MathemaTriX ⋅ Theorie nach Thema. Funktionen

Aus Wikibooks
Zur Navigation springen Zur Suche springen

Mandelbrot Growth Lines.jpg

DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH
VERSTÄNDLICH
AUFBAUEND
GRATIS!*
UND SYMPATHISCH

JETZT STARTEN!
Faenza-video-x-generic.svgMap icons by Scott de Jonge - accounting.svgMIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGSVIDEOS!
Cycling (road) pictogram.svg Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
AUFGABEN

Funktion allgemein[Bearbeiten]

Wenn man z.B. die Temperaturen um gewissen Uhrzeiten an einem Tag misst, dann hat man schon eine Art von Funktion. Man sagt, dass die Temperatur die abhängige Variable ist und die Uhrzeit die unabhängige. Für jeden Wert der unabhängigen Variable gibt es einen Wert der abhängigen Variable aber für jeden Wert der abhängigen Variable kann es keine, eine oder mehrere Werte der unabhängigen Variable geben.

FunkAllgTab.png
FunkAllg.png

In unserem Beispiel: für jede Uhrzeit gibt es genau eine Temperatur (es kann nicht mehrere geben), eine Temperatur aber kann nie, einmal oder mehrmals vorkommen. Man kann die ganze Information in einer Tabelle schreiben und mit Hilfe der Tabelle, kann man auch ein Diagramm erstellen:

Wie man im Diagramm ablesen kann, es gibt nur eine Temperatur für jede Uhrzeit (z.B. um 10 Uhr ist die Temperatur 14°C und nicht gleichzeitig 18°C) aber für jede Temperatur kann es keine (z.B. 5°C gibt es nicht), eine (z.B. 10° C gibt es nur um 6 Uhr) oder mehrere Zeiten (z.B. 15°C kommt 2 mal vor, man kann sogar raten, dass es die gleiche Temperatur irgendwann zwischen 10 Uhr und 12 Uhr gab!).

Lineare Funktion[Bearbeiten]

Was ist eine lineare Funktion[Bearbeiten]

Wenn das Diagramm einer Funktion eine Gerade ist, dann geht es um eine sogenannte lineare Funktion. Ein lineare Funktion hat die allgemeine Form:

y=s x +A

wo y die abhängige Variable ist, x die unabhängige Variable und s und A irgendwelche Konstanten (Zahlen, die sich nicht ändern, wie die Variablen). So sind die folgende Funktionen linear:

y=3x – 2 y=-0,5x+130 y= ¾ x – 2,3 y=-√3 x -5

In der ersten Funktion y=3x – 2 ist s=3 und A=-2.

In der zweiten Funktion y=-0,5x+130 ist s=-0,5 und A=130.

In der dritten Funktion y= ¾ x – 2,3 ist s= ¾ und A=-2,3.

In der vierten Funktion y=-√3 x -5 ist s=-√3 und A=-5.

Selbstverständlich kann man statt x und y andere Symbole benutzen:

y=3x – 2, a=3b – 2 und V=3h – 2 sind Darstellungen der gleichen Funktion, es werden nur andere Symbole für x und y benutzt. y= ¾ x – 2,3 ist doch eine andere Funktion, weil s und A (die Konstanten) anders sind. Wenn allein s oder allein A oder beide s und A in zwei Funktionen anders sind, dann haben wir zwei unterschiedlichen linearen Funktion. Wenn s und A in zwei Funktionen gleich sind, dann haben wir die gleiche Funktion, egal welche Symbole wir für x und y benutzen.

In einer linearen Funktion    wird die Konstante, mit der x multipliziert wird (hier mit s bezeichnet), Steigung der Funktion genannt. Die Steigung ist ein sehr wichtiger Begriff in der höheren Mathematik. Die Konstante, die dann addiert wird (hier mit A bezeichnet) nennt man y-Achsenabschnitt. Man muss auch sagen: in verschiedenen Staaten benutzt man unterschiedliche Symbole für s und A, z.B.

Hier ist dann m die Steigung und n der y-Achsenabschnitt (Gebrauch in Deutschland) .

Hier ist dann k die Steigung und d der y-Achsenabschnitt (Gebrauch in Österreich) .

Hier ist dann m die Steigung und q der y-Achsenabschnitt (Gebrauch in der Schweiz) .

Hier ist dann m die Steigung und b der y-Achsenabschnitt (Gebrauch in Spanien) .

Hier ist dann a die Steigung und b der y-Achsenabschnitt (Gebrauch in Frankreich und auf Englisch) .

Lineare Funktion durch ein Alltagsbeispiel verstehen[Bearbeiten]

Tabelle für eine lineare Funktion erstellen[Bearbeiten]

Für jede Funktion kann man eine Tabelle machen. Diese Tabelle kann man dann als Punkte in einem Diagramm darstellen. Als Beispiel benutzen wir die Funktion y=3x – 2:

LinFunkTab.png


Diagramm einer linearen Funktion mit Hilfe von zwei Punkten erstellen[Bearbeiten]

Um diese Funktion in einem Diagramm darzustellen braucht man nur zwei Punkte. Einen Punkt schreibt man mit einem Wertepaar P:(x|y), wobei erst immer der x-Wert geschrieben wird und dann der y-Wert (innerhalb von Klammern). Benutzen wird beispielsweise PA:(-1|-5) und PB:(2|4) (erstes Bild). Mit Hilfe dieser Punkte kann man eine Gerade ziehen (zweites Bild). Wie man dann feststellen kann, liegen alle Wertepaare der Tabelle auf dieser Gerade! (Drittes Bild)

Das ist genau die Sache. Alle Wertepaare einer linearen Funktion liegen auf der gleichen Gerade! Die Darstellung einer linearen Funktion auf einem Koordinatensystem ist eine Gerade!

Eine lineare Funktion mit Hilfe von zwei Punkten ermitteln[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Kein Hilfsmittel-Video vorhanden
Gelöstes Beispiel Frage stellen!
Lineare Funktion

Wenn man zwei Punkte einer linearen Funktion hat, kann man nicht nur die entsprechende Gerade im Diagramm zeichnen, sondern auch die Funktion selber finden, wenn man sie nicht kennt. Nehmen wir die folgenden zwei Punkte P und Q, die man auch vom Diagramm ablesen kann:

Mit Hilfe der beide Punkten kann man die Funktion in einem Koordinatensystem darstellen, wie im Bild. Wie viel ist die Steigung dieser Funktion und wie viel der y-Achsenabschnitt?

Die allgemeine Gleichung einer linearen Funktion ist:


wobei hier mit s die Steigung gemeint ist und mit A der y-Achsenabschnitt.

Um die Steigung und den y-Achsenabschnitt der im Diagramm dargestellten Funktion zu berechnen, werden wir hier das sogenannte Gleichsetzungsverfahren benutzen. Setzen wir die Wertepaare für die zwei gegebenen Punkten in der allgemeinen Gleichung der linearen Funktion ein:


Formen wir beide Gleichungen auf A um:


Da die rechten Seiten der Gleichungen gleich sind (beide A), sollen auch die linken gleich sein.

und daher

Die Funktion lautet daher:

Für die direkte Berechnung der Steigung s gibt es allerdings eine Formel. Es gilt:

wobei Δy die Differenz der y-Werte der zwei Punkte und Δx die Differenz der x-Werte ist.

In unserem Beispiel sind die Punkte und , also die y-Werte 4 und -2 und die x-Werte 2 und 5. Die entsprechenden Differenzen sind: Δy=4 − ( − 2)=6 und Δx=2-5=-3. Daher ist die Steigung der abgebildeten linearen Funktion, die durch die Punkte P und Q geht:

Die Steigung und ihre Zusammenhänge[Bearbeiten]

Beweis der Formel der Steigung einer linearen Funktion[Bearbeiten]

Zeigen Sie, dass die Steigung s
einer linearen Funktion ist.


Wir benutzen hier 2 Punkte, wie in der entsprechenden Aufgabe mit konkreten Zahlen. Diesmal benutzen wir Symbole statt konkreten Zahlen.

Wir formen beide Gleichungen auf A um:


Da die rechten Seiten der Gleichungen gleich sind (beide A),
sollen auch die linken gleich sein.

Das Symbol bedeutet Differenz. und , daher:
Steigung

Zusammenhang linearer Funktion und direkter Proportionalität[Bearbeiten]

Die direkte Proportionalität ist eine lineare Funktion, deren y-Achsenabschnitt A null ist. Wenn wir für die Steigung der linearen Funktion das Symbol s und für den y-Achsenabschnitt das Symbol A, dann lautet die allgemeine Darstellung:

y= s·x + A

Wenn der y-Achsenabschnitt null ist, dann haben wir eine direkte Proportionalität:

y= s·x

Die Steigung ist in diesem Fall das Verhältnis (Quotient) zwischen abhängiger und unabhängiger Variable:

Es gibt allerdings noch einen Zusammenhang zwischen direkter Proportionalität und linearer Gleichung. Die Steigung ist das Verhältnis zwischen Änderung der unabhängigen und Änderung der abhängigen Variable:

Das bedeutet, dass eine direkte Proportionalität zwischen den beiden Änderungen besteht:

Zusammenhang linearer Funktion und Ähnlichkeit ebener Figuren[Bearbeiten]
Alle hier gleichfarbigen Figuren sind zueinander ähnlich.
Zwei Figuren sind ähnlich, wenn die eine eine Vergrößerung der andere ist. Bei Figuren mit Winkeln bedeutet das, dass entsprechende Winkel gleich bleiben, die Verhältnisse (Quotienten) der entsprechenden Seiten zu einander ebenfalls.
相似の位置.jpg
Wenn man das große und das kleine Dreieck im Bild hier links vergleicht, dann stellt man fest, dass alle entsprechenden Winkel gleich sind (A mit D, B mit E und C mit F). Dreieck DEF ist eine Vergrößerung des Dreiecks ABC. Nehmen wir an, dass Seite DE 1,5 mal so groß wie Seite AB ist, also DE=1,5·AB. Dann muss das gleiche ebenfalls zwischen BC und EF gelten, also EF=1,5·BC. Für die Verhältnisse (Quotienten) gilt dann:

und

also, die Quotienten der entsprechenden Seiten sind gleich!

Seite DE ist allerdings 1,5 mal die Seite AB, also um 50% größer als AB. Das gilt allerdings genauso für Seiten EF und BC, also EF ist 50% größer als BC. Man stellt daher fest, dass bei der Ähnlichkeit von Figuren eine direkte Proportionalität (eine lineare Funktion mit y-Achsenabschnitt gleich null) für die Längen der Seiten vorliegt: wird eine Seite größer, dann wird die andere auch und zwar um den gleichen Prozentsatz!


Einheiten der Steigung[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Kein Video vorhanden daher zum Einleitungsvideo

Kein Hilfsmittel-Video vorhanden
Gelöstes Beispiel Frage stellen!
Steigung einer Gerade:
Steigung in einem s-t Diagramm

Die Steigung einer Gerade ist allgemein die Differenz zwei y-Werte durch die Differenz der entsprechenden x-Werte, also ein Differenzenquotient (Bild links). Da bei einem s-t Diagramm auf der y-Achse die Strecke dargestellt wird und bei der x die Zeit (Bild rechts), ergibt sich der Quotient:

Steigung:

Der letzte Quotient ist nichts anders als die mittlere Geschwindigkeit:

Daher:

Die Steigung in einem s-t Diagramm zeigt uns die Geschwindigkeit

Im konkreten Beispiel rechts: s1 ist zwei Einheiten, s2 5 Einheiten. Wenn die Einheiten der y-Achse Meter (m) sind, ist Δs=3 m. Entsprechend, wenn die Einheit auf der x-Achse Sekunde (s) ist, dann ist Δt=6 s. Die Steigung und daher auch die Geschwindigkeit ist in diesem Fall


Steigung einer Gerade:
Steigung in einem v-t Diagramm

Entsprechend können wir die physikalische Größe und die Einheiten der Steigung in einem v-t Diagramm finden. Da bei einem v-t Diagramm auf der y-Achse die Geschwindigkeit dargestellt wird und bei der x die Zeit (Bild rechts), ergibt sich der Quotient:

Steigung </math>

Die Steigung zeigt uns in diesem Fall eine Änderung der Geschwindigkeit, also eine Beschleunigung:

Daher:

Die Steigung in einem v-t Diagramm zeigt uns die Beschleunigung

Im konkreten Beispiel rechts: ist 2 Einheiten, 5 Einheiten, daher, wenn die Einheiten m/s (Meter pro Sekunde) sind, ist , und für Sekunde als Einheit auf der x-Achse ist . Die Steigung und daher auch die Beschleunigung ist in diesem Fall:

Von diesen Beispielen wird daher klar:

Die Steigung ist eine Änderungsrate, sie zeigt wie schnell sich die Größe der y-Achse in Bezug auf die Größer der x-Achse ändert. Die Einheiten der Steigung sind daher die Einheiten der y-Achse durch die Einheiten der x-Achse.

Noch zwei Beispiele: Wenn auf der y-Achse Kraft (in Newton) dargestellt wird und auf der x Fläche (in m2), dann ist die physikalische Größe der Steigung Druck (also Kraft durch Fläche) und die Einheit Pa (Pascal, also Newton durch m2). Wenn auf der y-Achse Masse (in kg) steht und auf der x Volumen (in ), dann ist die physikalische Größe der Steigung Dichte (also Masse durch Volumen) und ihre Einheiten kg/.

Textaufgaben zu den linearen Funktionen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Kein Hilfsmittel-Video vorhanden
Gelöstes Beispiel Frage stellen!

Bei den Textaufgaben über lineare Funktionen wird es normalerweise zwei Konstanten geben (also zwei Zahlen). Die Einheit einer der Zahlen wird normalerweise durch eine Änderungsrate (ein Verhältnis, einen Quotient von zwei anderen Einheiten) ausgedrückt. Diese Konstante (diese Zahl mit der Einheit "etwas" pro "etwas anderes") wird die Steigung sein, also der Koeffizient der unabhängigen Variable (i.d.R ). Die Einheit der Steigung wird die Form Einheit A durch Einheit B haben. Die Einheit B (z.B. Sekunde oder Meter) ist die Einheit der unabhängigen Variablen (i.d.R. ).

Die andere Konstante wird dann der y-Achsenabschnitt sein. Die Einheit des y-Achsenabschnitts ist auch die Einheit der abhängigen Variable und auch die erwähnte Einheit A bei der Steigung. Damit haben wir alle Elemente in einem mathematischen Zusammenhang „übersetzt“.


  • Beim Taxifahren ist die Grundgebühr 4€ und jede Minute kostet dann 0,5€. Stelle diesen Zusammenhang als lineare Funktion dar.

Lösung:

Hier sind zwei Zahlen angegeben: 4€ und 0,5€. Über 0,5€ ist aber auch gesagt, dass man "jede Minute" 0,5€ zahlt. Anders ausgedrückt sind es 0,5€ pro Minute. Einheit A (€) durch Einheit B (min). Das heißt, es geht um eine Änderungsrate. 0,5 soll also unsere Steigung sein. Dann ist die Grundgebühr der y-Achsenabschnitt. Die abhängige Variable wird also in € ausgedrückt (wie die Grundgebühr und die Einheit A oben in der Steigung), die unabhängige in Minuten (wie die Einheit B, die Einheit, die in der Steigung unten steht). Für beide Variablen kann man frei irgendwelche Symbole auswählen, gewöhnlich sollen sie auch sinnvoll sein, z.B. hier K für die Kosten und t für die Zeit (Englisch: time):

K(t)= 0,5 t + 4 (t in Minuten, K in €)


Man soll auch eine Entscheidung über das Vorzeichen der Steigung treffen. Das ist eher einfach. Wenn es klar ist, dass die abhängige Variable (z.B. y, hier die Kosten K) auch größer wird, wenn die unabhängige (z.B. x, hier die Zeit t) größer wird, dann ist die Steigung positiv. Bei den Kosten ist es klar, dass sie immer mehr werden, wenn die Fahrt länger dauert. Also ist die Steigung positiv.

Wenn aber es klar ist, dass die unabhängige Variable kleiner wird, wenn die unabhängige größer wird, dann ist die Steigung negativ. Schauen wir ein entsprechendes Beispiel.


  • Eine Kerze mit einer Länge von 1,8 dm wird angezündet. Dabei brennt sie stündlich um ca. 0,9 cm ab. Stelle diesen Zusammenhang als lineare Funktion dar.

Hier ist 0,9 cm eine Änderungsrate, also 0,9 cm pro Stunde. 0,9 ist also die Steigung. Die Kerze wird aber immer kürzer, also wird die Steigung negativ sein. 1,8 dm wird unserer y-Achsenabschnitt sein. Wir wählen L für die Länge und t für die Zeit aus:

L(t)= - 0,9 t + 18 (t in Stunden, L in cm)

Vorsicht!

Man soll immer die Einheiten schreiben und die richtigen Einheiten benutzen.

Wenn man beispielsweise für den Abstand die Einheit Meter benutzt, muss man alle angegebene Abstände in Meter umwandeln, wenn sie nicht schon in Meter angegeben sind. Der vorsichtige Leser hat vielleicht gemerkt, dass der y-Achsenabschnitt in der Funktion 18 und nicht 1,8 ist. Wir haben erst die 1,8dm in 18cm umgewandelt! Das ist notwendig, weil die Steigung in cm (und nicht dm) pro Stunde gegeben ist. Ähnlich, wenn der Wert für die Zeit in Minuten gegeben ist, muss man sie erst in Stunden umwandeln (die Steigung ist ja pro Stunden). Darauf muss man also immer aufpassen!


Schauen wir ein etwas komplexeres Beispiel.

  • Der Druck in der Atmosphäre eines Planeten ist durch eine lineare Funktion angegeben. Auf 50km Höhe ist er 3 Atm, auf 200 km 1,8 Atm. Wie viel ist der Druck
  1. auf der Oberfläche des Planeten?
  2. auf 300 km Höhe?
  3. 50 km unterhalb der Oberfläche?

In diesem Fall muss man erst die lineare Funktion mit Hilfe der beiden Punkte finden. Der aufmerksame Leser hat vielleicht schon gesehen, dass die gegebenen Punkte hier sind. Wie im vorherigen Teil gezeigt, man kann die Funktion in zwei verschiedenen Weisen finden:

Man kann das lineare Gleichungssystem lösen:

P(x|y)   x   y y=mx+n
P(50|3) 50 3    3=m·50+n   
  Q(200|1,8)   200  1,8    −1,8=m·200+n 

oder man kann direkt die Formel für die Steigung benutzen:

und dann den y-Achsenabschnitt finden.

Selbstverständlich bekommt man in beiden Fällen die gleiche Antwort:

m=-0,008 und n=3,4 also

Mit Hilfe der Funktion kann man jetzt die Fragen beantworten.

  • Auf der Oberfläche ist die Höhe (also der x-Wert) Null. Das ist der y-Achsenabschnitt, also 3,4 Atm
  • In der zweiten Frage setzt man die 300 km für den x-Wert ein: , also 1 Atm.
  • In der dritten Frage muss man denken, dass unterhalb der Oberfläche die Höhe negativ sein wird: also 3,8 Atm.


KlickenHandy.png


Gibson Steps rainbow and wave Great Ocean Road.jpg
BILDERVERZEICHNIS
ÖFFNE DEIN HORIZONT!
LERNE MIT MATHEMATRIX!
Seite mit Anleitungen zur Anwendung von MathematrixProblemmeldung
KlickenMit.png KlickenEltern.png KlickenLehrer.png
Mathematrix Icon 03.svg
Leutascher Geisterklamm - panoramio (12).jpg
LOGO Emojione 1F41B.svg CH DE AT
SPENDEN
Der Hauptautor ggf. das Team verdient zwar nicht viel, braucht allerdings dein Geld eigentlich nicht. Wenn du aber doch meinst, dass gute Arbeit belohnt werden soll und dieses Projekt gut findest, kannst du immer in diesem Link spenden. Das ist allerdings vielleicht die einzige Einrichtung mit völliger Transparenz, wo du genau weißt, was mit deinem Geld passiert.