Zum Inhalt springen

MathemaTriX ⋅ Strich und Punkt Bruchrechnungen

Aus Wikibooks

DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH UND
VERSTÄNDLICH
GRATIS!*
MIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGS VIDEOS!
Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.

Theorie

[Bearbeiten]

Strich und Punkt Bruchrechnungen

[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Kein Hilfsmittel-Video vorhanden
Zur Bucherklärung Frage stellen!

Strichbruchrechnungen

[Bearbeiten]

Wenn man zwei Brüche addiert oder subtrahiert, dann muss man auf den Nenner aufpassen:

Brüche mit gleichem Nenner:

Brüche mit unterschiedlichen Nennern: Zähler und Nenner des ersten Bruches mit Nenner des zweiten erweitern (blaue Pfeile) und entsprechend für den zweiten Bruch (rote Pfeile)!

Dabei ist es nicht wichtig, ob man minus oder plus zwischen den Brüchen hat. Allein der Nenner (ob er der gleiche oder nicht ist) spielt einer Rolle.


Erklärung der Strichbruchrechnungen

[Bearbeiten]

Wenn man den gleichen Nenner hat, ist es leicht mit einer Figur zu verstehen, warum die angegebene Regel gilt. Man kann sehen:

wenn zwei gleiche Schokoladentafeln in 7 geteilt werden und von einer Schokoladentafel 3 Teile (drei Siebtel) und von der anderen 2 Teile (zwei Siebtel) genommen werden, hat man insgesamt 5 Teile (also fünf Siebtel).


Was ist aber, wenn man nicht den gleichen Nenner hat (ungleichnamige Brüche), wie z.B. mit  ?

Das Ergebnis ist:

Um dies zu zeigen, haben wir das erste Rechteck horizontal in 5 Teile geteilt und das zweite senkrecht in 7. Wir teilen jetzt dazu die erste Figur auch in 7 senkrechte Teile und die zweite in 5 horizontale:

Wir haben in jedem der beiden (gleichen) Rechtecken 5 mal sieben, also 35 kleine Quadrate. Jedes kleines Quadrat in den neuen Figuren ist daher des Ganzen. Wie man sehen kann, sind die gleich so viel wie und die gleich so viel wie Da wir jetzt gleichnamigen Brüchen haben, kann man die Zähler addieren:

Aus unserer alltäglichen Erfahrung können wir vermuten, dass wir diesen Vorgang auch bei allen anderen Paaren von ungleichnamigen Brüchen übertragen können (wenn auch mit viel mehr Aufwand für größeren Nennern). Das können wir dann auch auf mehrere Brüche übertragen, da wir den Vorgang erst am ersten Paar anwenden können und dann mit dem Ergebnis mit dem nächsten Bruch arbeiten können usw. Dies gilt auch für die Subtraktion von Brüchen (wenn das Ergebnis positiv ist).


Punktbruchrechnungen

[Bearbeiten]

Bei einer Multiplikation zwischen zwei Brüchen multipliziert man Zähler mit Zähler und Nenner mit Nenner (Oben mal Oben, Unten mal Unten):

Bei der Division von zwei Brüchen multipliziert man den ersten Bruch mit dem Kehrwert des zweitens Bruches:

   ( ist der Kehrwert von  )

Hier spielt der Nenner keine Rolle (im Gegenteil zu den Strichrechnungen).

Erklärung der Punktbruchrechnungen

[Bearbeiten]
BAUSTELLE
Hier entsteht ein
neues Unterkapitel

Entferne die Vorlage mit den folgenden Erstellen- bzw. Korrigierenlinks nur wenn du mit allen (samt Theorieteil) fertig bist!

Schau auch, ob dieses Unterkapitel an der richtigen Stelle im richtigen Kapitel entstanden ist!


Neue Aufgabensammlung erstellen: Mathematrix:_Aufgabensammlung/_Erklärung der Punktbruchrechnungen
Aufgabensammlung Zentralseite korrigieren!
CopyPaste Seite korrigieren!
Linksseite korrigieren!
Externe-Links-Seite korrigieren!
Neues Aufgabenbeispiel erstellen: Mathematrix: Aufgabenbeispiele/_Erklärung der Punktbruchrechnungen
Aufgabenbeispiele Zentralseite korrigieren!
BackUp Beispiele und Aufgabensammlung korrigieren
Neuen Abschnitt zum entsprechenden Antwort-Kapitel hinzufügen:


Hier fängst du mit der Theorie des neuen Unterkapitels an!

Aufgaben

[Bearbeiten]

Übungen

[Bearbeiten]



    Antwort Antwort



    Antwort Antwort



    Antwort Antwort



    Antwort Antwort



    Antwort Antwort



    Antwort Antwort



    Antwort Antwort



    Antwort Antwort

Testaufgaben

[Bearbeiten]

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort

    1. Machen Sie folgende Berechnungen. Schreiben Sie die Rechenschritte an.
    2. (mit Hilfe von Primfaktorzerlegung)
    Antwort Antwort





BILDERVERZEICHNIS
ÖFFNE DEIN HORIZONT!
LERNE MIT MATHEMATRIX!
Seite mit Anleitungen zur Anwendung von MathematrixProblemmeldung

LOGO CH DE AT
SPENDEN
Der Hauptautor ggf. das Team verdient zwar nicht viel, braucht allerdings dein Geld eigentlich nicht. Wenn du aber doch meinst, dass gute Arbeit belohnt werden soll und dieses Projekt gut findest, kannst du immer in diesem Link spenden. Das ist allerdings vielleicht die einzige Einrichtung mit völliger Transparenz, wo du genau weißt, was mit deinem Geld passiert.