Zum Inhalt springen

# Digitale Schaltungstechnik/ Realisierung mit NOR

Was wir vorhin mit NAND gelernt haben, können wir auch mit NOR machen:

geeignet für Konjunktive Normalform

${\displaystyle X={\overline {A}}\ {\overline {B}}\lor AB\lor C\lor {\overline {C}}D}$

### Realisierung mit NORs

doppelte Negation ${\displaystyle X={\overline {A}}\ {\overline {B}}\lor AB\lor C\lor {\overline {C}}D}$ ${\displaystyle X={\overline {\overline {{\overline {A}}\ {\overline {B}}}}}\lor {\overline {\overline {AB}}}\lor C\lor {\overline {\overline {{\overline {C}}D}}}}$ ${\displaystyle X={\overline {A\lor B}}\lor {\overline {{\overline {A}}\lor {\overline {B}}}}\lor C\lor {\overline {C\lor {\overline {D}}}}}$ ${\displaystyle X={\overline {\overline {{\overline {A\lor B}}\lor {\overline {{\overline {A}}\lor {\overline {B}}}}\lor C\lor {\overline {C\lor {\overline {D}}}}}}}}$

### Realisierung mit 2-Fach NORs

doppelte Negation ${\displaystyle X={\overline {A}}\ {\overline {B}}\lor AB\lor C\lor {\overline {C}}D}$ ${\displaystyle X={\overline {\overline {{\overline {A}}\ {\overline {B}}}}}\lor {\overline {\overline {AB}}}\lor C\lor {\overline {\overline {{\overline {C}}D}}}}$ ${\displaystyle X={\overline {A\lor B}}\lor {\overline {{\overline {A}}\lor {\overline {B}}}}\lor C\lor {\overline {C\lor {\overline {D}}}}}$ ${\displaystyle X={\overline {\overline {{\overline {A\lor B}}\lor {\overline {{\overline {A}}\lor {\overline {B}}}}}}}\lor C\lor {\overline {C\lor {\overline {D}}}}}$ ${\displaystyle X={\overline {\overline {{\overline {A\lor B}}\lor {\overline {{\overline {A}}\lor {\overline {B}}}}}}}\lor {\overline {\overline {C\lor {\overline {C\lor {\overline {D}}}}}}}}$ ${\displaystyle X={\overline {\overline {{\overline {\overline {{\overline {A\lor B}}\lor {\overline {{\overline {A}}\lor {\overline {B}}}}}}}\lor {\overline {\overline {C\lor {\overline {C\lor {\overline {D}}}}}}}}}}}$