MathemaTriX ⋅ Trigonometrische Aufgaben

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Basilica Julia set with binary decomposition.png

DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH
VERSTÄNDLICH
AUFBAUEND
GRATIS!*
UND SYMPATHISCH

JETZT STARTEN!
Faenza-video-x-generic.svgMap icons by Scott de Jonge - accounting.svgMIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGSVIDEOS!
Cycling (road) pictogram.svg Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
LINKS
Zur Bucherklärung im Zentralteil Weitere Links und Videos

Zum Erklärungsvideo

Zum Video mit Anwendung von Hilfsmitteln
Frage stellen!
ACHTUNG!
Zumindest Aufgabe 1 bis 6 probieren,
sie sind unterschiedlich!
Theorie in Kürze (mit Geogebra)


  • Oft muss man ein rechtwinkeliges Dreieck finden oder konstruieren.
  • Ist ein Winkel gefragt, dann muss man benutzen (wenn der Wert des Winkels gefragt wird). Wenn die Formel gefragt wird, dann (ohne "d").
  • Ist der Winkel gegeben, dann kann man sin(Winkel in Grad) usw. berechnen.
  • Gibt es keinen Zusammenhang zum Winkel, muss man möglicherweise Pythagoras Satz benutzen.
RightTriangle cba.svg

wobei irgendein nicht rechter Winkel
in einem Rechtwinkeligen Dreieck.

Für ein rechtwinkeliges Dreieck mit Seiten a, b (Katheten), c (Hypotenuse) und entsprechenden gegenüberliegenden Winkel

da gegenüber von die Kathete b ist (und gegenüber von die Kathete a).

Für tan gilt auch:

da

(Vergleiche mit dargestellten rechtwinkeligen Dreieck)

Trigonometrische Umkehrfunktionen:

bzw.
oder bzw. (besonders bei Taschenrechnern)

Die Anwendung ist bei jeder Aufgabe unterschiedlich. Wenn der Winkel gefragt wird, dann benutzen wir arctand (oder atand), arcsind (oder asind) und arccosd (oder acosd).

Textaufgaben Schlussbegriff für trigonometrische Funktionen: Wiederholung! (wie so wie so...)

Sinussatz:

Kosinussatz:

(usw.)

Kosinussatz wird angewandt, wenn es um einen Winkel und die Seiten an diesem Winkel oder wenn es um drei Seiten (gefragt wird dann ein Winkel) geht, Sinussatz in jedem anderen Fall.

Aufgaben

    1. Gecknickt.svg
      Eine Straßenlampe hat die Höhe H (zwischen Punkt A und B). Nach einem Unfall ist sie am Punkt C gebrochen (b ist der Abstand zwischen Punkten B und C).
    2. Drücken Sie b durch die Höhe H und den Winkel aus!
    3. Berechnen Sie den Winkel , wenn H=0,9dm und b=3cm sind!
    Antwort Antwort

    1. Geometrie 01.svg
      Eine Ameise am Punkt M macht sich Gedanken auf eine Treppenwand hinaufzuklettern.
    2. Drücken Sie den Abstand AM mit Hilfe des Winkels der Breite d und der Höhe h von jeder Stufe aus!
    3. Drücken Sie die Höhe h jeder Stufe durch ihre Breite d und die Länge AL aus!
    Antwort Antwort

    1. Trigonometry Figures 01.svg
      Ein Zimmer in einem modernen Gebäude hat die Form eines Parallelogramms ABCD.
    2. Sind folgende Formeln zur Berechnung der Fläche gleichwertig und warum?

    Antwort Antwort
    1. ja, weil (Skizze auch machen)

    1. Trigonometry Figures 02.svg
      Der Schatten eines Überwachungsturms mit Höhe EF hat um 10 Uhr die Länge AF.
    2. Stellen Sie mit Hilfe von EF und AF eine Formel zur Berechnung des Höhenwinkels unter dem die Sonne in diesem Zeitpunkt in dieser Stadt erscheint.
    3. Jemand behauptet, dass, wenn dann Zeigen Sie, dass das nicht stimmt!
    Antwort Antwort

    1. Trigonometry Figures 04.svg
      Ein Dachstuhl hat die nebenstehende Form.
    2. Erstellen Sie eine Formel zur Berechnung der Fläche A des Dreiecks AEF mit Hilfe der Strecke AE und des Winkels
    3. Erstellen Sie eine Formel zur Berechnung der Strecke AE des Dreiecks AEF mit Hilfe der Fläche A und des Winkels
    4. Es gilt: AK=FJ. Berechnen Sie AK, wenn AE=1,2dm, KJ=90cm und
    Antwort Antwort
    1. 4 dm

    1. Trigonometry Figures 03.svg
    2. Stellen Sie eine Formel zur Berechnung der Länge EH auf, wenn die Länge AH und die beiden Winkel und bekannt sind.
    3. Wie viel ist EH, wenn AF=44mm, und
    Antwort Antwort
KlickenHandy.png


Gibson Steps rainbow and wave Great Ocean Road.jpg
BILDERVERZEICHNIS
ÖFFNE DEIN HORIZONT!
LERNE MIT MATHEMATRIX!
Seite mit Anleitungen zur Anwendung von MathematrixProblemmeldung
KlickenMit.png KlickenEltern.png KlickenLehrer.png
Mathematrix Icon 03.svg
Gletscherkessel Präg0009.JPG
LOGO PEO-snake alt.svg CH DE AT
SPENDEN
Der Hauptautor ggf. das Team verdient zwar nicht viel, braucht allerdings dein Geld eigentlich nicht. Wenn du aber doch meinst, dass gute Arbeit belohnt werden soll und dieses Projekt gut findest, kannst du immer in diesem Link spenden. Das ist allerdings vielleicht die einzige Einrichtung mit völliger Transparenz, wo du genau weißt, was mit deinem Geld passiert.