Zum Inhalt springen

Biochemie und Pathobiochemie: Hexosemonophosphatweg

Aus Wikibooks



Allgemeines

[Bearbeiten]

Der Hexosemonophosphatweg (HMP-Weg, Pentosephosphatweg, Pentosephosphat-Shunt) ist ein Nebenweg der Glycolyse. Er dient der Reduktion von NADPH + H+ für Reduktionsvorgänge und der Biosynthese von Ribose-5-phosphat für die Nukleotid- resp. Purin- und Pyrimidin-Biosynthese einschl. Purin-Salvage.

1. Teil: Oxidation und Decarboxylierung von α-D-Glucose-6-phosphat zu Ribulose-5-phosphat

[Bearbeiten]
All. Subst. ( ⇑ ) Co. Enzym EC EG Erkr.
α-D-Glucose-6-phosphat
6-Phospho- gluconat
Glucose-6-phosphat- Isomerase (GPI)
5.3.1.9 Iso Glucose-6-phosphat-Isomerase-Defizienz
β-D-Glucose-6-phosphat
NADP+

NADPH/H+

Glucose-6-phosphat- 1-Dehydrogenase (G6PD) 1.1.1.49 Ox Glucose-6-phosphat-Dehydrogenase-Mangel
6-Phosphogluconolacton
H2O


6-Phosphogluconolactonase 3.1.1.31 Hyd
6-Phosphogluconat
NADP+

NADPH/H+

6-Phosphogluconat- Dehydrogenase 1.1.1.44 Ox 6-Phosphogluconat-Dehydrogenase-Defizienz
[3-Keto-6-phosphogluconat]


CO2

Ribulose-5-phosphat

2. Teil: Aus Ribulose-5-phosphat wird Fructose-6-phosphat und Glycerinaldehyd-3-phosphat

[Bearbeiten]
Substrat 1 ⇓ ⇑ Substrat 2 Co. Enzym(e) EC EG Erkr.
Ribulose-5-phosphat
[Endiolform]
1. 2. 1) Ribulose- phosphat-3-Epimerase

2) Ribose-5- phosphat-Isomerase

1) 5.1.3.1

2) 5.3.1.6

Iso 2) Ribose-5-phosphat-Isomerase-Defizienz
Xylulose-5-phosphat
+
D-Ribose-5-phosphat
Thiamin- P2 Transketolase 2.2.1.1 Tr Wernicke-Korsakoff-Syndrom
D-Glycerin-aldehyd-3-phosphat
+
Sedoheptulose-7-phosphat
Transaldolase 2.2.1.2 Tr Transaldolase-Defizienz
β-D-Fructose-6-phosphat
+
Erythrose-4-phosphat
----
Xylulose- 5-Phosphat
+
Thiamin- P2 Transketolase 2.2.1.1 Tr Wernicke-Korsakoff-Syndrom
D-Glycerin-aldehyd-3-phosphat
+
β-D-Fructose-6-phosphat

Die Reaktionen im Detail

[Bearbeiten]

Der Hexosemonophosphatweg (HMP-Weg, Pentosephosphatweg) ist ein Nebenweg der Glycolyse und wie diese im Zytosol lokalisiert.

Phase 1 (Oxidative, nicht-reversible Phase):

  • Zuerst wird α-D-Glucose-6-phosphat zu β-D-Glucose-6-phosphat isomerisiert.
  • Die Glucose-6-phosphat-1-Dehydrogenase katalysiert danach die Oxidation am C1-Atom. Dabei wird ein NADPH/H+ gewonnen und es entsteht 6-Phosphogluconolacton.
  • Durch Wasseraufnahme wird daraus unter Ringöffnung 6-Phosphogluconat.
  • 6-Phosphogluconat kann nun ein weiteres Mal unter NADPH/H+-Gewinn oxidiert werden. Dabei entsteht ein instabiles Zwischenprodukt, das spontan zu Ribulose-5-phosphat decarboxyliert.

In der Summe wird also eine (Phospho-)Hexose zweimal oxidiert und zur (Phospho-)Pentose decarboxyliert.

Phase 2 (Nicht-oxidative, reversible Phase):

  • Ribulose-5-phosphat wird sowohl zu Xylulose-5-phosphat als auch zu Ribose-5-phosphat isomerisiert.
  • Beide Produkte können von der Transketolase zu D-Glycerinaldehyd-3-phosphat und Sedoheptulose-7-phosphat umgesetzt werden.
  • Diese wiederum können mit Hilfe der Transaldolase zu β-D-Fructose-6-phosphat und Erythrose-4-phosphat reagieren.
  • In einem weiteren Schritt kann Erythrose-4-phosphat unter Einfluss der Transketolase noch einmal mit Xylulose-5-phosphat (s.o.) in D-Glycerinaldehyd-3-phosphat und β-D-Fructose-6-phosphat umgewandelt werden, die beiden Endprodukte dieses Weges.


Im Endeffekt werden im HMP-Weg jeweils drei Glucosephosphat-Moleküle (3 C6-Körper = 18 C-Atome) decarboxyliert (es bleiben 18 - 3 = 15 C-Atome) und diese dann zu zwei Fructose-6-phosphat (2 C6-Körper = 12 C-Atome) und einem Glycerinaldehyd-3-phosphat (1 C3-Körper) umgesetzt.

Glycerinaldehyd-3-phosphat und Fructose-6-phosphat können wieder in die Glycolyse eingeschleust werden oder über die Gluconeogenese zu α-D-Glucose-6-phosphat umgesetzt werden. Durch letzteres entsteht ein Kreislauf, über den Glucose netto vollständig decarboxyliert werden kann. Pro Glucose-Molekül werden dabei 12 NADPH/H+ gewonnen.

Bedeutung des Hexosemonophosphatweges

[Bearbeiten]
  • Generierung von NADPH/H+ im 1. Teil:
    • für NADPH-abhängige Biosynthesen wie z.B. Fettsäuren und Cholesterin.
    • Insbesondere in den Erythrozyten wird das NADPH benötigt, um die Glutathionreduktase zu regenerieren. Dieses Enzym reduziert Glutathion, ein Tripeptid aus Glutamat, Glycin und Cystein, welches mit seiner reduzierten Sulfhydrylgruppe (SH-Gruppe von Cystein) Hämoglobin u. a. Proteine vor der Oxidation schützt.
  • Generierung von Pentosen wie D-Ribose-5-phosphat z. B. für die Nucleotid- und Nucleinsäuresynthese. Dafür kann der 2. Teil des Hexosephosphatweges von D-Glycerinaldehyd-3-phosphat und D-Fructose-6-phosphat ausgehend auch einfach rückwärts ablaufen, wenn z.B. Pentosen, aber kein NADPH/H+ benötigt wird.

Regulation

[Bearbeiten]

Der 1. Teil des HMP-Weges wird reguliert durch das Angebot an NADP+ (Aktivierung) und NADPH/H+ (Hemmung). Das Schrittmacherenzym ist dabei die Glucose-6-phosphat-Dehydrogenase. Die Reaktionen des 2. Teils sind reversibel und laufen entsprechend dem Angebot an Substraten von unten (aus der Glycolyse/Gluconeogenese) oder oben (aus dem oxidativen Teil) ab und in dem Maße, wie Ribose-5-phosphat aus dem Gleichgewicht entfernt wird bzw. in die Nucleotid-Biosynthese abfließt.

Pathobiochemie

[Bearbeiten]

Der G6PD-Mangel führt bei oxidativem Stress mit H2O2-Bildung (Infektionen, Medikamente wie ASS, Sulfonamide, Malariamittel, Lebensmittel wie Saubohnen/Favabohnen) zur oxidativen Schädigung des Erythrozyten und zu hämolytischen Krisen (Favismus).

[Bearbeiten]




Allgemeine Hintergrundfarbe für Substrate Hintergrundfarbe Reaktionspfeile „Schlüsselenzyme“
Energiereiche Phosphate Reduktionsäquivalente CO2 / HCO3 C1-Reste Stickstoff

Abk.: Tr.: Transkriptionelle Regulation, Tl.: Regulation der Translation, Lok.: Regulation über die Enzymlokalisation, Kov.: Regulation durch kovalente Modifikation, All.: Allosterische Regulation, Koop.: Kooperativer Effekt, Co.: Cofaktoren, EC: Enzymklassifikation, EG: Enzymgruppe (Oxidoreductase, Transferase, Hydrolase, Lyase, Isomerase, Ligase), Erkr.: Assoziierte Erkrankungen.



Haben Ihnen die Informationen in diesem Kapitel nicht weitergeholfen?
Dann hinterlassen Sie doch einfach eine Mitteilung auf der Diskussionsseite und helfen Sie somit das Buch zu verbessern.