein aus?“ oder „Wieviel Einwohner Deutschlands sind mindestens 65 Jahre alt?“. Man könnte nun die einzelnen Häufigkeiten einer Häufigkeitstabelle aufsummieren und so den Wert ermitteln, aber einfacher ist es, schon in der Häufigkeitstabelle die Häufigkeiten (abs. oder rel.) laufend aufzuaddieren. Es ergeben sich die Summenhäufigkeiten als kumulierte Häufigkeiten Sj (absolut) bzw. Sj* (relativ) . Aus den Summenhäufigkeiten läßt sich dann einfach die Summenfunktion bestimmen.

Summenhäufigkeiten sind nur sinnvoll, wenn man das Merkmal nach Größe ordnen kann, also nur bei ordinal oder metrisch skalierten Merkmalen. Aus der Summenhäufigkeit kann man die Summenfunktion ermitteln.

Beispiel der verkauften Weinflaschen

j Preis für eine Weinflasche
xj
absolute Häufigkeit
nj
relative Häufigkeit
pj
absolute Summenhäufigkeit
Sj
relative Summenhäufigkeit
S*j
1 4 5 5/25=0,2 5 0,20
2 5 8 0,32 13 0,52
3 7 7 0,28 20 0,80
4 10 5 0,2 25 1,00
Σ   25 1    
Summenfunktion

Für die Erstellung der Summenfunktion müssen die Beobachtungen der Urliste geordnet vorliegen. Die Häufigkeitsverteilung enthält alle Werte der Urliste geordnet. Analog zu oben kann man sich beispielsweise überlegen:

20 Kunden zahlten höchstens 7 Euro für eine Flasche, also S(7) = 20.

So können wir wieder wie vorher die Summenfunktion von links her aufbauen:

0 Kunden zahlten höchstens 2 Euro für eine Flasche, also S(2) = 0

usw.

Nun können wir die kumulierten Häufigkeiten auch aus der Grafik ablesen: z.B. S(6) = 13, es sind also 13 Flaschen zu einem Preis von höchstens 6 Euro verkauft worden.




4.3.1.2.  Lageparameter
<< hoch zum Anfang vom Inhaltsverzeichnis
<< hoch zum Kapitel 4 vom Inhaltsverzeichnis

Arithmetisches Mittel

Beispiel

Es wurden in einem Einkaufszentrum n = 20 Kunden bezüglich der Kinderzahl befragt. Wir erhielten die geordnete Urliste

0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 4 5 5

Es resultierte die Häufigkeitsverteilung

j Zahl der Kinder
xj
absolute Häufigkeit
nj
relative Häufigkeit
pj
 
xjnj
 
xjpj
1 0 4 0,2 0 0
2 1 5 0,25 5 0,25
3 2 5 0,25 10 0,5
4 3 3 0,15 9 0,45
5 4 1 0,05 4 0,2
6 5 2 0,1 10 0,5
Σ   20 1 38 1,9

Wir bestimmen das arithmetische Mittel als