Gesetze der Logik – Serlo „Mathe für Nicht-Freaks“

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Im Folgenden haben wir die wichtigsten Gesetze der Logik für dich zusammengefasst. Für Aussagen nutzen wir die Buchstaben , und , für Aussageformen , , usw.

Aussagenlogik[Bearbeiten]

Die Richtigkeit dieser Gesetze kann mit Wahrheitstabellen bewiesen werden.

Assoziativgesetze[Bearbeiten]

Bei der Disjunktion und bei der Konjunktion ist es egal, in welcher Reihenfolge du die Aussagen auswertest:

Kommutativgesetze[Bearbeiten]

Bei der Disjunktion und bei der Konjunktion ist es egal, in welcher Reihenfolge die einzelnen Teilaussagen verknüpft werden. Dies ist in der deutschen Sprache nicht unbedingt der Fall. Betrachte dazu folgende zwei Aussagen, welche in der Bedeutung einen leichten Unterschied aufweisen: „Ralf ging in die Kirche und seine Tochter starb“ und „Seine Tochter starb und Ralf ging in die Kirche“.

Distributivgesetze[Bearbeiten]

Eine Disjunktion kann in eine Konjunktion hineingezogen werden und umgekehrt.

Absorptionsgesetze[Bearbeiten]

Idempotenzgesetze[Bearbeiten]

Doppelte Verneinung[Bearbeiten]

Satz vom ausgeschlossenen Dritten[Bearbeiten]

  • (lateinisch: tertium non datur, übersetzt: ein Drittes gibt es nicht.)

Satz vom Widerspruch[Bearbeiten]

Durch Anwendung der de Morganschen Regel, der doppelten Verneinung und der Kommutativität lässt sich der Satz vom Widerspruch in den Satz vom ausgeschlossenen Dritten umformen:

Die Morgansche Regel[Bearbeiten]

Bei der Negation einer Und- beziehungsweise einer Oder-Verknüpfung wird die Negation reingezogen und die Klammer aufgelöst. Aus einem wird dabei ein und umgekehrt.

Negation von Implikation und Äquivalenz[Bearbeiten]

Prinzip der Kontraposition[Bearbeiten]

Diese Äquivalenz wird oft genutzt, um eine Implikation zu beweisen, Redewendung: Beweis der Kontraposition.

Beweis durch Widerspruch[Bearbeiten]

Auch mit Hilfe der folgenden Äquivalenz kann eine Implikation bewiesen werden, Redewendung: Beweis durch Widerspruch.

Darstellung von Implikation und Äquivalenz[Bearbeiten]

Mit Hilfe dieser Gesetze kann die Implikation und die Äquivalenz auf Aussagen mit anderen Junktoren zurückgeführt werden.

Gesetze mit Wahr und Falsch[Bearbeiten]

Im Folgenden steht für „wahr“ und für „falsch“. und können als 0-stellige Junktoren angesehen werden.

  • (Aus Falschem folgt Beliebiges.)
  • (Wird gelegenlich als Definition für verwendet.)

Prädikatenlogik[Bearbeiten]

Negation von quantifizierten Aussagen[Bearbeiten]

Äquivalenzen über quantifizierte Aussagen[Bearbeiten]

  • (Distributivität mit )
  • (Distributivität mit )
  • (Umschreibung des eindeutigen Existenzquantors)

Implikationen über quantifizierte Aussagen[Bearbeiten]

Hinweis

In der obigen Liste sind die Implikationen nicht umkehrbar.