Gleichungssysteme und Matrizen – Serlo „Mathe für Nicht-Freaks“

Aus Wikibooks
Zur Navigation springen Zur Suche springen
UnderCon icon.svg

Diese Seite ist noch im Entstehen und noch nicht offizieller Bestandteil des Buchs. Gib der Autorin / dem Autor Zeit, die Seite anzupassen!

Lösungsmethode und Beispielaufgaben zur Bestimmung des Kerns[Bearbeiten]

Qsicon inArbeit.png
To-Do:

Diese Lösungsmethode später noch ins Kapitel über Gleichungssysteme verschieben

Für unendlich dimensionale Vektorräume kann die Lösung hier bereits angegeben werden. Noch genau ausarbeiten.

Lösungsmethode[Bearbeiten]

Wenn wir nun den Kern einer linearen Abbildung direkt bestimmen wollen, kann man wie folgt vorgehen: Seien und endlich-dimensionale Vektorräume und eine lineare Abbildung. Wir möchten nun der Kern von bestimmen:

  1. Die darstellende Matrix von aufstellen (Wenn sie noch nicht angegeben ist).
  2. Gauß-Jordan-Algorithmus auf die Matrix anwenden.
  3. bestimmen und mit der Dimensionsformel (diese werden wir später noch kennenlernen) die Dimension des Kerns bestimmen.
  4. Mittels eines linearen Gleichungssystems die Basisvektoren des Kerns finden.

Beispielaufgaben in endlich-dimensionalen Vektorräumen[Bearbeiten]

Hierzu zunächst ein einfaches Beispiel.

Beispiel

Gegeben sei eine lineare Abbildung mit folgender darstellenden Matrix: .

Bestimmen wir zunächst die Dimension des Kerns. Hierzu benutzen wir die Dimensionsformel und den Rang einer Matrix, welche später eingeführt werden. Die Vektoren und sind linear unabhängig, da sie kein Vielfaches voneinander sind. Daher ist und folglich .

Finden wir also einen Vektor mit und , so sind wir fertig und es gilt . Betrachten wir die darstellende Matrix von , so fällt auf, dass . Damit ist .

Nun versuchen wir in einem etwas komplizierteren Fall den Kern zu bestimmen.

Beispiel

Sei linear mit der darstellenden Matrix .

Wir wollen also die Lösungsmenge von

Dazu wenden wir den Gauß-Jordan-Algorithmus an. Wir betrachten nur die Matrix, da sich die rechte Seite durch die elementaren Zeilenumformungen nicht ändert.

Als erstes ziehen wir das 3-fache der 1. Zeile von der zweiten ab und wir ziehen das 4-fache der ersten Zeile von der dritten Zeile ab. Damit erhalten wir folgende Matrix:

Nun subtrahieren wir von der dritten Zeile das 2,5-fache der zweiten Zeile. Das ergibt

.

Jetzt addieren wir die zweite Zeile zur ersten Zeile und erhalten

.

Das bedeutet, dass der Kern von genau die enthält, für die folgendes gilt:

.

Damit muss sein und . Also können wir um einen Vektor im Kern zu finden zum Beispiel frei wählen und dann sind und bereits fest bestimmt. Daher ist der Kern in diesem Fall ein-dimensional.

Der Kern unserer linearen Abbildung ist also .

Beispiel

Sei eine lineare Lineare Abbildung mit .

1. Die darstellende Matrix bezüglich der Standardbasis, sieht folgendermaßen aus: , da und , sowie .

2. Jetzt wenden wir den Gauß-Jordan-Algorithmus an: Wir suchen , so dass

.

Da nun die rechte Seit Null ist können wir die linke Seite verändern ohne die Nuller zu beachten:

Zuerst ziehen wir das 2-fache der 1.Zeile von der 4.Zeile ab und subtrahieren das 2-fache der 2.Zeile von der 3.Zeile, dann erhalten wir:

Als nächstes addieren wir das 0,5-fache der 1.Zeile zur 3.Zeile und tauschen anschließend 1. und 2. Zeile. Dadurch entsteht die folgende Matrix:

.

Diese Matrix lässt sich nicht viel weiter vereinfachen, da die Zeilenvektoren und linear unabhängig sind. Die restlichen Zeilen sind Nullzeilen, also sind wir mit dem Gauß-Jordan-Algorithmus fertig.

3. Diese Matrix hat genau zwei linear unabhängige Vektoren. Also ist . Dann gilt mit der Dimensionsformel:

.

Somit brauchen wir einen Vektor , so dass , dann können wir den Kern darstellen als .

4. Wir wissen, dass für dieses gilt:

Daraus folgt direkt und . Also ist ein mögliches . Damit ist und wir sind fertig.

Einführendes Beispiel aus der Praxis[Bearbeiten]

Derartige Abhängigkeiten treten in der Praxis oft auf[1].

Beispiel (lineare Zusammenhänge in der Praxis)

Stellen wir uns ein Unternehmen vor, das zwei Arten von Duft-Essenzen für Wohnräume auf den Markt bringt ("Frühling" und "Exotic"), indem zwei Rohstoffe, die die Firma einkauft (Veilchenduft und Jasminöl) in unterschiedlichen Zusammensetzungen gemischt werden:

  • 10kg der Essenz "Frühling" bestehen aus 7kg Veilchenduft und 3kg Jasminöl.
  • 10kg des Duftes "Exotic" bestehen aus 2kg Veilchenduft und 8kg Jasminöl.

Die Kosten für Veilchenduft und Jasminöl steigen von Zeit zu Zeit ein wenig. Wir legen uns daher nicht auf konkrete Werte fest, sondern bezeichnen

  • den variablen Preis (in Euro) für 1kg Veilchenduft mit
  • und den variablen Preis (in Euro) für 1kg Jasminöl mit .

Das Unternehmen interessiert sich nun für zwei Dinge:

  • Wieviel muss es (in Euro) für die Rohstoffe zahlen, die für 10kg "Frühling" benötigt werden?

Antwort:

  • Wieviel muss es (in Euro) für die Rohstoffe zahlen, die für 10kg "Exotic" benötigt werden?

Antwort:

Und hier haben wir eine Abhängigkeit zweier Größen von zwei anderen Größen in einem praktischen Beispiel, wie sie in mathematischer Symbolschreibweise durch

ausgedrückt wird!


Definition[Bearbeiten]

Definition (Lineares Gleichungssystem (LGS))

Sei ein Körper. Ein lineares Gleichungssystem (LGS) über mit Gleichungen für Unbekannte hat die Form:

wobei für und .

Das LGS heißt homogen, falls , andernfalls inhomogen.

Definition (Koeffizientenmatrix)

Die Matrix heißt Koeffizientenmatrix des LGS aus obiger Definition. Der Vektor heißt rechte Seite.

Definition (Lösungsmenge eines LGS)

Der Vektor heißt Lösung des obigen LGS, falls . Die Menge

heißt Lösungsmenge des LGS.

Beispielaufgaben in unendlich-dimensionalen Vektorräumen[Bearbeiten]

Die bisherigen Beispiele waren Beispiele in endlich-dimensionalen Vektorräumen. Der Vorteil hierbei ist, dass man die darstellende Matrix der Abbildung aufschreiben kann und anschließend nach der oben beschriebenen Lösungsmethode vorgehen kann. In unendlich-dimensionalen Vektorräuemn ist das etwas komplizierter.

Wir fangen mit einem einfachen Beispiel in einem unendlich-dimensionalen Vektorraum an.

Beispiel

Wir betrachten die Ableitung als linear Abbildung von Polynomen über . Die Menge ist eine Basis von . Wir definieren durch für alle .

Nun wollen wir den Kern von bestimmen. Jedes Element aus können wir darstellen als eine Linearkombination , wobei und für alle ist. Es gilt also .

Wir wissen, dass die linear unabhängig sind, da sie eine Basis bilden. Somit ist eine Linearkombination der genau dann Null, wenn alle Koeffizienten Null sind. Das können wir benutzen, um den Kern zu bestimmen. Nehmen wir also an, dass für ein beliebiges Element mit und für alle gilt, dass . Dann folgt, dass für alle . Für alle diese gilt, dass . Folglich ist für alle .

Damit ist genau dann , wenn für alle . Der Kern von ist somit .

Beispiele[Bearbeiten]

Beispiel

ist ein lineares Gleichungssystem über mit 2 Gleichungen für die Unbekannten mit Koeffizientenmatrix und rechter Seite .