Computerhardware für Anfänger

Aus Wikibooks
Wechseln zu: Navigation, Suche


X-office-calendar.svg

Auszeichnung:
Buch des Monats
April 2007

Sie möchten eine aktuelle PDF-Datei (150 Seiten) erstellen oder das Buch auf Papier haben? Wie das geht, können Sie hier lesen.


Etwas ist schwer verständlich oder unverständlich? Sie vermissen ein Thema? Bitte helfen Sie mir und zukünftigen Lesern, das Buch zu verbessern!   Bitte klicken Sie hier und schreiben Sie einfach Ihre Frage auf, was immer es ist. Sie finden hier in wenigen Tagen eine Antwort!
Qsicon Exzellent.svg

Dieses Buch wurde in die Liste exzellenter Bücher aufgenommen.


Dieses „Hardware-Anfängerbuch“ vermittelt grundlegende Hardware-Kenntnisse, die jeder PC-Benutzer haben sollte. Das Buch ist aus Lehrgängen für Verkäuferinnen, Apothekerinnen, Anwälte und Steuerberater entstanden. Es soll für jeden verständlich sein und bleiben. Es werden nur minimale technische Kenntnisse vorausgesetzt.

Das Buch ist für Leute geschrieben, die ihren Computer regelmäßig benutzen und etwas mehr über die Hardware wissen wollen. Es ist kein Einsteigerbuch für Leute, die erstmals an einem PC sitzen. Wie man Windows (oder ein anderes Betriebssystem) startet, benutzt und beendet, wie man die Maus benutzt und Anwendungen startet, sollte bekannt sein.

Das Buch „Computerhardware für Anfänger“ soll Ihnen helfen,

Mit dem Computer sachkundig umzugehen und Warnzeichen für Gefahren zu erkennen,
Technische Daten des eigenen Computers ermitteln zu können,
Angebote und Anzeigen bewerten zu können und Fallen zu umgehen,
Computerspezialisten und Verkäufern die richtigen Fragen stellen zu können,
Bei Neukauf oder Aufrüstung eines Computers mehr Leistung für Ihr Geld zu erhalten,
Sich sicher zu fühlen, wenn jemand mit Ihnen über Computer reden will.

Dieses Wiki-Buch ist eine Zusammenstellung der wichtigsten Seiten aus dem viel umfangreicheren Buch Computerhardware. Wenn Sie mehr über Hardware wissen wollen, lesen Sie dort.

Wenn Sie Computerkomponenten oder -ersatzteile kaufen wollen, lesen Sie die Kaufberatung.

Falls Sie Ihren PC aufrüsten oder eine kleine Reparatur selbst ausführen wollen, hilft Ihnen vielleicht Montage.

Vielleicht interessieren Sie sich für die Geschichte der Computerhardware?

Wenn Sie eine Anmerkung haben oder einen Fehler finden und ihn nicht selbst berichtigen wollen, schreiben Sie das bitte auf die Diskussionsseite.

Was ist eigentlich „Hardware“?

Hardware ist der materielle Teil des Computers: Das Gehäuse mit Prozessor, Festplatte und DVD-Laufwerk, der Bildschirm, der Drucker. Man kann die Komponenten anfassen, sie haben ein Gewicht und werden mit dem Schraubendreher installiert. Hardware geht nur selten kaputt, und wenn doch: Auf Hardware gibt es Garantie. Sie haben ein Recht auf fehlerfreie Ware (falls es die gibt) oder Rückgabe.

Software ist im Gegensatz dazu der nicht-materielle Teil des PC: Das Betriebssystem und die Programme, z. B. das Schreibprogramm und der Internet Explorer. Software wird mit Tastatur und Maus installiert. Software geht oft kaputt. Aber es hat noch nie einen Software-Hersteller gegeben, der irgendeine Garantie auf die Fehlerfreiheit seiner Software gegeben hätte. Schlimmer noch: Es gibt keine fehlerfreie Software. Die Lage wird dadurch weiter verschärft, dass auch die Benutzer Fehler machen. Jeder klickt mal daneben. Statistisch gesehen werden Computerprobleme fast ausnahmslos durch Softwarefehler und Bedienfehler verursacht.

 Inhaltsverzeichnis


  Weitere Bücher vom gleichen Hauptautor:

Internet für Anfänger
Datensicherung

  sowie aus der Junior-Reihe

Wikijunior Computer und Internet


Grundlagenwissen


Die Grundlagen für die heutigen PC wurden schon vor sehr langer Zeit gelegt. Die ersten Computer wurden in den vierziger Jahren gebaut. Grafische Bedienoberflächen gibt es seit den fünfziger Jahren. Der erste erfolgreiche Heimcomputer war der „Altair 8800“ im Jahr 1974. 1981 brachte IBM den „Personal Computer“ auf den Markt, und Teile von dessen Bauplan stecken auch heute noch in jedem PC. Die Reklame und die Fachzeitschriften vermitteln uns den Eindruck, es würden ständig revolutionäre Innovationen eingeführt. Mitunter wird sogar technologischer Rückschritt als Fortschritt deklariert. Natürlich wissen Sie, dass Reklame nicht den Zweck hat, Sie zu informieren, sondern Sie zum Kauf zu animieren („Das ist neu! Das müssen Sie unbedingt kaufen!“), und Fachzeitschriften müssen sich mit reißerischen ­Artikeln von der Konkurrenz abheben und über jede „Neuheit“ und jedes Gerücht als Erste schreiben.

Haben Sie schon einmal darüber nachgedacht, dass beim PC „Neu“ oftmals bedeutet

  • „Voreilig auf den Markt geworfen und noch nicht in der Praxis bewährt“
  • „Die Nachbesserungen werden im Internet veröffentlicht, der Kunde wird sie dort schon finden.“
  • „Wenn 80% der Käufer zufrieden sind, reicht es aus.“ Oder genauer: „Gekauft ist gekauft. Wir haben das Geld des Kunden, und die Reklamationen werden von der Serviceabteilung abgeschmettert.“ Außerdem ist die Gewinnspanne bei Reparaturen und Ersatzteilen viel höher als beim Verkauf, vor allem bei Notebooks.

Aber wo sind denn die wirklichen Innovationen zu finden?

  1. 1948 wurde der Transistor erfunden und Norbert Wiener begründete die Kybernetik. Die Schaltungen und Verfahren, nach denen Gimp-icon-vergrössern-verkleinern.png CPU, Gimp-icon-vergrössern-verkleinern.png RAM, Gimp-icon-vergrössern-verkleinern.png ROM, Disketten und Festplatten arbeiten, galten in den 60er Jahren bereits als „bewährte Technologien“. 1960 wurde der Tintenstrahldrucker erfunden und 1971 der Laserdrucker. Seitdem ist alles kleiner, schneller und höher integriert, aber nicht prinzipiell anders.
  2. Magnetische Speicherverfahren gibt es schon lange: Die Tonaufzeichnung auf Stahldraht wurde bereits 1899 patentiert. Etwa 1940 erreichten Magnetbandgeräte die Praxisreife. Die Computer der 50er Jahren benutzten Magnettrommelspeicher als Arbeitsspeicher. Diese Technologien bereiteten den Weg für die 1956 entwickelte erste Festplatte und für die 1969 erfundene Diskette. Geschwindigkeit und Kapazität sind Jahr für Jahr gestiegen und der Preis pro Byte ist gefallen, doch die technologischen Grundlagen sind seit mehr als 100 Jahren unverändert.
  3. 1974 entwickelte Gimp-icon-vergrössern-verkleinern.png Intel den Gimp-icon-vergrössern-verkleinern.png 8-Bit-Prozessor i8080. Der 1978 entwickelte Nachfolger 16-Bit-Prozessor i8086 wurde Gimp-icon-vergrössern-verkleinern.png „kompatibel“ konstruiert, so dass die Programme des Vorgängers nach einer automatischen Umkodierung auf dem i8086 lauffähig waren. Intel hat sich 1978 gegenüber Gimp-icon-vergrössern-verkleinern.png IBM verpflichtet, jeden neuen Prozessor „abwärtskompatibel“ zu entwickeln – und hält sich auch daran, ebenso wie Gimp-icon-vergrössern-verkleinern.png AMD und andere Prozessorhersteller. „Abwärtskompatibel“ bedeutet, dass jeder neue Prozessor die Befehle seiner Vorgänger beherrscht, damit alte Programme auch auf neuen Prozessoren laufen.
  4. Im Jahr 1964 wurde die Maus erfunden, um die Arbeit mit Computern bedienerfreundlicher zu gestalten. 1973 wurde für den „Xerox Alto“ eine „grafische Bedienoberfläche“ entwickelt (engl. Graphical User Interface, abgekürzt GUI). Es dauerte 20 Jahre, bis man eine sinnvolle Verwendung für die Maus gefunden hatte: Mit dem „Amiga“ erreichte die Maus 1985 den Massenmarkt. 1990 hatte Microsoft erste Erfolge mit einem grafischen Zusatz für das Betriebssystem DOS, der den Namen „Windows“ erhielt. Damals konnte jeder wählen, ob er lieber kryptische DOS-Befehle eintippen will oder ob er den Computer mit der Maus bedient.
  5. Seit 2002 gibt es ein „Hyper-Threading“ genanntes Verfahren: Wenn bei der Abarbeitung eines Programmteils eine Wartezeit eintritt (z. B. weil die Daten aus dem Arbeitsspeicher noch nicht eingetroffen sind), wird zu einem anderen Programmteil gewechselt. 2006 wurden die ersten „Dual Core“-CPUs verkauft, die zwei Rechenwerke in der CPU enthalten. Doch neu ist die Parallelverarbeitung nicht. Bereits der britische „Colossus“, der 1943 zur Entschlüsselung von Geheimcodes eingesetzt wurde, war ein Parallelrechner. Heutige Supercomputer verteilen ihre Arbeit auf zehntausende Prozessoren.

Auch auf dem Gebiet der Software wurden viele der Grundlagen schon vor Jahrzehnten gelegt:

  1. 1974 wurde das Gimp-icon-vergrössern-verkleinern.png Betriebssystem CP/M entwickelt und 1981 erschien das daran angelehnte Gimp-icon-vergrössern-verkleinern.png MS-DOS 1.0 als erstes Betriebssystem von Microsoft. Alle paar Jahre gab es eine weiterentwickelte Version von MS-DOS, die letzte hatte die Versionsnummer 6.22. Für diejenigen, die DOS nicht kennen: Dieses Betriebssystem benutzt keine Maus und läuft in reinem Textmodus. Alle Befehle muss man an der Tastatur eintippen. Ein Beispiel für einen DOS-Befehl, der aus allen Ordnern des Laufwerks C: alle Word-Dateien aller Benutzer auf einen USB-Stick (Laufwerk E:) kopiert:   xcopy c:*.doc a:\*.doc /d /s /e /y. $nbsp; Solche Gimp-icon-vergrössern-verkleinern.png Kommandozeilenbefehle werden von hartgesottenen Profis benutzt, weil einige dieser Befehle viel effektiver sind als das Klicken mit der Maus, und manche dieser „klassischen“ Befehle können die letzte Rettung sein, wenn Windows nicht mehr funktioniert.
  2. Bei jeder neuen Version eines Betriebssystems achten die Entwickler darauf, dass neben allen Verbesserungen auch sämtliche alten Befehle weiterhin funktionieren. Wenn Sie auf ein moderneres Betriebssystem umsteigen, können Sie Ihre älteren, lieb gewonnenen Programme weiter verwenden und natürlich auch Ihre Daten weiter benutzen. Durch dieses freundliche Prinzip, die Abwärtskompatibilität, kann ich auch heute noch die meisten Befehle verwenden, die ich in den 80er Jahren gelernt habe. Allerdings hat die Abwärtskompatibilität auch Grenzen. In jeder neuen Version des Betriebssystems die „Andockstellen“ für ältere Programme mitzuschleppen ist aufwändig. Irgendwann, nach etwa zehn bis fünfzehn Jahren, halten die Hersteller den Aufwand nicht mehr sinnvoll, weil (angeblich) kaum noch jemand die Uraltprogramme nutzt.
  3. Windows XP, Vista, Windows 7, 8 und 10 kommen beim Start ohne DOS aus. Doch die klassischen DOS-Befehle sind nicht verschwunden. Alle Windows-Versionen besitzen ein ­Fenster für DOS-Befehle, die sogenannte Eingabeaufforderung. Im Laufe der Jahre wurden die DOS-Befehle weiterentwickelt. Weil viele neue Befehle hinzugekommen sind, spricht man nicht mehr von DOS-Befehlen, sondern von Kommandozeilenbefehlen. Das Befehlssortiment ist so umfangreich, dass sich moderne Windows-Betriebssysteme für Server vollständig mit ­Kommandozeilenbefehlen installieren, konfigurieren und bedienen lassen, ohne auch nur ein einziges Mal die Maus benutzen zu müssen.
  4. Es gibt nicht nur das fast immer verwendete Windows als Betriebssystem für PCs, sondern auch eine Vielfalt an alternativen Betriebssystemen, von denen Linux das bekannteste ist. Die Wurzeln dieser Betriebssysteme reichen meist noch weiter zurück, als die von Windows. Der größte Teil der Smartphones und Tablets benutzt das Betriebssystem „Android“, das auf Linux basiert.
  5. E-Mail ist auch nicht so neu, wie man denkt. Die ersten Versuche wurden bereits 1971 durchgeführt. Im Jahr 1979 stellte Eric Allman das Programm „Delivermail“ fertig, das 1981 in „Sendmail“ umbenannt wurde. Die übergroße Mehrzahl der E-Mail-Server benutzt dieses ­Programm auch heute noch in einer weiterentwickelten Version als „elektronisches Postamt“.

Hard- und Software wurden Jahr für Jahr in kleinen Schritten verbessert: höhere Taktfrequenzen, höhere Packungsdichten auf dem Chip und auf der Festplattenoberfläche, höhere Drehzahlen, mehr Farben usw. Durch Weiterentwicklung und Massenfertigung sind die Preise gesunken. Aber gibt es etwas grundsätzlich Neues? Nur selten.

  • Das bedeutet, dass ein solides Grundlagenwissen kaum veraltet. Es ist interessant, hilfreich und gewiss keine Zeitvergeudung, sich mit den Grundlagen zu beschäftigen.
  • Grundlagenwissen ist unumgänglich, um in „neuen“ Entwicklungen hinter den Werbeversprechen und Testberichten das Wesentliche zu erkennen und zu bewerten.
  • Grundlagenwissen ist notwendig, um den Verkäufer das Richtige fragen zu können, statt auf ihn hereinzufallen.
  • Grundlagenwissen hilft oft gerade dann weiter, wenn die Hard- oder Software „spinnt“ und einem allmählich die Ideen ausgehen, was man noch versuchen könnte.

Sicherlich hätten sich viele Computerprobleme und ein großer Teil der ­Datenverluste vermeiden lassen, wenn der Benutzer im entscheidenden Moment eine Vorstellung davon gehabt hätte, was sich gerade im Computer abspielt. Wer mehr über seinen Computer weiß, wird weniger Probleme haben und weniger (teure und nervenaufreibende) Fehler begehen. Vielen Computerbenutzern, die sich eigentlich überhaupt nicht für Technik interessieren, ist das bereits mehr oder weniger klar. Dieses Buch will Ihnen Grundlagenwissen vermitteln, das Ihnen bei realen praktischen Problemen hilft oder diese Probleme zu vermeiden hilft. Regeln und Empfehlungen werden begründet. Am wichtigsten aber ist:

  • Jeder kann dieses Buch verstehen, auch wenn er/sie sich eigentlich für Computertechnik überhaupt nicht interessiert. Natürlich werden Fachwörter verwendet, aber sie werden erklärt.
  • Selbst erfahrenere Computerbenutzer werden einige interessante Gedanken finden können.

Damit Sie das Buch auch auszugsweise lesen können, sind einige Wiederholungen unvermeidlich. Schauen Sie bitte im Glossar nach, wenn Sie auf unbekannte Begriffe treffen, die vielleicht erst in späteren Kapiteln erläutert werden.

Und nun viel Spaß beim Lesen!

In diesem Buch geht es vor allem um den „klassischen“ Desktop-PC und um Notebooks. Aber Smartphones, Tablets und E-Reader bestehen aus den gleichen Komponenten. Akkus und Bildschirme beispielsweise leiden unter Minusgraden auf die gleiche Weise, gleichgültig ob sie in einem Smartphone oder in einem Notebook stecken.

Angesichts der Verkaufszahlen von Smartphones und Tablets meinen einige Leute, das Zeitalter der klobigen PCs ginge dem Ende zu. Wer seinen PC hauptsächlich für E-Mail, zum Surfen und für ein paar Office-Anwendungen benutzt, für den scheint ein Desktop-PC überdimensioniert zu sein. Er ist teuer, laut, kompliziert, viel zu groß und verbraucht zu viel Strom. Ein Flach-PC ist da vielleicht die bessere Wahl.

Doch der Desktop-PC kann vieles, was seine kleinen Geschwister nicht leisten können.

  • Schreiben mit einer Tastatur, mit der auch Vielschreiber zufrieden sind,
  • Speichern und Verwalten großer Datenmengen wie Fotos, Videos und Musik,
  • Arbeit mit mehreren Programmen gleichzeitig und einfacher Datenaustausch zwischen den Programmen,
  • Arbeit mit vielen Fenstern und Nutzung mehrerer Displays mit großen Bildschirmdiagonalen,
  • Präzises Arbeiten (stellen Sie sich Bildbearbeitung mit den Fingerspitzen auf einem 8" Display vor!),
  • Rechenintensive Anwendungen, wie z. B. Videoschnitt,
  • Nutzung als Home-Server, Steuerung von Haustechnik und Modellbahnanlagen,
  • Nutzung als Flugsimulator und für anspruchsvolle Spiele,
  • DVD und Blu-ray lesen und brennen.

Hinzu kommt noch seine vielfältige Erweiterbarkeit: Fernsehkarte, ISDN-Karte, diverse Schnittstellenkarten u. a.

Beachten Sie die Unmenge an Schnittstellen. Was können Sie nicht alles (gleichzeitig) anschließen: Externe Festplatten, USB-Speichersticks, Drucker, Scanner, Kameras, Skype-Headset, Smartphones ... Und wenn die Schnittstellen nicht ausreichen, steckt man eine Erweiterungskarte in den PC.

Außerdem schont der PC die Umwelt. Man kann problemlos defekte Teile auswechseln und das PC-Leben durch Aufrüstung verlängern. Einen defekten Tablet-Computer können Sie nicht reparieren. Selbst wenn Sie das zugeklebte Gehäuse aufbrechen, finden Sie keine Standardteile, die man ersetzten könnte. Aufrüsten geht auch nicht. Und die Müllberge wachsen ... Freilich benötigt ein Desktop-PC mehr Energie, doch der gesamte Energieaufwand bei der Herstellung der Rohmaterialien und Komponenten ist so groß, dass der Energieverbrauch beim Kunden kaum ins Gewicht fällt. Und ich bin schneller mit der Arbeit fertig und kann den PC früher ausschalten. Hatten Sie jemals Gelegenheit zu vergleichen, wie viel schneller man mit einem Desktop-PC eine umfangreiche Internet-Recherche durchführen kann, im Vergleich zu einen Notebook oder gar einem Tablet? Ich kann mir nicht vorstellen, dass ein Firmenchef seine Innendienst-Mitarbeiter mit Notebooks oder Tablets ausstatten würde. Wo „Zeit ist Geld“ gilt, darf man an der Leistung der Computer nicht sparen. Als der PC 1981 auf den Markt kam, war er eine Arbeitsmaschine. Niemand konnte sich damals vorstellen, welche Vielfalt von Anwendungen es einmal geben wird und dass der PC Einzug in die Haushalte nehmen würde. Und nun, nach drei Jahrzehnten, ist der PC auf dem Weg zurück zu den Profis und den Anwendern, die ihn für ihre Arbeit und für anspruchsvolle Hobbys benötigen. Für viele „Normalanwender“ genügt ein Tablet-Computer.



Elektronik-Grundbegriffe


Schnitt durch eine mehrlagige Platine.

Elektronische Bauelemente sind Widerstände, Kondensatoren, Relais, Schalter, Leitungen, Transformatoren, Batterien, Dioden, Transistoren, LED und andere. Eine elektronische Schaltung besteht aus elektronischen Bauelementen, die zu einer sinnvollen Funktion verbunden sind, z. B. Blinkgeber, Dämmerungsschalter, Verstärker.

Leiterplatten

Leiterplatte mit Bauelementen

Elektronische Bauelemente werden auf Leiterplatten montiert. Eine Leiterplatte besteht aus einer etwa 1 mm dicken Trägerplatte aus Isoliermaterial, oft mit stabilisierenden Glasfasern. Auf der Oberfläche der Platte sind Leiterzüge aus Kupfer angeordnet. Zur besseren Leitfähigkeit wird das Kupfer meist versilbert oder vergoldet. Wenn die Trägerplatte auf beiden Seiten Leiterzüge hat, wird die Leiterplatte zweilagig genannt. Die Platte wird gebohrt und die Bohrlöcher werden innen verzinnt, um die Leiterebenen miteinander zu verbinden. Zum Schluss werden Widerstände, Kondensatoren und weitere elektronische Bauelemente in die Bohrungen gesteckt und verlötet. Damit ist eine Platine (englisch: board) entstanden – so nennt man eine Leiterplatte mit aufgelöteten elektronischen Bauteilen.

Leiterplatte mit SMD-Bauelementen

Die Microchips in den Abbildungen haben „Beinchen“ (engl.: pin). Die Industrie bevorzugt Chips mit SMD-Kontakten (Surface Mounted Device, deutsch: oberflächenmontiertes Bauelement, weil dadurch viele Bohrungen wegfallen und die Platinen beidseitig bestückt werden können.

Halbleiter

Nach der elektrischen Leitfähigkeit unterscheidet man Isolatoren (z. B. Porzellan, Gummi, Plaste) und Leiter (z. B. Metalle). In hochreinen Silizium- und Germaniumkristallen gibt es keine freien Elektronen für den Ladungstransport, sie sind deshalb Nichtleiter. Durch Hinzufügen winzigster Mengen Fremdatome (das Impfen mit Fremdatomen nennt man „Dotieren“, übliche Dosierung: 1 bis 100 Fremdatome auf eine Milliarde Atome) wird das Material zum Halbleiter.

Außerdem kann man den Stromfluss erhöhen

  • durch Erhöhung der Temperatur,
  • durch Bestrahlung mit Licht und
  • durch elektrische Felder.

Ein n-Halbleiter wird durch Dotieren mit z. B. Phosphor hergestellt. Weil Phosphor leicht Elektronen (die negativ geladen sind) abgibt, entsteht ein winziger Elektronenüberschuss. Die Elektronen können Strom transportieren. Weil der Stromfluss um Größenordnungen geringer ist als in Metallen, wird das Material als Halbleiter bezeichnet. Durch Dotierung mit z. B. Indium, welches gierig Elektronen aufsaugt, entsteht ein Überschuss an positiv geladenen Atomkernen und man erhält einen p-Halbleiter.

Fügt man p- und n-Halbleiter zusammen, entsteht eine Diode. Die Berührungsfläche nennt man Grenzschicht. Die nach Elektronen hungernden p-Atomkerne saugen die Elektronen aus der benachbarten n-Schicht. Wenn alle freien Ladungsträger (Elektronen) abgewandert sind, kann kein Strom mehr fließen. Die Grenzschicht wird zur Sperrschicht. Doch wenn man den p-Halbleiter mit dem Pluspol einer Spannungsquelle verbindet und den n-Halbleiter mit dem Minuspol, drückt die Spannungsquelle massenhaft Ladungen in den Kristall. Die Grenzschicht wird mit Ladungsträgern überschwemmt, und dadurch kann Strom fließen.

Polt man die Spannungsquelle um, werden die Ladungsträger abgesaugt. Es entsteht wieder eine Sperrschicht, größer als im spannungslosen Zustand. Es kann kein Strom fließen.

Ein Bauteil, welches den Strom nur in einer Richtung durchlässt, nennt man „Diode“ oder „Gleichrichter“.

Transistoren

Das wichtigste Halbleiterbauelement ist der Transistor. Er besteht aus drei Lagen unterschiedlicher Halbleiterschichten. Je nach Reihenfolge der Schichten gibt es pnp- oder npn-Transistoren. Die äußeren Schichten heißen Emitter und Kollektor, die dünnere Sperrschicht zwischen ihnen (etwa fünf Atome dick) heißt Basis. Im stromlosen Transistor saugen Kollektor und Emitter die Ladungsträger aus der Basis heraus und die Basis wird zur Sperrschicht. Der Transistor ist „gesperrt“, und zwischen Emitter und Kollektor fließt nur ein winziger „Reststrom“.

Es wird nur ein sehr kleiner Basisstrom benötigt, um die Basisschicht mit Elektronen zu füllen, denn weniger als ein Millionstel der Atome „hungern“ nach einem Elektron. Sobald ein kleiner Eingangsstrom in den Basis-Anschluss geleitet wird, entsteht dort ein Ladungsträgerüberschuss, der die Basisschicht zum Leiter macht („öffnet“). Dadurch kann ein wesentlich größerer Ausgangsstrom zwischen Emitter und Kollektor fließen. Das Verhältnis vom Ausgangsstrom zum Basis-Steuerstrom ist der „Stromverstärkungsfaktor“, der meist größer als 100 ist.

Anfangs konnte auf jedem Stück Halbleiter nur ein Transistor untergebracht werden. Später gelang es, Widerstände und Kondensatoren aus Halbleitermaterial zu fertigen und zusammen mit dem Transistor auf dem Halbleiterstück unterzubringen. Weitere Miniaturisierung ermöglichte eine wachsende Anzahl von Bauelementen pro Halbleiter.

Ein integrierter Schaltkreis (Mikrochip, engl. integrated circuit, abgekürzt IC) ist eine elektronische Schaltung, die auf einem einzelnen Halbleiterstück untergebracht ist. Weil Halbleiter empfindlich auf Sauerstoff, Licht und Schmutz reagieren, werden sie in einem hermetischen Gehäuse untergebracht.

Ein Prozessor ist ein integrierter Schaltkreis, der einige hundert Millionen Transistoren enthält.

Früher hatten alle Microchips „Beinchen“ (engl.: pin). Die Industrie bevorzugt Chips mit SMD-Kontakten (Surface Mounted Device, deutsch: oberflächenmontiertes Bauelement), weil dadurch viele Bohrungen wegfallen und die Platinen beidseitig bestückt werden können.



Binärzahlen


Was ist das eigentlich – ein Zahlensystem?

Ein Zahlensystem dient dazu, Zahlen – vor allem große Zahlen – einfach und übersichtlich darzustellen. Außerdem soll es möglichst einfach sein, mit den Zahlen zu rechnen.

Mit dem Wachstum der ersten Städte und Zivilisationen entstand die Notwendigkeit, mit großen Zahlen umzugehen. Auf einem Bierdeckel mit ein paar Strichen die Anzahl der bestellten Biere zu notieren, ist übersichtlich. Mit 300 Strichen zu notieren, dass ein Einwohner mit 300 Krügen Wein seine Steuern bezahlt hat, ist sehr unübersichtlich. Deshalb wurden die ersten Zahlensysteme erfunden: Das sumerische, das ägyptische und später das römische Zahlsystem. Die Grundidee: Für größere Mengen von Einsen werden Gruppensymbole eingeführt. Die Römer verwendeten den Buchstabe „I“ für die Eins. Zehn Striche wurden durch ein „X“ ersetzt, „C“ steht für hundert und „M“ für tausend. Zusätzlich gibt es Halbzahlen: „V“ für fünf, „L“ für 50 und „D“ für 500. So konnte man die 300 Striche durch „CCC“ ersetzen. „MCCXIII“ bedeutet also 1213. Die Zahl 132 kann man als CXXXII, IIXXXC, XCXIIX oder XXXIIC schreiben. Die Reihenfolge der Ziffern spielt eigentlich keine Rolle, nur die Summe zählt. Daher werden derartige Zahlensysteme als „Additionssysteme“ bezeichnet.

Eine beliebige Reihenfolge der Ziffern führt allerdings dazu, dass es für eine Zahl viele verschiedene Schreibweisen gibt. Das ist unübersichtlich. Deshalb hatten die Römer eine Regel, die größeren Ziffern vor den kleineren zu schreiben.

Für die römischen Zahlen gibt es eine weitere, etwas merkwürdige Sonderregelung, um das Schreiben von vier gleichen aufeinander folgenden Zeichen zu vermeiden: Steht vor einer größeren Ziffer eine kleinere, wird die kleine von der großen abgezogen. Die Zahlen werden dadurch kürzer. So schreibt man für die Zahl 49 beispielsweise „XLIX“ ((50 minus 10) plus (10 minus 1)) statt „XXXXVIIII“.

Zahl richtig falsch
4 IV IIII
9 IX VIIII
19 XIX XVIIII
1959 MCMLIX MDCCCCLVIIII


Die Addition und Subtraktion römischer Zahlen ist nicht leicht, gemessen an unserem heutigen Kenntnissen und Gewohnheiten. Sie zu multiplizieren, zu dividieren oder gar zu potenzieren ist ein Albtraum. Das dürfte ein wesentlicher Grund sein, warum von den Römern keine Entdeckungen auf den Gebieten Mathematik, Physik und Astronomie bekannt sind.

Die Inder haben das Dezimalsystem erfunden und die Araber haben es im 13. Jahrhundert nach Europa gebracht. Durch die Rechenbücher von Adam Ries wurde es in Deutschland bekannt. Dieses System vereinfachte das Rechnen sehr.

Stelle 2 1 0
Stellenwert 102 101 100
Beispiel 3 3 3
= 3*102 3*101 3*100
= 3*100 3*10 3*1


Durch welche Besonderheiten ist das Dezimalsystem den römischen Zahlen überlegen?

  • Das Dezimalsystem ist ein Stellenwertsystem mit zehn Ziffern. Alle Zahlen, klein oder beliebig groß, können mit zehn Ziffern (den Ziffern von 0 bis 9) gebildet werden. Zehn Ziffern = Dezimal.
  • Das Dezimalsystem ist ein „Stellenwertsystem“: Der „Wert“ einer Ziffer hängt davon ab, an welcher Stelle einer Zahl sie steht. Wenn eine Ziffer von der letzten Stelle in die vorletzte Stelle einer Zahl vorrückt (wenn man z. B. rechts eine Null anfügt), ist sie zehn mal mehr „wert“. In der Zahl „333“ kommt die Ziffer 3 dreimal vor, wobei sie drei verschiedene ­Bedeutungen hat: Dreihundert, dreißig und drei.
  • Für das Rechnen mit großen Zahlen gibt es „relativ einfache“ Regeln. Ob ich mit zweistelligen oder 20stelligen Zahlen rechne, die Regeln sind dieselben.
Stelle 2 1 0
Stellenwert 22 21 20
Beispiel 1 1 0
= 1*22 1*21 0*20
= 1*4 1*2 0*1

Wir verwenden das Zehnersystem, weil wir Dinge an zehn Fingern abzählen. Hätten die Menschen einen weniger beweglichen Daumen, würden wir möglicherweise das Oktalsystem für das natürlichste Zahlensystem der Welt halten. Wenn wir leicht bewegliche Zehen hätten und barfuß laufen würden, wäre vielleicht das Zwanziger-Zahlensystem optimal. Die Maya und die Azteken hatten es, und einige isolierte Naturvölker benutzen es heute noch. Hätten die Menschen einen weniger beweglichen Daumen, würden wir möglicherweise das Achter-System (Oktalsystem) für das natürlichste Zahlensystem der Welt halten.

Für Computer wird ebenfalls ein Stellenwertsystem benutzt, in dem es nur zwei Ziffern gibt, die Null und die Eins. Die Zwei und alle größeren Zahlen muss der PC aus Nullen und Einsen zusammenstellen. Dieses „binäre Zahlensystem“, auch „Dualsystem“ genannt, wurde von Leibniz erfunden. Der Name kommt aus dem lateinischen: bina = paarweise, duo = zwei. So hat z. B. die binäre Zahl "110" im dezimalen System den Wert 6.

Wie rechnet man im Binärsystem? Ganz einfach: Ob es sich um die Regeln für Addition, Multiplikation, Division und andere handelt, alle uns bekannten Rechenregeln sind für alle Stellenwert-Zahlensysteme identisch! Nur der Übertrag bei der Addition erfolgt nicht wie gewohnt nach der Neun, sondern nach der Eins.

Dezimal Dual Hex.
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 1 0000 10
17 1 0001 11
18 1 0010 12
19 1 0011 13
20 1 0100 14
21 1 0101 15
22 1 0110 16
23 1 0111 17
24 1 1000 18
25 1 1001 19
26 1 1010 1A
27 1 1011 1B
28 1 1100 1C
29 1 1101 1D
30 1 1110 1E
31 1 1111 1F
32 10 0000 20
33 10 0001 21
34 10 0010 22
35 10 0011 23
36 10 0100 24
37 10 0101 25
38 10 0110 26

Warum benutzen Computer nicht das Dezimalsystem?

Es gibt zwei Möglichkeiten, Ziffern elektrisch darzustellen. Die eine kennen Sie von alten Telefonen mit Wählscheibe. Wenn man die Neun wählt, werden neun Impulse zur Vermittlungsstelle geschickt, die einen Drehwähler um neun Schritte drehen.

Die andere Möglichkeit ist, Ziffern durch unterschiedlich hohe Spannungen darzustellen. Würde man unser gebräuchliches Dezimalsystem für Computer verwenden wollen, müsste man jede der zehn Ziffern durch einen anderen Spannungswert darstellen, z. B. Ziffer 0 durch 0 Volt, Ziffer 1 durch 0,3 V, Ziffer 2 durch 0,6 V, Ziffer 3 durch 0,9 V usw. bis zur Ziffer 9 mit 2,7 V. Diese Spannungen müssten sehr genau eingehalten werden, um sie unterscheiden zu können. Nehmen wir als Beispiel die Ziffer 2 mit 0,6 Volt. Schon eine geringe Abweichung von 5% = 0,15 Volt (5 % von 3 Volt, dem Maximalwert) würde den Pegel auf 0,75 Volt anheben. Dieser Wert wäre von der "Zwei" genau so weit wie von der "Drei" entfernt. Die Elektronik könnte nicht mehr zwischen benachbarten Ziffern unterscheiden.

Ist diese Genauigkeit von deutlich weniger als 5% überhaupt möglich?

Das erste Hindernis ist die extreme Temperaturempfindlichkeit aller Halbleiter. Sie erwärmen sich, wenn Strom hindurchfließt. Zehn Grad Temperaturerhöhung kann die Zahl der freien Ladungsträger verdoppeln. Damit steigt die Stromstärke und der Halbleiter wird immer wärmer, wenn der Strom nicht begrenzt wird, z. B. mit einem Widerstand.

Das zweite Problem ist die Nichtlinearität aller Halbleiterelemente. Wenn man die Eingangsspannung von Null beginnend allmählich erhöht, würde bei einem Bauelement mit linearer Kennlinie der Strom proportional zunehmen. Doch bei einem Transistor fließt noch kein Strom, bis die Eingangsspannung etwa 0,5 Volt erreicht hat. Ob die Spannung 0 Volt oder 0,3 oder 0,5 Volt beträgt, der Ausgangsstrom bleibt auf Null!

Im Bereich von 1,5 bis 3 Volt hängt der Ausgangsstrom fast linear von der Eingangsspannung ab. Steigt die Eingangsspannung weiter, gerät der Transistor in die „Sättigung“: Egal wie weit man die Eingangsspannung erhöht, der Ausgangsstrom steigt nicht mehr.

Mit so einem Bauelement kann man also zehn Ziffern nicht genau genug unterscheiden.

Das dritte Problem sind die großen Toleranzen bei der Herstellung. Winzigste Schwankungen in der Materialqualität und den Fertigungsbedingungen führen zu großen Abweichungen vom Durchschnitt. Betrachten wir als Beispiel ein einfaches Halbleiterelement: Den Transistor. Hochintegrierte Schaltungen enthalten Millionen Transistoren, da müsste es doch möglich sein, einen einzelnen Transistor „nach Maß“ zu fertigen? Weit gefehlt. Der Transistor BC 546 beispielsweise wird seit Jahrzehnten von zahlreichen Firmen als Massenprodukt gefertigt.

Transistor-Stromverstärkungsklassen
Gruppe A Gruppe B Gruppe C
110 ... 220 220 ... 450 420 ... 800

Allerdings schafft es noch immer keiner der Hersteller, Transistoren genau mit den gewünschten Eigenschaften herzustellen. Angenommen, ein Hersteller bekommt eine Bestellung über 10 000 Transistoren mit einer Stromverstärkung zwischen 220 und 450. Er wird etwa 20 000 Stück produzieren und sie in der Gütekontrolle in die Gruppe A, B und C einsortieren. Beachten Sie die gewaltige Streuung des Stromverstärkungsfaktors von 110 bis 800! Der Kunde wird mit den Transistoren aus Gruppe B beliefert. Und der Rest? Der geht ins Lager. Bei entsprechender Preisgestaltung wird sich das meiste verkaufen lassen.

Stellen Sie sich eine Autofabrik vor, wo Autos unterschiedlicher Qualität vom selben Fließband rollen: PKW mit einem Verbrauch von 30 Liter/100 km und 50 km/h Höchstgeschwindigkeit, und eine Stunde später mit 8 Liter/100 km und 300 km/h Höchstgeschwindigkeit. In der Gütekontrolle würden die Autos sortiert und in mehrere Klassen eingeteilt, die dann zu verschiedenen Preisen verkauft werden. Autos mit einem Verbrauch über 20 Litern oder einer Höchstgeschwindigkeit unter 60 km/h werden verschrottet. Nun, vielleicht habe ich ein wenig übertrieben, jedenfalls würden sich die Autobauer unter Ihnen schon bei viel kleineren Qualitätsunterschieden in Grund und Boden schämen. Doch so verfährt die Halbleiterindustrie mit ihren Erzeugnissen.

Wenn es schon bei einem simplen Transistor nicht gelingt, ihn „nach Maß“ herzustellen – wieviel schwerer ist es dann, einen Prozessor mit hunderten Millionen Transistoren mit genau den gewünschten Eigenschaften zu produzieren? Es gelingt nicht. Der Ausschuss steigt exponentiell mit der Größe des Chips. Bei der Einführung einer neuen Produktgeneration kann anfangs deutlich mehr als die Hälfte der Produktion unbrauchbar sein. Auch die brauchbaren CPUs unterscheiden sich. Wenn sie die gleiche Berechnung durchführen, werden sie unterschiedlich heiß. Wenn der Prozessor bei der geplanten Frequenz zu heiß wird, bekommt er eine niedrigere Taktfrequenz aufgedruckt, denn die Wärmeentwicklung ist etwa proportional zur Taktfrequenz. Stromsparende Exemplare, die besonders „cool“ bleiben, werden etwas teurer verkauft und vielleicht in Premium-Notebooks verbaut.

Um auf die Frage zurückzukommen, ob eine Genauigkeit von deutlich weniger als 5% überhaupt möglich ist: Ja, unter den zehntausenden Transistoren könnte man einige wenige finden, die genau genug wären. Allerdings wäre die Ausbeute extrem niedrig und demzufolge der Preis hoch. Bezahlbare Computer könnte man so nicht bauen.

Wenn allerdings ein Transistor nicht zehn, sondern nur zwei Zustände unterscheiden braucht, vereinfacht das die Konstruktion eines Computers enorm. Die zwei Zustände „gesperrt“ und „geöffnet“ beherrscht jeder Transistor.

Ist es aber möglich, statt mit zehn Ziffern mit zwei Ziffern auszukommen?

Das Dualsystem

Das Dualsystem ist ein Zahlensystem, das mit zwei Ziffern auskommt: Null und Eins. Das macht es fehlerresistent. Da die Elektronik nur zwei Zustände zu unterscheiden braucht, sind auch nichtlineare Elemente mit schwankenden Parametern geeignet.

Bei einer Betriebsspannung von 3 Volt gilt meist eine Eingangsspannung zwischen 0 V und 0,8 V als Ziffer 0, und eine Eingangsspannung über 2,0 V gilt als Ziffer 1. Eingangsspannungen zwischen 0,8 V und 2,0 V sind undefiniert und dürfen nicht auftreten.

In jedem Schaltkreis werden die Signale regeneriert: Die Ausgänge eines Schaltkreises liefern 0,4 V bei der Ziffer 0. Selbst wenn diese Spannung von Null bis 0,8 V schwankt, und wird sie trotzdem von der nachfolgenden Schaltung einwandfrei als Null erkannt. Die 2,4 V Ausgangsspannung der Ziffer 1 darf von 2,0 bis 3,0 Volt schwanken. Durch diese großzügigen Toleranzen bei den zulässigen Eingangsspannungen wird eine hohe Zuverlässigkeit erreicht. Die genauen Spannungen variieren je nach Herstellungstechnologie (TTL, CMOS, Schottky oder andere) und sind Datenblättern zu entnehmen.

Fazit: Nur auf der Basis des binären Zahlensystems kann man bezahlbare Computer bauen, und deshalb müssen wir uns hier mit dem Binärsystem herumschlagen. Erst durch die Reduzierung aller Schaltelemente auf nur noch zwei Spannungsstufen konnten die Toleranzanforderungen an die elektronischen Bauelemente so sehr verringert werden, dass die preiswerte Massenfertigung von Schaltkreisen möglich wurde. Weil wir preiswerte Computer wollen, müssen wir die Unannehmlichkeit in Kauf nehmen, dass die Computer nur Nullen und Einsen kennen und jede, absolut jede Information (Zahlen, Texte, Bilder, Musik, Videos, ...) in eine Folge von Nullen und Einsen umgewandelt werden muss.

Binärzahlen sind allerdings sehr lang und unübersichtlich. Die vierstellige Dezimalzahl 1234 wird im Binärsystem zur 11-stelligen 100 1101 0010. Die Anzahl der Binärstellen wird als „Bit“ bezeichnet, 100  1101 0010 ist also eine 11-Bit-Binärzahl. Ein anderes Beispiel: Die Zahl 1 000 000 wird zu 1111 0100 0010 0100 0000, einer 20-Bit-Zahl. Jeweils 8 Bit werden zu einem Byte zusammengefasst.

Programmierer haben oft mit 32-Bit-Zahlen (4 Byte) zu tun. Ein Beispiel: 0000 0000 0000 0000 1111 1111 1111 0000 ist die Adresse, mit der das BIOS-Programm beginnt. Können Sie sich so eine Zahl merken oder sie wenigstens fehlerfrei abschreiben? Das ist schwierig. Deshalb benutzen Programmierer aushilfsweise das Hexadezimalsystem.

Das Hexadezimalsystem

Das lateinische Wort „Hexadezimal“ bedeutet „Sechzehn“. Es handelt sich also um ein Zahlensystem mit 16 Ziffern. Mit den Ziffern 0 bis 9 hat man aber nur 10 Ziffern zur Verfügung. Um nicht sechs weitere Ziffernsymbole neu erfinden zu müssen (und weltweit neue Computertastaturen mit sechs zusätzlichen Tasten einführen zu müssen), verwendet man die Zeichen A, B, C, D, E und F als Ziffern. Zählen wir einmal im Hexadezimalsystem, beginnend mit der Ziffer Null:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22 usw. Nach der 79 kommt 7A, 7B, 7C, 7D, 7E, 7F, 80. Nach AE kommt AF und B0, nach FE kommt FF, 100 und 101. Alles klar?

Wie wandelt man Binärzahlen in Hexadezimalzahlen um und umgekehrt? Nehmen wir das Beispiel mit der Darstellung einer Million.

Binär 1111 0100 0010 0100 0000
Hexadezimal F 4 2 4 0

Die Umrechnung von Binärzahlen in Hexadezimalzahlen ist ganz leicht. Man unterteilt die Binärzahl von Rechts beginnend in Vierergruppen und ersetzt jede Vierergruppe durch eine Hexadezimalziffer. So hat eine Hexadezimalzahl viermal weniger Stellen als die gleiche Binärzahl. Das ist der Vorteil des Hexadezimalsystems: Große Zahlen werden kompakt dargestellt und man kann sie sich besser merken.


ASCII-Tabelle (Auszug)
Zeichen dezimal binär
0 48 110000
1 49 110001
2 50 110010
...
9 57 111001
 : 58 111010
 ; 59 111011
< 60 111100
= 61 111101
> 62 111110
 ? 63 111111
@ 64 1000000
A 65 1000001
B 66 1000010
C 67 1000011
D 68 1000100
...
a 97 1100001
b 98 1100010
c 99 1100011

Wie kann der PC Buchstaben und Zahlen darstellen?

Um Texte zu schreiben, benutzen wir ein Alphabet aus einigen Dutzend Buchstaben sowie zahlreiche Sonderzeichen. Für Zahlen haben wir zehn Ziffern zur Verfügung. Das „Alphabet“ des Computers besteht aber nur aus zwei Zeichen: Eins und Null. Wie kann man damit auskommen?

Die Methode ist einfach und wurde schon vor langer Zeit erfunden. Denken Sie bitte mal an das Morsealphabet: Es gibt kurze und lange Zeichen („Punkt“ und „Strich“) sowie Pausen zwischen den Zeichen. In der Morsecode-Tabelle ist jedem Buchstaben eine Kombination von Punkten und Strichen zugeordnet. Eine ähnliche Codetabelle gibt es auch für die Darstellung von Buchstaben im Computer.

ASCII und das Byte

Eine der gebräuchlichsten Code-Tabellen für Computer ist ASCII, was für „American Standard Code for Information Interchange“ steht. In dieser Tabelle sind alle wichtigen Zeichen der englischen Sprache aufgezählt und von Null bis 127 durchnummeriert. So hat beispielsweise der Buchstabe „A“ die Nummer 65 (binär: 100 0001), „B“ die 66 (binär: 100 0010) usw. Auch die Zeichen für die Ziffern haben eine Nummer: die Ziffer „1“ hat die Nummer 49 (binär: 11 0001). Auch „nicht druckbare“ Zeichen haben eine Nummer bekommen, zum Beispiel die Taste „Enter“ die Nummer 13 (binär: 0000 1101) und die Löschtaste „Rückschritt“ (Backspace) die 8 (0000 1000). In der nebenstehenden Tabelle sind einige Werte aufgeführt.

Hier ist die vollständige  ASCII-Tabelle.

Ein Text im ASCII-Format enthält keine Formatierungen (Fett, Kursiv) oder Schriftarten. Wenn Sie den Editor aus der Zubehör-Programmgruppe verwenden oder eine Datei in MS Word als „Nur-Text“ speichern, wird ASCII verwendet.

Nun gibt es zahlreiche Buchstaben in anderen Sprachen, die im englischen Alphabet nicht vorkommen. Für deutsche Texte beispielsweise braucht man die Umlaute sowie das „ß“. Für die ursprünglichen 127 Zeichen der einfachen ASCII-Tabelle wurden deshalb mehrere Erweiterungstabellen mit je 128 zusätzlichen Zeichen zusammengestellt. Die in Amerika, Mitteleuropa und Australien verbreitete Kodierung „Latin-1“ enthält deutsche Umlaute, französische Accent-Zeichen und spanische Zeichen mit Tilde. Dazu kommen diverse kaufmännische und wissenschaftliche Zeichen. Weitere Erweiterungstabellen gibt es für griechische, slawische, nordische und einige andere Sprachen. Das „American National Standards Institute“ (das amerikanische Pendant zum DIN, dem Deutschen Institut für Normung) hat den einfachen und den erweiterten ASCII-Zeichensatz unter dem Namen „ANSI-Zeichensatz“ zusammengefasst.

Unicode

Nun reichen auch 256 Zeichen noch nicht für alle Sprachen aus. Japaner, Chinesen und zahlreiche andere Völker mit nicht-lateinischen Schriftzeichen waren benachteiligt und forderten eine praktikable Möglichkeit, die vielen Zeichen ihrer Sprache genau so selbstverständlich benutzen zu dürfen, wie wir das lateinische Alphabet am Computer benutzen. Deshalb entwickelten die Computerfachleute eine Codierung namens Unicode, mit der man alle jemals von Menschen verwendeten Schriftzeichen speichern kann, einschließlich sumerischer Keilschrift, ägyptischer Hieroglyphen und weiterer Schriftzeichen, die vielleicht zukünftig entdeckt werden. Unicode kann derzeit über 1,1 Millionen unterschiedliche Zeichen darstellen. Je nachdem, welches der vielen Zeichen man darstellen möchte, braucht man dafür 1 bis 4 Byte. Unsere lateinischen Buchstaben werden wie im ASCII-Standard mit einem Byte kodiert. Einige Zeichen der erweiterten ASCII-Tabelle verweisen auf eine der vielen Tabellen mit weiteren Zeichen. MS-Office, OpenOffice und die meisten anderen modernen Schreibprogramme erkennen automatisch, ob ein Text in ASCII oder in Unicode gespeichert ist.

Wollen Sie mehr über Zahlensysteme wissen?





Zentraleinheit

Der erste Universalcomputer „Z3“ wurde 1941 von Konrad Zuse gebaut. „Universal“ deshalb, weil er „frei programmierbar“ war (d. h. beliebige Programme ausführen konnte). Der Computer Z3 rechnete digital mit 22 Stellen, bestand aus 2600 Relais und konnte 20 Befehle pro Sekunde ausführen.

Ohne von Zuse zu wissen, entwickelte Howard Aiken (USA) im Jahr 1944 aus 3500 Relais und 2225 Fernsprechzählern den „Mark I“. Er war in eine Schrankwand von 15 Meter Länge und 2,5 Meter Höhe eingebaut. Mark I benutzte das Dezimalsystem. Der Computer benötigte 0,3 Sekunden für eine Addition und 6 Sekunden pro Multiplikation. Gebaut wurde er vom Büromaschinenkonzern IBM in einer kleinen Serie für die US-Navy. Seine technischen Daten sollen Thomas Watson, Präsident von IBM, zu der Äußerung veranlasst haben: „Ich glaube, es gibt einen Weltmarkt für vielleicht fünf Computer.“ Nun, bei einem Stückpreis von einer halben Million Dollar und 5 Tonnen Gewicht war Mark I offensichtlich kein Kandidat für eine Massenproduktion ...

1946 ging in den USA der „ENIAC“ (electronic numerical integrator and calculator) in Betrieb. Mit seinen 18 000 Elektronenröhren war er der erste vollelektronische Computer. Er schaffte 35 Multiplikationen pro Sekunde, fast das Doppelte wie der Z3. Angeblich war der ENIAC die Hälfte der Zeit wegen Wartungsarbeiten außer Betrieb – kein Wunder bei den damals noch sehr anfälligen Elektronenröhren. Jeden Monat wurden 2000 Elektronenröhren prophylaktisch ausgewechselt.

1981 begann IBM mit der Serienproduktion des „Personal Computers“. Dessen Erfolg veranlasste zahlreiche Firmen, „kompatible“ Computer zu entwickeln. ­Hardware-kompatibel bedeutet, dass Tastaturen, Drucker, RAM, Laufwerke, Bildschirme und andere Komponenten ­verschiedener Hersteller untereinander austauschbar sind. Software-Kompatibilität bedeutet, dass ein Programm auf Computern unterschiedlicher Hersteller funktioniert, ohne dass irgendwelche Anpassungen nötig sind.

Für Wetterprognosen, Klimasimulationen, Erdbebenvorhersagen und Crashtests werden Supercomputer mit gewaltigen Rechenleistungen eingesetzt. Pharmazie, Genforschung, theoretische Chemie, Astrophysik und viele andere Forschungen kommen nicht ohne Supercomputer aus. Der IBM-Supercomputer Deep Blue mit 256 CPUs hat 1997 um die Krone des Schachweltmeisters gekämpft und mit 3,5 zu 2,5 Punkten gewonnen.

Der leistungsstärkste Computer Europas ist der „JUQUEEN“. Er steht in Deutschland im Forschungszentrum Jülich und belegt Platz 8 der „Weltbestenliste“. Er besteht aus 72 Schränken mit 458 752 Prozessorkernen (28 672 Prozessoren mit je 16 Kernen) und 448 000 Gigabyte Arbeitsspeicher. Er hat etwa die Rechenleistung von 100 000 „gewöhnlichen“ PC.

Der drittschnellste Computer der Welt ist der „Titan“, der mit 18 688 AMD Opteron 16-Kern Prozessoren sowie 18 688 Nvidia Grafikprozessoren rechnet. Die Grafikprozessoren tragen 90 % der Rechenlast. Sie sind besonders gut für stark parallelisierbare Berechnungen geeignet. Als Massenspeicher sind 13 400 Festplatten mit je 1 Terabyte Kapazität angeschlossen. Der Energiebedarf beträgt etwa acht Megawatt.

Der zweitschnellste Computer der Welt ist der chinesische „Tianhe-2“. In der ersten Ausbaustufe arbeitet er mit 32 000 12-Kern-CPUs und 48 000 57-Kern-CPUs von Intel und 4096 16-Kern-Prozessoren, die das Ganze steuern. Der Arbeitsspeicher ist 1,4 Millionen Gigabyte groß. Er benötigt 18 MW Energie, der Bedarf von 100 000 Haushalten.

Der weltschnellste Computer ist seit Juni 2016 der chinesische „Sunway TaihuLight“ mit knapp elf Millionen Kernen (40960 CPUs mit je 260 Prozessorkernen) und 1,3 Petabyte (Millionen Gigabyte) Arbeitsspeicher.

Ein moderner Supercomputer kostet gegenwärtig eine halbe Milliarde Euro. Etwas „preiswerter“ sind Großrechner, sogenannte „Mainframes“. Sie kosten von 0,5 bis 50 Millionen Euro. Wegen ihrer bemerkenswert hohen Zuverlässigkeit werden sie in den Rechenzentren von Universitäten, Verwaltungen und Großfirmen eingesetzt, beispielsweise für Flugreservierungssysteme.

EDV-Anlagen der „mittleren Datentechnik“ werden von mittelständischen Unternehmen und großen Konstruktionsbüros eingesetzt. Der bedeutendste Anbieter ist IBM mit dem System „AS/400“. Dieses System ist „skalierbar“, d. h. man kann zunächst ein 5-Benutzer-System mit zwei „Power-PC-Prozessoren“ kaufen und es schrittweise bis zu einem System mit dutzenden CPUs für tausend Benutzer erweitern, wenn die Firma wächst.

Bei der AS/400 sind Hard- und Software durch eine „Isolationsschicht“ getrennt. Diese Isolationsschicht ermöglicht es den Anwendern seit zwanzig Jahren, die Hardware zu modernisieren oder auszuwechseln, ohne dass irgendeine Änderung an der Software nötig ist – und umgekehrt. Auf einer AS/400-Anlage können gleichzeitig Windows (in verschiedenen Versionen), Linux, Unix und andere Programme laufen. Die Zuverlässigkeit ist beeindruckend. Allerdings kostet so ein System etwa ein- bis dreihunderttausend Euro.

„Workstations“ sind im Leistungsbereich zwischen der mittleren Datentechnik und einem „gewöhnlichen“ PC angesiedelt. Oft sind mehrere Prozessoren eingebaut, jeder mit mehreren Prozessorkernen. Workstations werden vorzugsweise für CAD-Systeme und für wissenschaftlich-technische Berechnungen eingesetzt. Die Zuverlässigkeit der Hardware übertrifft einen PC um Größenordnungen. Als Betriebssystem werden vorzugsweise Unix- und Linuxsysteme eingesetzt. Die Bedeutung von Workstations hat im letzten Jahrzehnt abgenommen, weil sehr gut ausgestattete PC sich der Leistung von Workstations annähern.

In diesem Buch geht es nur um einen einzigen Typ von Computern, der normalerweise nur einen einzigen Prozessor enthält: Um den Personal Computer, abgekürzt „PC“. Von allen bezahlbaren Computern ist es der Typ mit den vielseitigsten Verwendungsmöglichkeiten. Der „PC“ wird volkstümlich meist als Computer bezeichnet, auch in diesem Buch.

Ende 2008 gab es immerhin schon eine Milliarde PCs. Dazu kommen die 300 000 Server von Microsoft, 100 000 Server der Firma Intel und die 70 000, die der Internet-Provider 1&1 betreibt. Es wird geschätzt, dass Google eine Million Server benutzt [1] und dass jedes Quartal 100 000 dazukommen. Wenn man noch die Playstations von Sony, die Wii von Nitendo und die X-Box von Microsoft dazurechnet (das sind Spielcomputer mit einer ähnlichen Leistung wie ein PC) sowie „Embedded Computer“ (eingebettete, integrierte Computer, die in Handys, Waschmaschinen, Autos und Werkzeugmaschinen stecken), gab es schon gegen Ende des letzten Jahrhunderts viel mehr Computer als Menschen. Seitdem sind Milliarden Smartphones und Tablets dazugekommen. Wikimedia betreibt insgesamt 378 Server (2012).

Hauptkomponenten eines PC

Der wichtigste und meist auch teuerste Teil eines PC-Systems ist die graue Kiste, die als Systemeinheit oder Grundgerät bezeichnet wird. Auf dem Foto „Hauptkomponenten eines PC“ sehen Sie, welche Teile unbedingt zu einem PC gehören:

  • Das Gehäuse mit Netzteil und Zusatzlüftern,
  • die Hauptplatine mit Prozessor und RAM-Speicher sowie vielen Anschlusssteckern innen und außen für weitere Hardware,
  • die Gimp-icon-vergrössern-verkleinern.png Festplatte,
  • Früher oft ein Diskettenlaufwerk,
  • ein DVD-Laufwerk und
  • weitere Komponenten, zum Beispiel Gimp-icon-vergrössern-verkleinern.png Soundkarte, Gimp-icon-vergrössern-verkleinern.png Fernsehkarte und Gimp-icon-vergrössern-verkleinern.png Netzwerkkarte.

Im Bild rechts oben sind diese Teile in ein Gehäuse gezwängt, das durch die „herumhängenden“ Kabel recht unübersichtlich aussieht. Unterhalb des Netzteils, links neben dem RAM-Modul sehen Sie einen großen Lüfter. Darunter ist der Prozessor versteckt.

An die Systemeinheit werden Peripherie-Geräte angesteckt, meist an der Rückseite.

  • Zu den Eingabegeräten zählen unter anderem Tastatur, Maus und Gimp-icon-vergrössern-verkleinern.png Scanner.
  • Zu den Ausgabegeräten zählen unter anderem Bildschirm, Drucker und Gimp-icon-vergrössern-verkleinern.png Plotter.
  • Zu den Speichergeräten zählen unter anderem externe Festplatten, Brenner, Kamera-Speicherkarten und USB-Sticks.
Wollen Sie mehr über Computer-Komponenten wissen?



 

-

 


Der Prozessor


Intel Pentium II-Prozessor

Die „Central Processing Unit“ (CPU), deutsch: Zentrale Verarbeitungseinheit, kurz: Prozessor, ist die oberste Steuerung für den PC. Die Gimp-icon-vergrössern-verkleinern.png CPU führt Berechnungen aus und steuert alle Komponenten des PC. Keine Mausbewegung, keine Tastenbetätigung, kein Byte, das aus dem Internet eintrifft - nichts darf der CPU entgehen. Leistung und Qualität der CPU sind daher entscheidend für die zuverlässige Funktion des ganzen Computersystems.

Im Laufe der Jahrzehnte gab es zahlreiche Hersteller von CPUs: Intel, AMD, Motorola, Cyrix, IBM, IDT, NEC, SiS, UMC, VIA, ARM, Rockwell und andere. Die Firma Intel ist der Marktführer und bestimmt seit Jahrzehnten entscheidend die technologische Entwicklung. Die Firma AMD mit ihrem Gimp-icon-vergrössern-verkleinern.png Athlon-Prozessor ist für Intel der wichtigste Konkurrent.

Jede Prozessorfamilie hat im Vergleich zur vorhergehenden Generation neue, erweiterte Eigenschaften und zusätzliche Befehle. Ein wichtiges Designkriterium ist die „Kompatibilität“: Jeder Prozessorhersteller achtet sorgfältig darauf, dass auf jeder neuen CPU alle Befehle ebenso funktionieren wie auf der Vorgänger-CPU. Dadurch läuft Ihre vertraute Gimp-icon-vergrössern-verkleinern.png Software auf jedem neuen Prozessor. Allerdings braucht man für eine neue Generation von CPUs fast ausnahmslos eine neue Generation von Gimp-icon-vergrössern-verkleinern.png Hauptplatinen.

Im Jahr 2016 ist der Core i7-6950X das „Flaggschiff“ von Intel. Es ist ein Zehn-Kern-Prozessor mit einem Takt von 3,0 GHz und vier Speicherkanälen. Er kostet 1500 Dollar. Einfachere Modelle aus der Core i3 Serie gibt es bereits ab 50 Euro.

In der nachfolgenden Tabelle sind wichtige historische Prozessorfamilien des Herstellers Intel, deren Taktfrequenzen und deren Bezeichnungen als Beispiel dafür aufgeführt, in welchen Schritten sich die Prozessortechnik entwickelt hat. Auf einen Vergleich konkreter aktueller Prozessoren von Intel, AMD und anderen Herstellern wird hier verzichtet, da die Entwicklung sehr schnell fortschreitet. Der Intel-Ingenieur Gordon Moore prognostizierte schon 1965, dass die Transistoranzahl in integrierten Schaltkreisen alle zwei Jahre verdoppelt werden kann. Die Presse nannte diese Regelmäßigkeit dann das Mooresche Gesetz. Es handelt sich dabei allerdings nicht um ein wissenschaftliches Naturgesetz, sondern um eine durch empirische Beobachtung begründete Faustregel, die auf langfristigen Planungen der Halbleiterindustrie beruht und die bis heute zutrifft.

In der Wikipedia gibt es eine vollständige  Liste der Mikroprozessoren von Intel und auch eine Liste für alle Prozessorhersteller:  Liste von Mikroprozessoren.
1978 i8086 4,77 MHz PC/XT 29000 Transistoren
1982 i80286 6 – 16 MHz 286er 120000 Transistoren
1985 i80386 16 – 33 MHz 386er 275000 Transistoren
1991 i80486 33 – 100 MHz 486er 1,2 Mio. Transistoren
1993 Pentium 66 – 200 MHz Pentium I 3,1 Mio. Transistoren
1997 Pentium MMX 166 – 233 MHz Pentium MMX 4,5 Mio. Transistoren
1997 Pentium II 233 – 450 MHz Pentium II 7,5 Mio. Transistoren
1999 Pentium III 333 – 1400 MHz Pentium III 24 Mio. Transistoren
2000 Pentium 4 1400 – 3500 MHz Pentium 4 42 Mio. Transistoren
2006 Core Duo 1660 – 2160 MHz Core Duo 151 Mio. Transistoren
2006 Core 2 Duo 1667 – 2333 MHz Core 2 Duo 291 Mio. Transistoren
2007 Core i3, i5, i7 1000 - 3200 MHz Core i3, i5, i7 bis 1170 Mio. Transistoren

Die Bestandteile der CPU

  • Das Rechenwerk (Arithmetic Logic Unit, ALU) führt die Berechnungen aus,
  • Die Steuereinheit (Control Unit, CU) entschlüsselt die Befehle,
  • Der Speichermanager (Memory Management Unit, MMU) verwaltet den Arbeitsspeicher,
  • Der mathematische Coprozessor (Float Point Unit, FPU) führt  Gleitkommaberechnungen aus,
  • Der CPU-Cache speichert häufig benötigte Daten.

Die Taktfrequenz

Gesetzliche Maßeinheiten
1 s = 1000 ms (Millisekunden)
1 ms = 1000 μs (Mikrosekunden)
1 μs = 1000 ns (Nanosekunden)
1 ns = 1000 ps (Pikosekunden)

Alle Vorgänge in einem Prozessor laufen getaktet, also synchron ab. Die Taktfrequenz gibt an, wie oft die Taktsignale erfolgen. Der erste IBM-PC mit dem Prozessor „i8088“ aus dem Jahr 1980 hatte eine Taktfrequenz von knapp 5 MHz (MHz = Megahertz = Millionen Takte pro Sekunde). Jeder Takt dauert also 200 ns (Nanosekunden). Jede einzelne Schaltung des i8088 war so entworfen, dass sie niemals länger als 200 ns für einen einfachen Befehl braucht. Anders ausgedrückt: Ein Prozessortakt ist die Zeit für die Ausführung eines einfachen Befehls, zum Beispiel einer Addition. Auch ein Speicherzugriff dauerte damals genau einen Takt. Heutige PCs haben Taktfrequenzen von drei bis vier Gigahertz.

Das ist allerdings eine vereinfachte Darstellung. Einige Befehle sind komplizierter auszuführen als andere und ihre Ausführung dauert deutlich länger. Nehmen wir als Beispiel die Division. Einerseits ist sie viel aufwändiger als eine Addition, andererseits kommt sie sehr selten vor. Um nicht wegen einiger selten benutzter Befehle den Takt für alle Befehle reduzieren zu müssen, hatten die Entwickler eine andere Idee: Einige Befehle bekommen als „Fristverlängerung“ einen zweiten, dritten oder weitere Takte genehmigt.

Es ist logisch, dass eine CPU mit einer höheren Taktfrequenz mehr Befehle pro Zeiteinheit ausführen kann. Deshalb wurde im Laufe der Jahre die Taktfrequenz der CPU schrittweise erhöht. Die Taktfrequenzen stiegen von anfangs 4,77 MHz (1981) auf 6, 8, 10 und 12 MHz. Immer neue CPUs wurden entwickelt. Es entbrannten regelrechte „Megahertz-Schlachten“ zwischen den Konkurrenten: Wer hat den schnellsten Prozessor? Etwa 1993 erreichten die Prozessoren eine Taktfrequenz von 100 MHz, was 10 ns pro Takt entspricht: Eine Steigerung auf das zwanzigfache in zwölf Jahren! Im Jahr 2002 waren 3000 MHz erreicht. Eine weitere Steigerung schien fast unmöglich, denn es wurde immer schwieriger, die CPUs ausreichend zu kühlen.

Einer der Auswege war das Gimp-icon-vergrössern-verkleinern.png Hyper-Threading-Verfahren (HT), das im Jahr 2002 von Intel auf den Markt gebracht wurde. Ein „Thread“, übersetzt „Programmfaden“, ist ein kleiner Programmabschnitt, der unabhängig von anderen Threads ausgeführt werden kann. Wenn Sie z. B. von einem Rechteck die Fläche f = a × b und den Umfang u = 2 (a + b) berechnen müssen, hat es keinen Einfluss auf die Ergebnisse, in welcher Reihenfolge die Berechnungen ausgeführt werden. Wenn die CPU einen Programmfaden nicht weiter ausführen kann (z. B. weil das Heranschaffen von Daten aus dem Arbeitsspeicher noch ein Weilchen dauert), wechselt eine Hyper-Threading-fähige CPU einfach zur Abarbeitung eines anderen Programmfadens. Theoretisch verdoppelt sich die Leistung der CPU durch HT, realistisch ist ein Leistungszuwachs bis zu 33% ohne Erhöhung der Taktfrequenz.

Seit 2006 gibt es CPUs mit zwei Prozessorkernen in einem gemeinsamen Gehäuse. Der Intel Core 2 Quad mit vier Kernen ist seit Anfang 2007 erhältlich und die neuesten Intel Core i7 enthalten sechs, acht oder zehn Prozessorkerne. Einerseits kann mit der Mehrkerntechnologie der Energiebedarf der CPU und damit die Wärmeentwicklung drastisch reduziert werden, indem z. B. ungenutzte Funktionseinheiten und auch ganze Kerne zeitweilig abgeschaltet werden.

Andererseits steigt die Rechenleistung drastisch an. Eine Sechs-Kern-CPU mit 3 GHz Takt, wobei jeder Kern Hyper-Threading beherrscht, kann (rein theoretisch) 6 × 3 × 2 = 36 Milliarden Befehle pro Sekunde ausführen! In der Liga der Hochleistungscomputer sind CPUs mit 12, 16 oder 57 Kernen weit verbreitet.

Der RAM (Arbeitsspeicher) enthält die Daten und Befehle für die CPU. Seine Geschwindigkeit ist wichtig für die Leistung des Computers. Pro Befehl müssen durchschnittlich ein bis vier Datenbyte aus dem RAM gelesen werden, der Befehl selbst ist weitere ein bis vier Byte lang. Die RAM-Zugriffszeiten hatten sich von 120 ns (1981) auf 12 ns (1990) verringert. Während die Geschwindigkeit der CPUs auf das 20-fache stieg, wurde RAM „nur“ 10-mal schneller. Der RAM wurde zunehmend zur Bremse. Je schneller die CPUs wurden, desto öfter mussten sie für einige Takte pausieren (sogenannte Wartetakte einlegen, engl: „Waitstate“), um auf das Eintreffen der angeforderten Daten aus dem RAM zu warten. Was nun?

Es gibt zwei Lösungsmöglichkeiten, um den RAM-Engpass zu entschärfen: Parallelisierung und Cache-Speicher.

  • Der erste PC mit der i8088-CPU holte sich jedes Byte einzeln aus dem Speicher. Die i8086-CPU konnte bereits 16 Bit = 2 Byte parallel (d.h. gleichzeitig, in einem Lesevorgang) aus dem Speicher lesen. Die 286er und 386er Prozessoren arbeiteten mit 32 parallelen Bits (4 Byte), während die Pentium-CPUs 64 Bit = 8 Byte in einem Speichertakt lesen bzw. schreiben können.
  • Den Speicherbus noch weiter auf 16 Byte zu verbreitern wäre eine Möglichkeit, doch es lohnte sich nicht. Die CPU greift im ständigen Wechsel auf mindestens zwei Speicherbereiche zu: Daten und Programmcode. Es ist zu selten, dass die CPU mehr als acht unmittelbar aufeinanderfolgende Byte benötigt. Deshalb arbeiten moderne CPUs mit der Dual-, Triple- oder Quad-Channel-Technologie: Aus der CPU führen zwei, drei oder vier Speicherbusse zu den RAM-Steckplätzen. Während ein Speicherkanal noch mit Lesen oder Schreiben beschäftigt ist, kann die CPU weitere Anforderungen an die anderen Speicherkanäle richten. Der Hardware-Aufwand ist freilich groß. Für jeden Speicherbus müssen mehr als hundert Kontakte aus der CPU herausgeführt werden. Deshalb haben die Vier-Kanal-CPUs von Intel 2011 Pins („Beinchen“).
  • Die dritte Möglichkeit ist die Verwendung eines „Cache“-Speichers, sprich „Kesch“ oder „Käsch“. Der Prozessorcache ist ein kleiner schneller Speicher, der sich das Prozessorgehäuse mit der CPU teilt und die Arbeit der CPU wesentlich beschleunigt.


Turbo-Modus, Speedstep und die Wärmeentwicklung

Solange sich ein Computerschaltkreis im Zustand „0“ oder „1“ befindet, verbraucht er fast keinen Strom. Während des Umschaltens zwischen den Zuständen steigt der Strombedarf steil an. Je öfter die Umschaltung erfolgt (also je höher der Takt), desto höher ist die Wärmeentwicklung. Die leistungsschwache CPU „Pentium Dual-Core E2140“ beispielsweise braucht 42 Watt im Betrieb und nur 11 Watt im Leerlauf. Wenn sie von ihrer Nominalfrequenz von 1,6 GHz auf 3,4 GHz übertaktet wird (d. h. mit überhöhter Geschwindigkeit betrieben wird), steigt der Energiebedarf auf 83 Watt. Also doppelte Frequenz bei fast verdoppelter Verlustleistung. Leistungsstarke CPUs, z. B. der „Pentium Dual Core D 840“ mit 2 x 3,2 GHz verwandelt 140 Watt in Wärme, der „Athlon 64 X2 6400+“ 124 Watt. Wie kann die Geschwindigkeit noch weiter gesteigert werden?

Eine Kochplatte mit 18 cm Durchmesser hat eine Fläche von etwa 250 cm2. Bei einer Leistung von 750 Watt ergibt das 3 W/cm2. Auf 70 W/cm2 (140 W auf 2 cm2 Fläche des Prozessors) kommt der Pentium Dual Core D840. Ich hoffe, es ist jetzt verständlich, wie wichtig eine gute Kühlung ist. Eine weitere Erhöhung der Frequenz um 20% hätte 19% mehr Wärme erzeugt. Es wurde faktisch unmöglich, durch Erhöhung der Taktfrequenz mehr Leistung zu erreichen. Intel und AMD mussten deshalb das Wettrennen um die meisten Gigahertz etwa gleichzeitig im Jahr 2004 beenden und nach neuen Wegen zur Leistungssteigerung suchen. Eine der Möglichkeiten ist die Verkleinerung der Strukturen. Stark vereinfacht gesagt: Dünnere Leiter enthalten weniger Atome, deshalb müssen weniger Elektronen in Bewegung gesetzt werden, damit ein Strom fließt. Eine weitere Möglichkeit sind Mehrkernprozessoren: Die am höchsten belasteten Baugruppen in der CPU wie z. B. das Rechenwerk sind mehrfach vorhanden. Sie teilen die Arbeit untereinander auf und werden deshalb weniger heiß.

„Turbo Modus“ ist die Fähigkeit der CPU, abhängig von der Auslastung der Kerne und der CPU-Temperatur den Takt kurzzeitig zu erhöhen, sogar zu verdoppeln. Wenn z. B. einer der Kerne wenig zu tun hat, darf dafür der andere schneller arbeiten. Das geht so lange, bis die CPU zu heiß wird.

„Speedstep“ ist eine Fähigkeit der CPU, bei geringer Belastung den Takt automatisch zu verringern. Die CPU kühlt dadurch ein wenig ab. Wenn die Belastung steigt, kann sie den Turbomodus etwas länger durchhalten.

Intel und AMD

Unter den Prozessorherstellern ist die Firma Intel der Marktführer mit einem Marktanteil von mehr als 80%. AMD ist der zweitgrößte Hersteller. AMD konnte 2005 mit der Prozessorfamilie „Athlon“ Intel eine Zeit lang in der Leistung überflügeln. Im Jahr 2005 hatte AMD ein höheres Wachstum als Intel. Im Jahr 2006 gelangte Intel mit den Core-Prozessoren wieder an die Spitze. Prozessoren zu entwickeln ist aufwändig. Intel gibt an, dass die Kosten für die Entwicklung des ersten Pentium höher waren als der Kaufpreis eines komplett ausgerüsteten Flugzeugträgers. Nur noch wenige Firmen können sich die hohen Entwicklungskosten leisten.

Marktanteile zu erringen ist nicht einfach. Ein Hersteller kann seine Prozessoren nur verkaufen, wenn sie „befehlskompatibel“ zu Intel-Prozessoren sind. Befehlskompatibel bedeutet, dass alle Befehle das gleiche Resultat liefern müssen wie das Intel-Original. Für einen nicht kompatiblen Prozessor würde es keine Software geben, der Hersteller müsste ein eigenes Windows und alle Anwendungsprogramme selbst entwickeln. Jeder Hersteller kann natürlich zusätzliche Befehle einbauen und darauf hoffen, dass die Softwarehersteller diese auch benutzen werden.

Beim 386er hatte IBM Bedenken, von einem einzigen Prozessorhersteller abhängig zu sein. Intel wurde genötigt, der Firma AMD die Fertigungsunterlagen zu überlassen. Damals konnte jeder Kunde frei wählen, ob er auf seine Hauptplatine einen Intel- oder AMD-Prozessor stecken will. Diese Vereinbarung ist längst ausgelaufen.

Heute muss jeder Prozessorhersteller die interne Schaltung und die Anschlüsse seiner CPU anders aufbauen als die Konkurrenz, um nicht wegen Patentverletzung verklagt zu werden. Deshalb gibt es zunehmende Unterschiede in der internen Architektur der Prozessoren verschiedener Hersteller. Das bedeutet leider auch, dass die Hauptplatinen für Intel- und AMD-CPUs unterschiedlich sind. Sie können nicht probeweise eine AMD-CPU durch eine Intel-CPU ersetzen.

Unterschiede im Design

Intel favorisiert ein Design, bei dem die Recheneinheiten des Prozessors pro Takt etwas weniger leisten (und deshalb weniger warm werden), wodurch man den Prozessor etwas höher takten kann. Bei anderen Architekturen ist der Fall eher umgekehrt: bei mobilen CPUs und der sog. Core-Architektur (die Nachfolger des Pentium 4) wird mit geringer Taktfrequenz viel Leistung erreicht.

AMD hat sich für ein Design entschieden, bei dem die Recheneinheiten pro Takt mehr leisten. Außerdem steckt ein Teil vom Chipsatz im Gehäuse der CPU. Dadurch wird die CPU heißer und darf nicht so schnell getaktet werden. (Der Chipsatz ist der Daten-Rangierbahnhof zwischen CPU, Speicher und schnellen Peripherieeinheiten.)

Das macht es nicht einfach, die Leistung konkurrierender Prozessoren zu vergleichen. AMD verwendet deshalb einen Umrechnungsfaktor: Der Prozessor ... hat etwa die gleiche Leistung wie ein Prozessor mit xxx MHz sie hätte, aber er schafft diese Leistung mit einer kleineren Taktfrequenz von nur yyy MHz. Das wird "P-Rating" genannt und vergleicht die Leistung mit einem imaginären Athlon Thunderbird.

Welcher Prozessor ist besser – Intel oder AMD? (oder vielleicht sogar ARM?)

Weil und solange die übergroße Mehrheit aller Programmentwickler einen Intel-Prozessor in ihren Test-PCs hat (oder gar ein Mehrprozessorsystem), werden Programme auf Intel-Prozessoren gründlicher getestet und haben deshalb weniger Fehler. Für professionelle Anwendungen, wo Sicherheit und Minimierung des Absturzrisikos extrem wichtig sind, ist eine Intel-CPU mit einem Intel-Chipsatz („Alles aus einer Hand“) die beste Paarung. Ein Athlon mit nVidia-Chipsatz dürfte die zweitbeste Paarung sein. Wenn das Preis-Leistungs-Verhältnis wichtig ist, liegt meist AMD vorn. Außer den genannten Prozessoren, sind erste Desktop und Netbook Rechner mit ARM CPU erhältlich. Zur Zeit werden sie häufig mit dem Betriebssystem Android von Google ausgeliefert und zeichnen sich durch besonders geringe Anschaffungskosten und minimalen Stromverbrauch aus. Auch ihre Rechenleistung ist nicht zu unterschätzen. Ein Beispiel für Prozessoren dieser Familie ist der NVIDIA Tegra 2. Das Betriebssystem Windows ist zur Zeit nicht für Geräte dieser Art verfügbar, auch wenn der Hersteller verlauten lässt, daran zu arbeiten. Für Benutzer, die sich durch ihr Smartphone bereits an Android gewöhnt haben, können diese Geräte jedoch eine echte Alternative darstellen.

Celeron und Duron

Normale Büroluft enthält einige hunderttausend feinster Staubteilchen pro Liter. CPUs werden in Reinsträumen produziert, in denen pro Liter Luft maximal ein Staubkorn vorkommen darf. Prozessoren sind nur wenige Quadratmillimeter groß, und nicht jedes Staubkorn fällt auf einen Prozessor. Wenn es trifft, verursacht es verheerende Schäden. Ist nur einer von Millionen Transistoren defekt, ist der Chip unbrauchbar. Es gibt allerdings eine Ausnahme: Wenn der Schaden nur eine Hälfte des internen Cache betrifft und die andere Hälfte des Cache fehlerfrei ist, wird die defekte Hälfte des Cache abgeschaltet. Das kommt nicht selten vor, denn der interne Cache belegt etwa die Hälfte der Schaltkreisfläche und ist von Fehlern relativ oft betroffen. Der Chip wird mit halbem Cache unter dem Markennamen Celeron (intel) oder Duron (AMD) zu einem deutlich geringeren Preis verkauft. Diese Prozessoren schaffen noch etwa 80% der Leistung des vollständigen Prozessors und sind ansonsten voll kompatibel und fehlerfrei. Für viele Büro- und Heim-PC reicht das aus.

Wenn die Nachfrage nach Celerons/Durons sehr groß ist, werden auch schon mal vollständig intakte CPUs durch Verkleinern des internen Cache „abgespeckt“. So können die Prozessorhersteller relativ schnelle, moderne Prozessoren im unteren Preissegment anbieten, ohne die Preise für die „vollständigen“ Prozessoren zu senken.

Benchmarks

Um die Leistung heutiger CPUs zu vergleichen, reicht ein Blick auf die Taktfrequenz nicht aus. Größe und Organisation des Cache-Speichers, die Qualität der Vorschaulogik, die interne Arbeitsteilung zwischen den CPU-Baugruppen und Designunterschiede haben entscheidende Bedeutung. Heute beurteilt und vergleicht man die Leistung von CPUs mit speziellen Testprogrammen, sogenannten „Benchmarks“. Diese Testprogramme lassen den PC ein Sortiment vorgegebener Aufgaben aus einem bestimmten Themengebiet lösen (z. B. die Konvertierung eines Videos). Die dafür benötigte Zeit wird gestoppt und mit der Konkurrenz verglichen. Fachzeitschriften sind voll mit solchen Tests.

Was taugen die Benchmarks?

Leider kann man keinen der vielen Benchmarks als den besten empfehlen. Das Problem ist: Je nachdem, wofür Sie Ihren PC nutzen, sind unterschiedliche Kriterien wichtig. Betrachten wir zwei Beispiele.

  • Nicht nur die Server von Google haben große Datenmengen zu speichern. In Servern werden viele Festplatten parallelgeschaltet, die gewaltige Datenströme liefern können. Die Leistung eines Servers wird vor allem danach beurteilt, wie schnell er Daten von den Festplatten zu den Netzwerkkarten und umgekehrt transportieren kann. Der Arbeitsspeicher kann gar nicht groß genug sein. Die Leistung der Grafikkarte ist irrelevant. Die Rechenleistung der CPU spielt oft eine untergeordnete Rolle.
  • Ein PC, der die neuesten Spiele bewältigen soll, braucht vor allem eine hervorragende Grafikkarte und einen guten Prozessor. Die Leistung der Festplatte ist etwas weniger wichtig.

Es gibt also keinen Allround-Benchmark, sondern man braucht für jede Benutzergruppe andere.

Blender3D FreeTip.gif

Tipp: Welcher Prozessor steckt in Ihrem PC?

Wenn Sie mit Windows arbeiten, klicken Sie mit der rechten Maustaste auf „Arbeitsplatz“, dann mit der linken Taste auf „Eigenschaften“. Dort finden Sie Angaben zu Ihrer CPU.

Wenn Sie mit Linux arbeiten, können Sie sich auf der Shell die Daten der CPU ihres Systems mit folgenden Befehl anschauen:  cat /proc/cpuinfo

Wenn Sie mit MacOS arbeiten, klicken Sie im Apfel-Menü mit der linken Taste auf „Über diesen Mac“. Dort finden Sie die Angaben zu Ihrer CPU.





Der Cache-Speicher des Prozessors


Der Cache-Speicher des Prozessors

Was ist das - ein Cache?

Einen großen, langsamen Speicher zu beschleunigen, indem man die am häufigsten benötigten Daten in einem kleinen, schnelleren Speicher für schnellen Zugriff bereithält, hat sich als sehr effektiv herausgestellt. Dieser Beschleunigungsspeicher wird als Cache-Speicher bezeichnet. Im Computer gibt es Cache-Speicher an mehreren Stellen:

  • Ein Festplattencache ist Bestandteil der Festplattenelektronik. Wenn ein Teil einer Spur von der CPU angefordert wird, speichert der Cache den Rest der Spur für eventuelle spätere Anfragen.
  • CD- und DVD-Brenner benutzen einen Cache. Dadurch reißt der Datenstrom nicht ab, wenn es zu kleinen Verzögerungen beim Nachschub der zu brennenden Daten kommt.
  • Im Inneren der CPU gibt es einen Prozessor-Cache, um den es im Weiteren geht.

Warum braucht die CPU einen Cache?

In den ersten CPUs gab es drei zeitlich getrennte Phasen:

  1. Die CPU fordert einen Befehl und die zugehörigen Daten an und wartet, bis der Speicher die bestellten Bytes liefert.
  2. Die CPU führt den Befehl aus. Währenddessen wartet der Speicher auf den nächsten ­„Auftrag“, denn erst nach Ausführung des Befehls steht fest, welcher Befehl als nächster ­auszuführen ist.
  3. Das Ergebnis der Berechnung wird in den Speicher zurückgeschrieben.

Dabei geht viel Zeit verloren, weil CPU und Speicher immer nur abwechselnd arbeiten. Dieser Geschwindigkeitsverlust lässt sich durch ein „Prefetch“ genanntes Verfahren der „Vorratshaltung“ vermindern: Eine Baugruppe der CPU holt die nächsten Befehle im Voraus und hält sie in einem Zwischenspeicher, dem Cache, solange bereit, bis sie von der CPU gebraucht werden. Seit dem ersten Pentium laufen das Heranschaffen der Daten und deren Verarbeitung weitgehend gleichzeitig ab.

Pentium Pro, links: Steuer- und Recheneinheiten, rechts: Cache Level II, erkennbar an der regelmäßigen Struktur

Der Prozessor-Cache ist ein kleiner, schneller Speicher, der Kopien von den am häufigsten ­benötigten Daten des Arbeitsspeichers enthält. Wenn der Prozessor Daten aus dem Arbeitsspeicher anfordert, prüft die Elektronik blitzschnell, ob von den benötigten Daten vielleicht schon eine Kopie im Cache-RAM existiert. Wenn ja, erhält die CPU die Daten noch im selben Takt. Wenn nein, wird die Anforderung an den Hauptspeicher weitergegeben. Der Prozessor muss warten, d.h. einige Wartetakte einlegen, oder zu einer anderen Aufgabe wechseln.

Die Strategie der Cache-Nutzung

Welche Daten im Cache gespeichert werden und wie lange sie im Cache verbleiben, wird von der Vorschau-Elektronik vollautomatisch entschieden. Die folgenden Kriterien werden dabei berücksichtigt:

  • Welche Daten sind in den letzten Mikrosekunden am häufigsten benutzt worden,
  • Welche Daten werden voraussichtlich demnächst benötigt und
  • Welche Daten werden voraussichtlich nicht mehr benötigt und können deshalb entfernt werden, um Platz zu schaffen.

Sprungvorhersage

Das Problem ist: Woher „wissen“ die elektronischen Schaltungen, welche Daten demnächst „voraussichtlich benötigt“ werden?

„Am häufigsten benutzt“, „voraussichtlich benötigt“ und „voraussichtlich nicht mehr benötigt“ – die Zukunft vorauszusagen, war noch nie einfach. Wie kann die Elektronik voraussehen, was zukünftig benötigt werden wird? Die Treffsicherheit dieser Voraussage ist für die Geschwindigkeit der CPU entscheidend.

Jedes Programm enthält eine große Anzahl Verzweigungsbefehle. So nennt man die Befehle, bei denen die CPU in Abhängigkeit von einem Zwischenergebnis entscheiden muss, wie es weitergeht. Beispiel bei der Musikausgabe: Ist die nächste Note eine Achtel-, Viertel- oder ganze Note? Kommt noch eine weitere Note oder ist das Ende des Musikstückes erreicht? Die ­„Vorausschau-einheit“ der CPU kann das nicht ermitteln und stellte bei frühen Prozessoren die Arbeit ein, bis das Rechenwerk den Verzweigungsbefehl bearbeitet und über den weiteren Programmverlauf entschieden hat. Dadurch tritt allerdings eine Pause ein, weil die Vorausschaueinheit erst die Daten für die Weiterarbeit heranschaffen muss.

Seit Jahren arbeiten die Prozessorhersteller daran, wie die Elektronik die wahrscheinlichste ­Programmfortsetzung immer besser vorhersagen kann (die „Branch Prediction“ = ­Sprung-vorhersage). Hat die Elektronik gut „geraten“ und die richtigen Daten vorbereitet, kann das Rechenwerk zügig weiterarbeiten. „Falsch spekuliert“ bedeutet, dass die Kopien der vorausschauend bereitgestellten Daten verworfen werden und das Rechenwerk warten muss.

Aktuelle CPUs haben zwei bis zwölf MB Cache. Obwohl der Hauptspeicher etwa tausend mal größer ist, schafft es die Cache-Verwaltung mit ausgefeilten Algorithmen, beachtliche 80 % bis 90 % der vom Prozessor benötigten Daten rechtzeitig im Cache bereitzustellen.

Vorausschauendes Lesen

Bevor das Rechenwerk der CPU einen Befehl ausführen kann, haben andere Baugruppen der CPU schon die Vorarbeit geleistet: Sie haben für etwa 5 bis 15 Befehle im Voraus analysiert, welche Daten für diese Befehle benötigt werden, um diese Daten frühzeitig heranzuschaffen. Dadurch kann das Rechenwerk meistens mit voller Geschwindigkeit arbeiten.

Verzögertes Schreiben

Jedes von der CPU berechnete Ergebnis wird zunächst im Cache gespeichert. Wenn das Ergebnis eines Rechenschrittes in einem der nachfolgenden Rechenschritte weiterverwendet wird, kann die CPU ohne Wartezeit darauf zugreifen. Zwar muss das Ergebnis irgendwann in den langsamen Arbeitsspeicher abtransportiert werden, aber das wird vorzugsweise dann erledigt, wenn es mal keine Leseanforderungen an den Arbeitsspeicher gibt.

64-Bit-Verarbeitungsbreite

Die CPU kann jedes Byte des Arbeitsspeichers einzeln adressieren. Ob sie die Bytes einzeln oder in Gruppen anfordert, hängt vom ausgeführten Programm ab. Bei genauen mathematischen Berechnungen sind die Zahlen meist vier Byte groß. Die Bits im Speicher sind zu Gruppen von 64 Bit zusammengefasst. Die 8 Byte einer solchen Gruppe werden stets gleichzeitig gelesen oder geschrieben. Nehmen wir an, dass die CPU nur das dritte Byte dieser Gruppe benötigt. Die Bytes 0 bis 7 werden gelesen, das Byte 3 zur CPU geschickt und die restlichen 7 nicht benötigten Byte verbleiben noch eine Weile im Cache-Speicher. Falls die CPU bald darauf Byte 4 benötigt, bekommt sie es aus dem Cache und die Bytes 0 bis 7 brauchen nicht erneut gelesen zu werden. Das ist vorteilhaft, denn es gibt viele Arten von Daten, die Byte für Byte benötigt werden: Texte, Musik und Videos werden nur selten „rückwärts“ oder sprungweise gelesen, angehört bzw. angesehen.

Wo befindet sich der Prozessorcache?

Der 386er war der erste Prozessor, der mit einem Cache arbeitete. Der Cache bestand aus vier oder acht einzelnen Speicherchips, die auf der Hauptplatine untergebracht waren.

Mit dem 486er gab es einen Fortschritt. Die Leiterzüge im CPU-Schaltkreis waren schmaler geworden, dadurch passten mehr Transistoren in die CPU. Der Cache fand direkt im Prozessorchip seinen Platz. Die kurzen Datenwege erhöhten die Geschwindigkeit stark.

Die Leiterzüge und Strukturen wurden immer weiter verkleinert. Das ermöglicht es, immer mehr ­Transistoren in der CPU unterzubringen. Ein Teil der zusätzlichen Transistoren wird verwendet, um den Cache zu vergrößern. Es gibt aber für die Cache-Größe eine sinnvolle Obergrenze. Wird er zu groß, dauert das Suchen und Verwalten zu lange. Wenn es die Cache-Elektronik nicht mehr schafft, innerhalb eines CPU-Takts die benötigten Daten zu liefern, wird der Cache ineffizient. Deshalb entschieden die Ingenieure, den Cache zweistufig zu organisieren. Dem kleinen, schnellen ­Level-1-Cache in der CPU wurde ein größerer, etwas langsamerer Level-2-Cache hinzugefügt. Um die Datenwege kurz zu halten, wurde der L2-Cache zusammen mit dem Pentium II auf einer kleinen Leiterplatte ausgeliefert, die in einen „Slot1“ (Slot = Steckverbinder) auf der Hauptplatine gesteckt wurde.

Beim Pentium III konnten die Leiterzüge und alle Strukturen im CPU-Kern weiter verkleinert werden, es passten jetzt viel mehr Transistoren in das Gehäuse. Durch diese Miniaturisierung gelang es nun endlich, auch den L2-Cache im Inneren des Prozessors unterzubringen.

In einem Pentium 4 mit 2,8 GHz Taktfrequenz kann der Level-1-Cache 12 KByte groß sein, und der Level-2-Cache ist 256 KByte groß.

Die typische RAM-Ausstattung wird immer größer und die Anforderungen auch. Neuere CPUs haben einen dreistufigen Cache, z. B. hat der „Pentium 4 Extreme Edition“ L1 = 8k oder 16k, L2 = 512k, L3 = 2 048k („k“ ist die Abkürzung von KByte).

Durch den Cache hat die Taktfrequenz aufgehört, alleiniger Maßstab für die Rechenleistung einer CPU zu sein. Die Größe des Cache und die „Treffsicherheit“ der Elektronik bei der Vorhersage der demnächst benötigten Daten sind ebenfalls wichtig. Was nützt eine hohe Taktfrequenz, wenn die CPU Pausen einlegen muss, um auf Daten zu warten? Während die CPU mit 2 bis 3 GHz arbeitet, bringt es der schnellste DDR3-Speicher (DDR3-1600) auf 12 GByte/s. Auf den ersten Blick scheint das ausreichend. Allerdings sind die 12 GByte/s ein theoretischer Wert, der nur dann erreicht werden könnte, wenn die angeforderten Daten im Speicher aufeinanderfolgend abgelegt sind. Tatsächlich sind die meisten Daten eher zufällig im RAM verteilt, also dauert der Zugriff viel länger. Außerdem werkeln in heutigen CPUs zwei Recheneinheiten, die nach Daten hungern, und jede braucht mehrere Byte pro Takt.

Trotz aller Raffinessen kann kein heutiger Speicher den Datenhunger moderner CPUs befriedigen. So heißt es für die CPU immer wieder: Warten, warten, warten. Die CPU-Entwickler ­kompensieren das so gut sie können. Mehr als die Hälfte der Transistoren in modernen CPUs wird für den Cache-Speicher und die Vorausschau-Logik verwendet.



Die Kühlung des Prozessors

Die schnelle Ableitung der Wärme ist höchst problematisch. Auf der CPU muss immer ein Kühlkörper montiert werden, fast immer zusätzlich mit einem Lüfter. Ganz ohne Kühlkörper würde der Prozessor bereits nach 10 bis 30 Sekunden durchbrennen oder zumindest stark altern!

Der Kühlkörper muss gut anliegen. Weil die Oberflächen von CPU und Kühler nie völlig eben sind, verbleibt ein winziger Luftspalt. Weil Luft die Wärme schlecht leitet, muss dieser Luftspalt mit einer kleinen Menge Wärmeleitpaste gefüllt werden.

Verdoppelt man die Taktfrequenz, entsteht näherungsweise die doppelte Wärmemenge. Teilweise kann man das durch bessere Kühlung ausgleichen. Hochleistungskühler arbeiten mit einer „Heatpipe“ (deutsch etwa Hitze-Pipeline“). Sie arbeitet wie eine Wärmepumpe. Die wärmeleitenden Teile sind aus Kupfer – teuer, aber ein hervorragender Wärmeleiter. Prozessorhersteller zeigen manchmal auf Messen, dass eine aktuelle CPU, die mit flüssigem Helium gekühlt wird, durchaus die dreifache Leistung wie bei normaler Kühlung erreichen kann (allerdings wird sie das wohl nur wenige Wochen überleben). Einige Computerfreaks verwenden Wasserkühlungen, um ihren PC Gimp-icon-vergrössern-verkleinern.png „übertakten“ (ein wenig schneller laufen lassen) zu können.

Wie heiß darf die CPU werden? Das ist für jeden CPU-Typ unterschiedlich und muss dem Datenblatt des Herstellers entnommen werden. Es hängt auch von der Arbeit ab, welche der Prozessor gerade erledigt. Komprimieren und Dekomprimieren sowie Filmschnitt belasten die CPU stark. Als Richtwert gilt: Die Durchschnittstemperatur sollte 60 °C nicht überschreiten. Die CPU darf auch mal kurzzeitig etwas heißer werden, aber mehr als 80 °C sind für jede CPU zu viel.

Im Laufe der Monate und Jahre lässt die Kühlleistung nach. Dafür gibt es mehrere Ursachen:

  • Durch Staubablagerungen im Gehäuse und vor allem auf den Kühlrippen verschlechtert sich die Wärmeableitung.
  • Etwa nach einem Jahr wird die Wärmeleitpaste spröde und leitet die Wärme schlechter ab.
  • Weil die Lager verdrecken und verschleißen, drehen die Lüfter langsamer.

Seit dem Pentium 4 überwacht eine thermische Schutzschaltung („Thermal Monitoring“) die ­Temperatur im Prozessorkern. Falls die Kühlung nicht ausreicht, schaltet die CPU einige Minuten nach dem Einschalten auf halben Takt herunter, besonders bei hoher CPU-Belastung. Spätestens jetzt sollten Sie in eine bessere Kühlung investieren!

In der Endphase seines Lebens beginnt der Lüfter Lärm zu machen, vorzugsweise nach dem Einschalten. Anfangs normalisiert sich die Drehzahl einige Minuten nach dem Einschalten und das Geräusch verschwindet wieder. Wenn sich das Lager noch weiter verschlechtert, gibt es auch beim Einschalten kein Geräusch mehr. Vermutlich steht der Lüfter jetzt für immer still. Jetzt wird es gefährlich. Selbst wenn die Schutzschaltung den CPU-Takt halbiert, kann das noch zu viel sein. Zweierlei kann jetzt passieren:

  1. Die CPU wird so stark überhitzt, dass der PC abstürzt - entweder ein paar Minuten nach dem Einschalten oder stark gehäuft während des normalen Betriebes. Dieser Fehler kann leicht zu finden und zu beseitigen sein, bevor Ihre CPU größeren Schaden nimmt.
  2. Die CPU wird heiß, aber die Abstürze bleiben ganz aus oder sind nicht allzu häufig. Das ist schlecht. Die CPU altert sehr schnell und „stirbt“ bald. Hoffen Sie nicht, die CPU als Garantiefall umgetauscht zu bekommen. Die CPU-Hersteller erkennen meist anhand der Verfärbung der CPU, dass diese zu heiß geworden ist, und verweigern den Garantieumtausch.

Wie kann ich feststellen, ob mein CPU-Lüfter noch läuft? Es gibt drei Möglichkeiten:

  1. Aufschrauben und nachsehen. Fast immer ist es das von vorn gesehen linke Blech, das mit zwei Schrauben an der Rückwand befestigt ist. Achten Sie darauf, ob der Lüfter sofort nach dem Einschalten des PC zügig anläuft.
  2. Sie können ein Hilfsprogramm installieren, das im laufenden Betrieb diese Daten anzeigt. Ein solches Hilfsprogramm wird oft auf der Treiber-CD der Hauptplatine mitgeliefert.
  3. Drücken Sie beim Start des PC die Taste DEL oder F2, um ins BIOS zu kommen.
    Wie man das macht, können Sie im Kapitel „BIOS-Setup aufrufen“ lesen.
    Suchen Sie dort nach der Drehzahlanzeige, meist wird man unter Power Management fündig. Im gleichen Menü wird auch die CPU-Temperatur im Leerlauf angezeigt. Leider ist die Temperatur bereits gesunken, während Sie das BIOS aufgerufen haben. Wenn eine Alarmfunktion vorhanden ist, sollten Sie diese benutzen: Wenn die Drehzahl um ein Drittel sinkt oder die Temperatur über 60°C ansteigt, sollte der PC einen Alarm auslösen.
Wollen Sie mehr über die Kühlung der CPU wissen?




Tendenzen

Wir erwarten von der Halbleiterindustrie, dass unsere Computer leistungsfähiger werden. Welche Wege gibt es, um dieses Ziel zu erreichen?

Größere Verarbeitungsbreite

Die Intel 8088 CPU konnte mit 8-Bit-Zahlen rechnen, der i8086 mit 16-Bit-Zahlen. Seit dem i80386 können die CPUs 32-Bit-Zahlen verarbeiten. Das bedeutet, dass Zahlen bis 4 294 967 296 (232) für die CPU zum „kleinen Einmaleins“ gehören und in einem einzigen Takt verarbeitet werden. Seit 2006 gibt es erste 64-Bit-CPUs, die hauptsächlich in Servern und Hochleistungs-PCs eingesetzt werden. Das bedeutet, dass Zahlen bis 18 446 744 073 709 551 616 (18 Trillionen) in einem einzigen Takt verarbeitet werden können.

Mehr dazu steht im Kapitel 64-Bit-CPU.

Neue Materialien

Zwischen der Steuerelektrode der Transistoren (dem „Gate“) und den Silizium-Elektroden befindet sich eine Isolationsschicht. Jahrzehntelang bestand sie aus Siliziumdioxid. Bei der 65 nm Strukturbreite war die Isolationsschicht nur noch 1,2 nm „dick“ (etwa 5 Atomlagen). Noch dünner war nicht möglich, die Schicht hätte zu viel „Leckstrom“ durchgelassen. Mit der Verwendung von Hafnium als Isoliermaterial konnten trotz dünnerer Isolierung die Leckstrom-Verluste auf ein Fünftel reduziert werden. Der Chip wurde weniger warm und die i3, i5 und i7 Prozessoren konnten in 45 nm Strukturbreite gefertigt werden.

Kleinere Strukturen

Der Pentium III und die ersten Pentium 4 wurden in 0,13 Mikrometer-Struktur (130 Nanometer) hergestellt. Als Strukturbreite wird der halbe Abstand zweier Leiterbahnen bezeichnet. Kleinere Strukturen bringen drei Vorteile:

  • Es passen mehr Transistoren auf die Chipfläche
  • Kleinere Transistoren kommen mit einer kleineren Versorgungsspannung aus. Pro Transistor wird weniger Energie gebraucht.
  • Die Schaltungen werden schneller, weil die Entfernungen zwischen den Transistoren kürzer werden (denn schneller als das Licht ist der Strom nicht).
  • Nach Angaben von Intel senkt jede Verdopplung der Packungsdichte die Fertigungskosten um 30%.

Zum Vergleich: Die meisten Viruszellen haben einen Durchmesser von 20 bis 80 nm.

Jahr/Monat 1980 1999-12 2001 2003-10 2005-12 2007-11 2009-03 2010 2014
Bezeichnung des Kerns i8086 Coppermine Tualatin Dothan Presler Penryn Nehalem Sandy Bridge Broadwell
Strukturbreite (Nanometer) 3000 180 130 90 65 45 32 32 14
Beispiel

Wenn die Struktur von 65 auf 45 nm verkleinert wird, belegt jeder Transistor nur noch etwa die halbe Fläche (452 / 652 = 48%). Dadurch konnte Intel beim Dual-Core-Penryn den L2-Cache von 4 auf 6 MByte vergrößern und außerdem 47 neue SSE4-Befehle (Spezialbefehle für Multimedia) hinzufügen. Durch den geringeren Strombedarf konnte die Taktfrequenz auf mehr als 3 GHz gesteigert werden.

Im November 2010 hat Intel begonnen, Prozessoren mit 22 nm Strukturbreite herzustellen[2]. Im Vergleich zur 45 nm Technologie vervierfacht sich die Packungsdichte.

Mehr Transistoren

In den vergangenen Jahrzehnten konnte die Zahl der Transistoren in der CPU durchschnittlich alle zwei Jahre verdoppelt werden. Der Intel Core i7 enthält 731 Millionen Transistoren. Im Jahr 2011 könnten etwa eine Milliarde Transistoren in ein CPU-Gehäuse passen. Was kann man mit so vielen Transistoren anfangen?

  • Es soll neue Spezialfunktionen geben. In den vergangenen Jahren wurden den CPUs Spezialbefehle für Multimedia-Anwendungen (MMX und SSE) hinzugefügt. Gegenwärtig besteht ein hoher Bedarf an Spezialbefehlen für Kryptografie (Verschlüsselung).
  • Der Cache-Speicher soll stark vergrößert werden.
  • Vorhandene Funktionen können beschleunigt werden. Ein Beispiel: Bei der Addition können Überträge auftreten, die in die nächsthöhere Stelle eingerechnet werden müssen. Die CPU kann zwei 64-stellige Zahlen in einem ersten Schritt addieren und benötigt anschließend im ungünstigsten Fall weitere 63 Schritte, um die Überträge zu berücksichtigen. Wenn allerdings der Konstrukteur eine üppige Anzahl Transistoren zur Verfügung hat, lässt sich die Addition auf wenige Schritte reduzieren, sogar ein Ein-Schritt-Addierer wird möglich. Ein schnelles „Addierwerk“ ist deshalb so wichtig, weil sich die anderen Grundrechenarten auf die Addition zurückführen lassen.
  • Spezielle Schaltungen könnten zukünftig noch weiter vorausschauend „erraten“, welche Daten aus dem Arbeitsspeicher benötigt werden könnten (Speculative Precomputation). Wenn der Speicherbus wenig beschäftigt ist, werden diese Daten auf Vorrat geholt.

Mehr Kerne

Im Februar 2009 stellte Intel den ersten Xeon-Prozessor mit acht Kernen und 16 Threads vor. Er wird in 45-nm-Struktur gefertigt, 2010 soll die 32-nm-Version folgen. Es gibt neue Stromsparfunktionen. Je nach Auslastung kann für jeden Kern die Versorgungsspannung erhöht oder verringert werden. Zeitweilig unbenutzte Kerne können sogar komplett abgeschaltet werden, um Strom zu sparen und die Wärmeentwicklung zu verringern. [3]

Mehr dazu steht im Kapitel Multicore-CPU.

Hot Spots beseitigen

Hot Spots heißen die winzigen Stellen der CPU, wo die Temperatur besonders hoch ist, hervorgerufen durch hochbelastete Funktionseinheiten. Sie begrenzen die Taktfrequenz, denn je höher der Takt, desto mehr Wärme entsteht. Wenn man mehrere dieser heißlaufenden Funktionseinheiten auf dem Chip verteilen kann und sie abwechselnd benutzt, verteilt sich die Wärme und der Takt kann erhöht werden.

„Grüne“ CPUs

Heutige Prozessoren schalten ungenutzte Funktionsgruppen ab und reduzieren den Stromverbrauch bei geringer Auslastung. Es gibt eine weitere Möglichkeit. Die gewaltige Rechenleistung heutiger CPUs wird nicht immer gebraucht. Bei vielen Servern wirkt es sich kaum auf die Gesamtleistung aus, wenn die CPU etwas langsamer ist. Wenn man eine 3-GHz-CPU mit einem Takt von 1,5 GHz betreibt, sinkt deren Leistungsbedarf auf die Hälfte.

Optische Datenleitungen

Die intel Core i3/i5/i7 CPUs werden in 32 nm Technologie hergestellt[4]. Noch kleinere Strukturen als 32 Nanometer sind problematisch[5]. Wenn die Leitungen noch schmaler sind, wird der Elektronentransport zu langsam. Optische Datenleitungen wären der Ausweg: Die Informationen werden mit Lichtblitzen übertragen. Die Lichtblitze sollen mit Miniaturlasern erzeugt werden. Intel hat bereits Halbleiterlaser entwickelt[6], mit denen Übertragungsraten von 50 Gbit/s zwischen Prozessoren möglich sind. Für die Verwendung im Inneren der CPU sind die Laser noch viel zu groß.




Die Hauptplatine
bestückte Leiterplatte

Elektronische Bauelemente werden auf Leiterplatten montiert. Eine Leiterplatte besteht aus einer etwa 1 mm dicken Trägerplatte aus Isoliermaterial. Auf der Oberfläche der Platte sind Leiterzüge aus Kupfer angeordnet. Zur besseren Leitfähigkeit wird das Kupfer meist versilbert oder vergoldet. Wenn die Trägerplatte auf beiden Seiten Leiterzüge hat, wird die Leiterplatte zweilagig genannt. Für komplexe Schaltungen werden mehrere Leiterplatten aufeinandergeklebt, was vier- und sechslagige Leiterplatten ergibt. Die Platte wird gebohrt und die Bohrlöcher werden innen verzinnt, um die Leiterebenen miteinander zu verbinden. Zum Abschluss werden Widerstände, Kondensatoren und elektronische Bauelemente in die Bohrungen gesteckt und verlötet. Damit ist eine Platine (englisch: board) entstanden - so nennt man eine Leiterplatte mit aufgelöteten elektronischen Bauteilen.

ASRock K7VT4A – KT400A Chipsatz

Die größte Platine im Computer (etwa 18 x 30 cm) nennt man Hauptplatine (englisch: Mainboard oder Motherboard). Meist ist sie achtlagig, um mehr Leiterzüge auf der Fläche unterzubringen. Die Schaltkreise können zusammenrücken, was einen Geschwindigkeitsvorteil ergibt: In einer drittel Nanosekunde (so lange dauert ein Takt einer 3-GHz-CPU) legt ein elektrisches Signal nur 10 cm zurück. Die Hauptplatine wird mit Abstandsbolzen im Gehäuse befestigt. Die Position der Befestigungspunkte ist durch den so genannten Formfaktor definiert. Die Hauptplatine ist Träger für zahlreiche Steckplätze, Schaltkreisfassungen, externe und interne Anschlüsse und elektronische Baugruppen.

Sockel 462 (Ausschnitt aus obigem Bild)

Auf der Hauptplatine befindet sich ein Schaltkreis-Sockel (englisch: Socket), in den der Prozessor gesteckt wird. Das Bild zeigt den „Sockel 462“ für Prozessoren mit 462 Anschlusskontakten. Um eine CPU mit so vielen Anschlüssen ohne Risiko einsetzen zu können, werden ZIF-Sockels (Zero Insertion Force, auf deutsch etwa: Null-Kraft-Sockel) verwendet, die mit einem Schwenkhebel (im Bild: unten) ausgestattet sind. „Null Kraft“ ist allerdings etwas übertrieben, und das Einsetzen des Prozessors erfordert einiges Geschick.

Dual-Core-CPU D 925 von unten, rechts der aufgeklappte Sockel

Weil die Prozessoren immer mehr Anschlusskontakte brauchen, gibt es zahlreiche Sockeltypen. Das nebenstehende Bild zeigt links eine Intel Dual-Core-CPU D925 (3 GHz) von unten, rechts ist ein Stück der Hauptplatine mit den Sockel 775 zu sehen. Die Andruckplatte ist hochgeklappt (im Bild: unten), und im oberen Teil der Prozessorfassung ist der Ansatz des Verriegelungshebels zu sehen. Die Pentium 4 CPUs hatten 478 Kontaktstifte. Die nächste CPU-Generation von Intel hatte 775 Kontakte. Der neueste Sockel von AMD ist der FM2+ mit 906 Kontakten. Die neuesten Intel-CPUs haben 989, 1155, 1156, 1366 oder 2011 Kontakte.

Die Bestandteile der Hauptplatine

Hauptplatine für Pentium III Prozessor

Einige hier vorkommende Fachbegriffe und Abkürzungen werden erst in späteren Kapiteln ausführlich erläutert.

Chipsatz, Northbridge und Southbridge

Die Northbridge ist ein Schaltkreis, der die CPU mit dem Arbeitsspeicher, der Grafikkarte und der Southbridge verbindet. Manchmal ist eine einfache Grafikkarte in die Northbridge integriert. Weil sie große Datenmengen schnell transportieren muss, wird sie heiß und muss meist gekühlt werden. Um die Datenwege kurz zu halten, ist sie nahe an CPU, Arbeitsspeicher und Grafiksteckplatz platziert. Die Datenverbindung zur CPU heißt „Front Side Bus“, abgekürzt FSB.

Für die Peripherie-Anschlüsse (Tastatur, Maus, USB usw.), Massenspeicher, Netzwerk, Steckplätze und weitere Geräte mit geringerem Datendurchsatz ist die Southbridge zuständig. Sie ist nicht direkt mit der CPU verbunden, sondern kommuniziert mit der Northbridge. Manchmal kommt sie ohne Kühlkörper aus.

Die beiden hochintegrierten Bausteine zusammen werden als Chipsatz bezeichnet. Der Chipsatz ist als „zentrale Datenverteilerstelle“ für die Gesamtleistung und Stabilität des PC-Systems in viel höherem Maße verantwortlich, als die meisten Menschen glauben.

Steckplätze

Eine spezielle Gruppe von Platinen der Abmessung von etwa 10 x 18 Zentimetern nennt man „Erweiterungskarte“ oder nur „Karte“. Es gibt je nach Funktion Grafikkarten, Soundkarten, ISDN-Karten, Netzwerkkarten, Fernsehkarten und viele mehr. Die Steckplätze der Hauptplatine, wohinein die Erweiterungskarten gesteckt werden, heißen „Slots“. Die Erweiterungskarten stecken senkrecht auf der Hauptplatine. Eine typische Hauptplatine hat drei bis sieben Steckplätze (Slots) für Erweiterungskarten. Die Slots sind nach Abmessung, Anzahl und Anordnung der Kontakte unterschiedlich.

Auf dem Bild „Hauptplatine für Pentium III Prozessor“ sehen Sie eine ältere, relativ übersichtliche Hauptplatine mit sieben Slots. Ganz rechts auf der Platine befinden sich zwei schwarze ISA Steckplätze (Industrie Standard Architektur), die auf modernen Hauptplatinen nicht mehr verwendet werden. Links davon befinden sich vier weiße Gimp-icon-vergrössern-verkleinern.png PCI-Steckplätze (Peripheral Component Interface). PCI wurde 1992 für den Pentium entwickelt und kann 533 MByte/s transportieren.

Für Grafikkarten ist PCI zu langsam, deshalb wurde speziell für Grafikkarten der Gimp-icon-vergrössern-verkleinern.png AGP-Steckplatz (Accelerated Graphics Port = beschleunigter Grafikkarten-Anschluss) entwickelt, der bis zu 2133 MByte/s transportieren kann. Im Bild befindet sich der braune AGP-Steckplatz links von den PCI-Steckplätzen.

Auf aktuellen Hauptplatinen gibt es zwei Arten von Steckplätzen: PCI und PCIe. Gimp-icon-vergrössern-verkleinern.png PCI-Express gibt es seit 2003. PCI Express, abgekürzt PCIe, ist eine Weiterentwicklung von PCI. PCIe benutzt eine variable Anzahl von unabhängigen Datenkanälen („Lane“), die in Gruppen von 4, 8, 16 oder 32 gebündelt werden können. Die kurzen PCIe x1 Steckplätze benutzen nur einen Kanal und können damit in Ein- und Ausgaberichtung gleichzeitig je 250 MByte/s transportieren. Das ist für Netzwerkkarten, USB 2.0-Karten und Soundkarten ausreichend.


PCIe-Steckplätze
Steckplatz Übertr.-Rate Länge
PCIe x1 250 MB/s 25 mm
PCIe x2 500 MB/s  
PCIe x4 1000 MB/s 39 mm
PCIe x8 2000 MB/s 56 mm
PCIe x16 4000 MB/s 89 mm
PCIe x32 8000 MB/s  

PCIe x16 bündelt 16 Kanäle und und wird vor allem für Grafikkarten verwendet. PCIe-x16 kann 250 × 16 = 4000 MByte/s transportieren. Weil AGP dem PCI-Express in der Datenübertragungsrate hoffnungslos unterlegen ist, werden etwa seit 2007 Mainboards mit AGP-Steckplatz nicht mehr hergestellt, und auch AGP-Grafikkarten werden nicht mehr produziert. In der Tabelle sind die Kenndaten von PCIe Schnittstellen aufgeführt. Auf handelsüblichen Hauptplatinen kommen PCIe-x1 und PCIe-x16 zum Einsatz. In Servern werden auch PCIe-x4, PCIe-x8 und PCIe-x32 Karten verwendet. Man kann kürzere Karten in längere Slots stecken. Die Bauform mancher Steckplätze erlaubt das Einstecken von längeren Karten in kürzere Steckplätze.

Die Datenübertragungsraten in der Tabelle entsprechen der PCIe-Spezifikation 1.0 mit einem Takt von 2,5 GHz. Die Version 2.0 von PCIe verdoppelt den Takt auf 5 GHz und die Datenrate von PCIe-x1 auf 500 MB/s, Version 3.0 mit 8 GHz kommt auf 985 MB/s pro Lane (Kanal), bei PCIe-x16 sind das beeindruckende 15 754 MB/s. Version 4.0 ist in Entwicklung.

Weiterhin findet man auf der Hauptplatine zwei bis sechs Steckplätze für RAM (Arbeitsspeicher). Auf dem Foto sind es drei, welche oberhalb des CPU-Sockels angeordnet sind. Direkt auf der Hauptplatine sind der Taktgeber, die Uhr, der Gimp-icon-vergrössern-verkleinern.png Chipsatz und andere Bauteile aufgelötet.

Hier können Sie mehr über RAM lesen.


BIOS-ROM, CMOS-RAM, Uhr und Batterie

BIOS-ROM

ROM bedeutet Read Only Memory = „Nur-Lese-Speicher", oft als Festwertspeicher bezeichnet. Ein ROM-Speicher verliert seine Daten nicht, wenn der PC ausgeschaltet wird.

Darum wird ROM in mehreren PC-Komponenten verwendet, um das jeweilige Startprogramm bereitzuhalten. Dass die Festplatte, die Grafikkarte und der Brenner einen solchen Festwertspeicher benötigen, ist wenig bekannt. Viel bekannter ist der „BIOS-ROM“. Der PC startet nach dem Einschalten mit dem darin gespeicherten Programm. Mit einem „BIOS-Update“ kann dieser Speicher auf den neuesten Stand gebracht werden („up to date“). Auch andere ROM können „upgedatet“ werden, um ihre Leistung zu verbessern.

CMOS-RAM und Uhr

CMOS ist eine Technologie, um extrem stromsparende Halbleiter herzustellen. Aus solchen Bausteinen wird die Computeruhr und ein kleiner Speicher gefertigt. Uhr und Speicher befinden sich im gleichen Chip. In diesem Speicher sind wichtige Daten über die Hardware des PC gespeichert, z. B. Größe und Anzahl der Festplatten und der DVD-Laufwerke. Bei der ersten Inbetriebnahme des PC werden die genauen Parameter durch den Händler in das CMOS-RAM eingetragen, soweit diese vom BIOS nicht automatisch erkannt werden können. Das Betriebssystem und andere Software fragt bei Bedarf diese Daten ab.

Batterie

Während der PC eingeschaltet ist, werden die Uhr und das CMOS-RAM vom Netzteil mit Strom versorgt. Bei ausgeschaltetem PC übernimmt das eine Batterie. Diese reicht etwa drei bis fünf Jahre. Wenn der PC Datum und Uhrzeit vergisst, wenn er ausgeschaltet ist, muss vermutlich die Batterie gewechselt werden.

Die externen (rückwärtigen) Anschlüsse der Hauptplatine

ATX Hauptplatine von hinten gesehen

Am hinteren Rand der Hauptplatine befinden sich die Anschlüsse für die Peripherie: Tastatur, Maus, Drucker, Modem, USB, Lautsprecher, Netzwerk und andere. Anzahl und Typ der Anschlüsse sind bei jeder Hauptplatine anders. Deshalb liegt jeder Hauptplatine eine Blende mit passenden Öffnungen für die rückwärtigen Anschlüsse bei. Die Außenmaße aller Blenden sind identisch, damit sie in jedes Gehäuse passen.

Slotblende eines Core 2 Duo Mainboards

Neuere Hauptplatinen haben meist mehr Anschlüsse, als sich in der rückwärtigen Blende unterbringen lassen. Zusätzliche Anschlüsse werden an der Frontseite oder an der Rückseite herausgeführt und mit der Hauptplatine verbunden. Beispielsweise haben die meisten Computergehäuse USB- und Audioanschlüsse an der Vorderseite.

PS/2 Anschlüsse für Tastatur und Maus

Tastaturbuchse und Mausbuchse

Die Buchsen werden in Dokumentationen als „PS/2“ bezeichnet. Die Bezeichnung „PS/2“ wurde vom IBM-Konzern eingeführt. IBM hatte eine neue ­Rechnergeneration herausgebracht mit dem Namen Personal System 2, wo die kleineren Stecker erstmals verwendet wurden. Diese Stecker werden direkt von der Rückseite des PC auf die Hauptplatine aufgesteckt. Diese Anschlüsse sind nicht verwechslungssicher! Wenn Sie die Beschriftung und die Farbmarkierung beachten (Tastatur violett, Maus grün), kann nichts schief gehen. Wenn keine Markierung zu finden ist: Der Anschluss, welcher der Hauptplatine näher liegt, ist der Tastaturanschluss. Liegen die Anschlüsse nebeneinander (gleich weit von der Hauptplatine entfernt), liegt der Mausanschluss weiter außen (oben). Wenn Sie die Stecker trotz allem verwechseln, brennt zumindest nichts durch. Wichtig: Sie müssen Tastatur und Maus vor dem Einschalten des Computers angesteckt haben, sonst erkennt und benutzt er sie nicht.

Bei neuen Platinen und vor allem bei Notebooks werden diese PS/2-Anschlüsse mitunter weggelassen. Dann bleibt nichts anderes übrig, als Tastaturen und Mäuse mit einem USB-Anschluss zu verwenden.

LPT-Port eines ATX-Mainboards

Parallel-Port

Parallel bedeutet, dass alle Bits eines Zeichens gleichzeitig über ein dickes Kabel übertragen werden. Dieser Anschluss wurde und wird hauptsächlich für Drucker verwendet. Weil neuere Drucker meist einen USB-Anschluss haben, wird der Parallelport allmählich überflüssig. Weil die 25-polige Buchse viel Platz benötigt, wird bei Notebooks immer häufiger auf den Parallelport verzichtet. Höherwertige Laserdrucker haben manchmal einen parallelen Druckeranschluss zusätzlich zum USB-Anschluss.

Serieller Anschluss

Serielle Anschlüsse

20 Jahre lang waren serielle Anschlüsse (COM1 und COM2) an jedem PC vorhanden. Diese Schnittstellen wurden für langsame Geräte verwendet, wie zum Beispiel Maus, externes Modem, Rechnerkopplung und für die Programmierung von Telefonanlagen und anderen Geräten. Zunehmend werden Geräte, die früher mit seriellen Anschlüssen ausgestattet waren, auf USB umgestellt. Neuere PC haben oft noch einen seriellen Anschluss. Bei neueren Notebooks fehlen die seriellen Anschlüsse meist ganz.

eSATA

Um den schnellen internen SATA-Anschluss auch für externe Festplatten nutzen zu können, gibt es auf manchen Hauptplatinen einen speziell abgeschirmten (d. h. vor elektrischen Störungen geschützten) Anschluss.

USB-Anschlüsse

USB-Stecker Typ A

Universal Serial Bus Connector = "universeller serieller Anschluss", wird in der Version 1.1 ab Windows 98 unterstützt. USB in der Version 2.0 wird ab Windows 98SE unterstützt, wenn man zusätzliche Treiber installiert. Ab Windows 2000 sind Treiber im Betriebssystem enthalten.

USB 1.1 kennt zwei Geschwindigkeiten:

  • Low-Speed 1,5 Mbit/s,
  • Full-Speed 12 Mbit/s

USB 2.0 kennt drei Geschwindigkeiten:

  • Low-Speed 1,5 Mbit/s,
  • Full-Speed 12 Mbit/s
  • High-Speed 480 Mbit/s

Externe Festplatten und DVD-Brenner kann man an einem USB-1.1-Anschluss nicht sinnvoll betreiben. Allerdings ist auch USB High-Speed mit (theoretisch) 480 Mbit/s = 60 MByte/s immer noch etwas langsamer als die 100 MB/s bis 133 MB/s, die am internen parallelen Festplattenanschluss erreicht werden. S-ATA erreicht theoretisch 150 oder 300 MByte/s, realistisch sind 100 oder 200 MByte/s.

Die USB-Kabel sind nicht symmetrisch: Der Stecker auf Seite des Computers ist vom Typ A (flach), der Stecker am externen Gerät ist quadratisch mit zwei abgeschrägten Ecken (Typ B).

USB-Geräte ohne eigenes Netzteil nennt man „Bus-powered“, sie beziehen ihren Strombedarf über den PC. Jeder einzelne USB-Port des Computers muss bei Bedarf 0,5 Ampere liefern können. Einige USB-Geräte benötigen kurzzeitig die vollen 0,5 A, zum Beispiel für den Anlaufstrom eines Motors. Bei stationären PCs ist das kaum ein Problem, aber einige Notebooks haben Probleme, diesen Maximalstrom zu liefern und sie schalten wegen Überlastung des Anschlusses sicherheitshalber ab.

Wenn die USB-Anschlüsse am PC nicht ausreichen, gibt es zwei Möglichkeiten:

  • Man steckt eine Erweiterungskarte in den PC. Sie kostet weniger als 20 Euro, der Einbau ist unproblematisch. Je nach Ausführung bekommt man zwei bis vier zusätzliche USB-Anschlüsse. Bei einem Notebook ist diese Nachrüstung leider nicht möglich.
  • Man verwendet Verteiler, sogenannte „Hubs“. Theoretisch können bis zu 127 Geräte angeschlossen werden. Es gibt Regeln und Einschränkungen, wie das zu geschehen hat. Besonders wichtig: Ein USB-Kabel darf nicht länger als fünf Meter sein.

Es gibt aktive USB-Hubs (mit eigenem Netzteil) und passive USB-Hubs (die den Strom vom PC beziehen und auf die angeschlossenen Geräte verteilen). Viele aktive USB-Hubs kann man auch ohne Netzteil betreiben, sie arbeiten dann passiv.

Wenn Sie nun mehrere Geräte mit hohem Stromverbrauch, wie einen USB-Brenner, eine USB-Festplatte, einen Scanner und einen externen TV-Empfänger, an einen passiven Hub anschließen, der nicht mehr als maximal 0,5 A vom PC bekommen kann, reicht der Strom möglicherweise nicht für alle. Günstigstenfalls schaltet der PC ab. In extremen Fällen kann ein minderwertiges PC-Netzteil überlastet und sogar zerstört werden! Wenn Sie jedoch die Geräte mit höherem Strombedarf an einen USB-Hub mit eigenem Netzteil anschließen oder direkt an den PC anstecken, schützen Sie Ihren PC. Manche stromhungrigen USB-Geräte haben einen zusätzlichen Anschluss für ein externes Steckernetzteil, den Sie dann auch nutzen sollten, um das PC-Netzteil zu entlasten.

Wenn ein USB-Gerät mehr als 500 mA Strom benötigt, gibt es einen Trick: Mit dem Gerät wird ein Kabel mit zwei USB-Steckern geliefert. Das Gerät kann dadurch den benötigten Strom aus zwei USB-Schnittstellen saugen. Sie sollten unbedingt beide Stecker einstecken, sonst kann es zu Fehlfunktionen kommen. Bei externen Festplatten kann eine mangelhafte Stromversorgung zu totalem Datenverlust führen.

USB 3.0 „Superspeed“

Im Jahr 2008 wurde USB 3.0 standardisiert. Alte und neue Stecker und Buchsen sind kompatibel: Man kann USB 2.0 Geräte am USB 3.0 Anschluss betreiben und umgekehrt. Um die volle „Super-Speed-Modus“ Geschwindigkeit von 5 Gbit/s nutzen zu können, müssen Sie ein Treiberupdate durchführen und Kabel benutzen, die für USB 3.0 geeignet sind. Man erkennt Superspeed-fähige Stecker und Buchsen daran, dass innen blaue Plaste verwendet wird.

Die hohe Geschwindigkeit macht USB 3.0 interessant für den Anschluss von Massenspeichern, z. B. externe Festplatten. Geräte dürfen statt 0,5 A nun bis zu 0,9 A Strom anfordern. Viele neue Geräte werden bereits mit USB 3.0 Anschluss angeboten.

FireWire

Datenrate Standard seit
400 Mbit/s IEEE 1394a 1995
800 Mbit/s IEEE 1394b 2002
3200 Mbit/s IEEE 1394b S3200 2008

Dieser Anschluss wurde ursprünglich vorzugsweise für den Anschluss von Filmkameras verwendet. Mittlerweile gibt es viele externe Geräte mit diesem Anschluss, z. B. Festplatten. Die maximalen Übertragungsraten sind in der Tabelle aufgeführt. Die Geräte wählen automatisch diejenige Übertragungsrate aus, die von allen angeschlossenen Geräten beherrscht wird.

Im Vergleich zu USB hat Firewire einige Vorteile:

  • Es verursacht weniger CPU-Belastung.
  • Mehrere Geräte können untereinander kommunizieren, auch wenn kein PC angeschlossen ist.
  • Angeschlossene Geräte können bis zu 1,5 A Strom über das Kabel beziehen (USB: 0,5 A)
Mehr dazu unter  FireWire

Von der Geschwindigkeit ist USB 3.0 den Firewire-Schnittstellen deutlich überlegen.

Thunderbolt

Thunderbolt (auf deutsch: Donnerkeil) wurde gemeinsam von Intel und Apple als Nachfolger von Firewire entwickelt. Das erste Gerät mit dieser Schnittstelle ist der MacBook Pro, der im Februar 2011 vorgestellt wurde. Thunderbolt ist rückwärts-kompatibel mit dem DisplayPort mit Mini-DisplayPort-Steckern. Thunderbolt soll ein universaler Anschluss für den Transfer von großen Datenmengen werden. Mit zwei Kanälen von je 10 GBit/s ist es die gegenwärtig schnellste Schnittstelle. Die elektrischen Kabel dürfen drei Meter lang sein. Wenn in beiden Steckern eine Konvertierung der elektrischen in Lichtsignale erfolgt, können die Stecker mit Glasfaserleitung verbunden werden. Diese optischen Kabel dürfen zehn Meter lang sein. Peripheriegeräte können bis zu 2 Ampere abfordern.

Es gibt erste Geräte mit Thunderbolt-Schnittstelle, z. B. externe Festplatten und Displays. Für den Anschluss externer Festplatten ist gegenwärtig USB 3.0 schnell genug.

Plug and Play

Netzwerkkarte mit Jumpern, 1992

In den ersten Jahren der PC-Technik musste der Händler zahlreiche Ressourcen (Unterbrechungsleitungen, Speicherbelegung u. a.) manuell festlegen, damit sich die Komponenten nicht „in die Quere“ kamen. Rechts ist eine alte Netzwerkkarte abgebildet. Bei den vielen roten Vierecken handelt es sich um Steckbrücken, sogenannte Jumper. Sie können sich bestimmt vorstellen, wie kompliziert und fehleranfällig es war, ein halbes Dutzend Komponenten auf diese Art zu konfigurieren.

Windows 95 brachte eine Neuerung: Plug and Play (deutsch etwa „Reinstecken und loslegen“), abgekürzt PnP. Bei diesem Verfahren hat jede nichttriviale Komponente einen eigenen Speicher, in dem deren Anforderungen und Möglichkeiten abgelegt sind. Das BIOS fragt beim Start die Parameter ab, findet eine für alle Komponenten akzeptable Konfiguration und stellt die Komponenten darauf ein. Anfangs funktionierte das so schlecht, dass PnP als „Plug and Pray“ verspottet wurde („Reinstecken und Beten“ dass es klappt). Mittlerweile funktioniert PnP gut und erspart eine Menge Stress.

Wollen Sie mehr über Hauptplatinen wissen?




Das BIOS

Was ist das BIOS?

„BIOS“ ist die Abkürzung von „Basic Input Output System“, deutsch: „Basis Ein-/Ausgabe-System“. Es handelt sich um das erste Programm, mit dem die CPU nach dem Einschalten die Arbeit beginnt. Gewissermaßen wird der PC mit dem BIOS-Programm „zum Leben erweckt“ und im Anschluss das Starten eines Betriebssystems eingeleitet. Das BIOS-Programm wird vom Hersteller der Hauptplatine in einem Festwertspeicherbaustein (ROM) bereitgestellt, der auf die Platine aufgelötet ist. Bei Stromausfall gehen die gespeicherten Bits nicht verloren.

BIOS-Chip auf Hauptplatine

Das BIOS ist ein fest eingebautes Mini-Betriebssystem, das automatisch arbeitet und nicht bedient werden kann. Es stellt einfache Treiber für die wichtigsten PC-Komponenten bereit. Das BIOS überprüft nach dem Einschalten die grundlegenden Funktionen des PC und lädt das Betriebssystem. Die meisten BIOS-Treiber werden später vom Betriebssystem-durch eigene, optimierte Treiber ersetzt.

Das BIOS nimmt eine Zwischenstellung zwischen Hardware und Software ein.

  • „Normale“ Software, wie Betriebssystem und Anwendungen, wird auf Datenträgern geliefert. Man hat eine große Auswahl, welche Software man installiert und man kann sie auch deinstallieren.
  • Die BIOS-Software jedoch ist in der Hardware fest eingebaut und kann nicht entfernt oder ausgewechselt werden.

Wegen dieser Zwitterstellung hat das BIOS den Namen „Firmware“ bekommen.

Welche Aufgaben hat das BIOS?

  • Das BIOS-Programm beginnt nach dem Einschalten mit dem „POST“ (Power On Self Test). Dabei werden die grundlegenden Funktionen des PC überprüft (z. B. Speichertest). Wenn Fehler auftreten, werden sie auf dem Bildschirm angezeigt. Wenn die Bildschirmausgabe nicht möglich ist, werden Fehler durch eine unterschiedliche Anzahl von Pieptönen signalisiert.
  • die Hardware wird konfiguriert (Plug & Play) - Stromsparfunktionen (Powermanagement). Ressourcen werden verteilt, z. B. Interrupts.
  • On-Board-Komponenten (Chipsatz, Schnittstellen,...) werden mit Betriebsparametern versorgt (z. B. Anzahl Wartezyklen) und initialisiert
  • elementarer Schutz gegen Bootsektorviren
  • Datum und Uhrzeit verwalten
  • Temperaturüberwachung des Prozessors und des Boards
  • Suche auf den Datenträgern nach einem Betriebssystem. Das gefundene Betriebssystem wird in den Arbeitsspeicher geladen und das Betriebssystem gestartet.

Als Speicher für das BIOS werden heute Flash-EEPROMS (Flash Electrical Erasable Programmable Read Only Memory = "blitzschnell elektrisch löschbarer Nur-Lese- Speicher") verwendet. Diese Speicherbausteine können ohne Spezialgeräte gelöscht und neu beschrieben werden, dadurch kann der Benutzer ein sogenanntes BIOS-Update selbst durchführen.

CMOS und Uhr

Seit 1993 hat jeder PC einen Speicherbaustein mit extrem geringer Stromaufnahme, das sogenannte CMOS-RAM. Im gleichen Chipgehäuse ist auch der Uhren-Schaltkreis (RTC = Real-Time-Clock) untergebracht. Der CMOS RAM enthält die Parameter der Festplatten, der parallelen und der seriellen Ports sowie weitere Angaben. Das Betriebssystem liest diese Daten vor allem beim Hochfahren. Damit die im CMOS gespeicherten Parameter beim Abschalten des PC nicht verloren gehen und damit die Uhr nicht stehenbleibt, erfolgt die Ersatz-Stromversorgung durch einen Akku oder eine Lithium-Batterie.

Das BIOS-Setup-Programm

Um die Parameter der Festplatten und andere Parameter in das CMOS-RAM einspeichern zu können, wird ein Hilfsprogramm, das sogenannte „BIOS-Setup-Programm“ benötigt. Früher, als ROM noch sehr teuer war, wurde dieses Programm auf Diskette beigelegt. Heute wird das BIOS-Setup-Programm im ROM untergebracht. Wenn man Veränderungen an den Einstellungen vornehmen will, muss man das BIOS-Setup-Programm starten, indem man den Startvorgang des PC im richtigen Moment mit einer Taste oder Tastenkombination unterbricht. Meist wird die Taste Del bzw. Entf oder F2 dafür verwendet. Beobachten Sie den PC beim Booten genau. Wenn Sie am unteren Bildschirmrand eine Meldung „Press Del for Setup“ sehen, haben Sie einige Sekundenbruchteile Zeit, die „Entf“-Taste zu drücken. Wenn Sie den Moment verpasst haben, müssen Sie Windows herunterfahren und es erneut versuchen. Ein Tipp: Fangen Sie beim zweiten Versuch einige Sekunden früher an, in schneller Folge die „Entf“-Taste zu drücken.

Wenn Sie im BIOS-Setup sind, seien Sie vorsichtig. Das Anschauen der Einstellungen ist völlig ungefährlich, aber bitte nicht planlos die Einstellungen verändern und dann speichern, denn falsche Einstellungen können den PC ausbremsen oder stilllegen. Deshalb verfügt fast jedes BIOS über einen Selbstschutz: Wenn das Booten mehrmals nicht gelingt (weil Sie den Startvorgang absichtlich unterbrochen haben oder weil einer der eingestellten Parameter nicht funktioniert), werden Sie beim Start gefragt, ob Sie die Standardeinstellungen zurückhaben möchten. Meist müssen Sie dann die Taste F1 drücken.

Vorsicht! Das Betrachten der Einstellungen ist ungefährlich, aber bitte nicht planlos die Einstellungen verändern, denn falsche Einstellungen können den PC ausbremsen oder stilllegen.


Welche BIOS-Einstellungen müssen Sie kennen?

  • Im Hauptmenü „Main“ können Sie Datum und Uhrzeit einstellen.
  • Im letzten Menüpunkt gibt es eine Einstellung, „Load Setup Defaults“, um alle Werte auf Standard zu setzen. Das hilft manchmal bei Hardware-Problemen.
  • Im Abschnitt „Boot Sequence“ oder „Boot Device Priority“ können Sie einstellen, ob der PC von DVD booten darf oder nicht.
  • Unter dem Menüpunkt „Power“ ist meist ein „Hardware Monitor“ zu finden. Dort können Sie die CPU-Temperatur und die Drehzahl der Lüfter kontrollieren.

Am rechten oder unteren Bildrand finden sie eine Erläuterung, mit welchen Tasten Sie Einstellungen vornehmen können. Oft sind es die Tasten „PgUp“ und „PgDn“ (Page Up und Page Down = Bild auf- oder abwärts) oder die Tasten „+“ und „-“ am rechten Rand der Tastatur.

Bei manchem (vorwiegend älteren) BIOS werden Sie aufgefordert, das Speichern mit der Taste „y“ (yes) zu bestätigen. Wenn das nicht klappt, nehmen Sie die Taste „z“, weil das BIOS eine amerikanische Tastatur erwartet, auf der die Tasten y und z im Vergleich zur deutschen Tastatur vertauscht sind.





Speicher


Byte und Bit sind Maßeinheiten für die Menge an Speicherplatz.
Ein Bit ist Speicherplatz für die kleinstmögliche Informationsmenge: 1 oder 0, Ja oder Nein, Ein oder Aus. Eine Gruppierung von acht Bit nennt man ein Byte. Mit 8 Bit kann man 28 = 256 Kombinationen bilden. Man kann in einem Byte also eine Zahl zwischen Null und 255 oder ein Zeichen (einen Buchstaben des Alphabets oder ein Sonderzeichen) speichern.

Gesetzliche Maßeinheiten

In diesem Lehrbuch werden die gesetzlichen Maßeinheiten verwendet:
1 Sekunde = 1 000 Millisekunden = 1 000 000 Mikrosekunden = 1 000 000 000 Nanosekunden.
1 Giga = 1 000 Mega = 1 000 000 Kilo = 1 000 000 000.

Wenn es um Speicherkapazität geht, werden in Anlehnung an die gesetzlichen Maßeinheiten die Bezeichnungen Giga, Mega und Kilo verwendet:

  • PB = Petabyte = 1 Billiarde Byte,
  • TB = TeraByte = 1 Billion Byte,
  • GB = GigaByte = 1 Milliarde Byte,
  • MB = MegaByte = 1 Million Byte,
  • kB = kiloByte = Eintausend Byte.

Da der PC im Binärsystem rechnet, werden auch die Speichereinheiten mit binär adressiert. Elektronischer Speicher lässt sich nicht in beliebigen „Portionen“ herstellen. Jeder Speicherchip und jeder Speichermodul hat eine Kapazität, die eine Zweierpotenz ist: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 usw. sowie Vielfache davon sind herstellbar. Eine Speicherkapazität von z.B. 1000 Bytes lässt sich nicht direkt herstellen (1000 Byte = 1 Chip mit 512 Bytes + ein weiterer mit 256 Bytes, +128, +64, +32, +8, was völlig unwirtschaftlich ist), sondern bestenfalls künstlich limitieren. Dann entstünden aber ungenutzte Bereiche, die aber natürlich dennoch hergestellt werden müssen; ein 1000-Byte-Chip würde genausoviel kosten wie ein 1024-Byte-Chip. Notgedrungen wurde in der Computertechnik die Zahl 1024 mit „Kilo“ bezeichnet, (1024)2 = 1.048.576 mit „Mega“, (1024)3 = 1073.741.824 mit „Giga“ usw. Den kleinen Unterschied nahm man in Kauf.

Dabei hat es sich im allgemeinen eingebürgert, die bereits geläufigen  SI-Vorsätze (Kilo für 103=1 000, Mega für 106=1.000.000 usw.), die eigentlich auf Potenzen der Zahl 10 beruhen, auf die in der Informatik üblicheren Zweierpotenzen zu übertragen. Mit einem „Kilo-Byte“ sind in Schaltkreisen aber nicht 1000, sondern immer 1024  Byte gemeint.

Beim magnetischen und optischen Speicher gibt es dagegen keine fertigungsbedingten Einschränkungen auf Zweierpotenzen. Man hätte einen Datenblock durchaus genau 1000 Byte groß machen können. Weil aber im PC ein ständiger Datenaustausch zwischen den Speicherarten stattfindet, wären unterschiedliche Datenblockgrößen extrem unpraktisch. Deshalb ist der kleinste adressierbare Datenblock auf allen magnetischen und optischen Datenträgern genau 512 Byte groß, die Hälfte von 1024.

Beim Speicher gilt also:

TB   GB   MB   kB   Byte
            1 = 1024
        1 = 1024 = 1.048.576
    1 = 1024 = 1.048.576 = 1.073.741.824
    100 = 102.400 = 104.857.600 = 107.374.182.400
0,909 931 953.674 976.562.500 = 1.000.000.000.000
1 = 1024 = 1.048.576 = 1.073.741.824 = 1.099.511.627.776

In der vorletzten Zeile der Tabelle sehen Sie, dass man eine 1 Terabyte (1012 = 1.000.000.000.000 Byte) große Festplatte auch als 0,909 TiB bzw. 931 GiB anpreisen könnte. Das macht natürlich niemand – einerseits wirkt die dezimale Angabe größer, andererseits ist genau diese Angabe bei Festplatten seit Jahrzehnten etabliert.

Um nun diese Verwirrungen zwischen 1000 und 1024 zu beseitigen, sind die neuen Maßeinheiten kibi, mebi und gibi eingeführt worden. Exakter ist es deshalb, die eigens dafür eingeführten  binären Vorsätze (Kibi für 210=1 024, Mebi für 220=1 048 576 usw.) zu verwenden:

  • 210 Byte = 1 024 Byte = 1 Kibibyte = 1 KiB (sprich: „Kibibait“) ≠ 1 kB (sprich: „k“ oder „Kilobait“).
    Weil Kilo ein SI-Vorsatz ist und für 1000 steht, hier aber 1024 Byte gemeint sind, ist die Bezeichnung Kilobyte sachlich falsch. Richtig, jedoch seltener verwendet, wäre die Bezeichnung Kibibyte.
  • 220 Byte = 1 048 576 Byte = 1 024 KiB = 1 Mebibyte = 1 MiB (sprich: „Mebibait“) ≠ 1 MB (sprich: „Megabait“).
  • 230 Byte = 1 073 741 824 Byte = 1 024 MiB = 1 Gibibyte = 1 GiB (sprich: „Gibibait“) ≠ 1 GB (sprich: „Gigabait“).
  • 240 Byte = 1 099 511 627 776 Byte = 1 024 GiB = 1 Tebibyte = 1 TiB (sprich: „Tebibait“) ≠ 1 TB (sprich: „Terabait“).

Allerdings sind diese Einheiten noch relativ wenig bekannt und werden teilweise sogar von großen Softwarehäusern wie z. B. Microsoft völlig ignoriert. In Windows werden Datenmengen stets in Kibibyte oder größeren Einheiten berechnet, allerdings als Kilobyte bezeichnet. Der Anwender ohne das Wissen aus diesem Artikel meint nun, zwar eine 1 Terabyte-Festplatte gekauft zu haben, aber davon nur 0,909 Terabyte nutzen zu können. Gern wird dabei dem Hersteller aufgrund dieser schon beträchtlichen Differenz Betrug unterstellt. Dabei ist es die Schuld von Microsoft, die „ihre“ Tebibytes nur falsch als Terabyte deklarieren. 0,909 TiB entsprechen dabei, wie bereits in obiger Tabelle erwähnt, genau den beworbenen 1,0 Terabytes.

Anforderungen an Speicher

Der ideale Speicher wäre gleichzeitig sehr schnell, gewaltig groß und preiswert. Darüber hinaus sollten gespeicherte Informationen bei Bedarf jahrzehntelang verlustfrei haltbar sein. Leider gibt es keine Speichertechnologie, welche diese Anforderungen auch nur näherungsweise erfüllt. Große Kapazitäten sind nur mit relativ langsamen Verfahren zu erreichen, andererseits sind schnelle Speicher teuer und klein. Daher gibt es in einem PC mehrere Arten von Speicher, die abgestimmt zusammenarbeiten.

Die Tabelle zeigt typische Werte für die in einem PC gebräuchlichen Technologien:

Speichertyp CPU-Cache Arbeitsspeicher (DDR2-800) Flash (USB-Stick) Festplatte DVD
Klassifikation intern, flüchtig extern, dauerhaft
Preis pro MB 10 € 1.5 Cent 1 Cent 0,02 Cent 0,01 Cent
typische Größe 8 MB 2048 MB 4 GB 500 GB 4,7 GB
Datenübertragung
pro Sekunde
24 GB/sek 6.4 GB/sek 0,01 GB/sek 0,06 GB/sek Lesen: 0,01 GB/sek

Klassifikation des Speichers nach Bauteilen

  • Der Externe Speicher (Massenspeicher) wird mit Kabeln an die Hauptplatine angeschlossen. Er ist langsam, weil er mit mechanisch bewegten Teilen arbeitet. Die Daten werden zu Blöcken zusammengefasst. Man unterscheidet:
    • Magnetische Speichermedien: Festplatten, Diskettenlaufwerke, ZIP-Laufwerke
    • Optische Speichermedien: CD- und DVD-Laufwerke, BluRay, HD-DVD
    • Flash-Speicher (USB-Stick) hat keine bewegten Teile, zählt aber eher zu den externen Speichern, was Kapazität, Geschwindigkeit und Größe angeht.
  • Der Interne Speicher ist direkt auf der Hauptplatine aufgelötet oder aufgesteckt. Der interne Speicher kommt ohne mechanisch bewegte Teile aus und ist deshalb sehr schnell. Es gibt zwei Arten:
    • ROM: Read Only Memory (Nur-Lese-Speicher) für das Startprogramm
    • RAM: Speicher für Arbeitsdaten.
Wie groß sind die Geschwindigkeitsunterschiede?

Für den Arbeitsspeicher sind Zugriffszeiten von weniger als 5 Nanosekunden üblich. Die Festplatte als externer Speicher benötigt pro Lese- oder Schreibzugriff durchschnittlich 9 Millisekunden = 9.000.000 Nanosekunden. Bei einer so langen Wartezeit ist es nicht sinnvoll, jedes Byte ­einzeln zu lesen. Deshalb werden gleichartige Daten zu Blöcken zusammengefasst. Ein Datenblock auf Diskette oder Festplatte ist 512 Byte groß. Beim Lesen eines einzelnen Blockes kommt die Festplatte auf durchschnittlich 9 ms pro 512 Byte = 18.000 Nanosekunden pro Byte. Diese Blöcke werden zu größeren Einheiten zusammengefasst, den sogenannten Verwaltungseinheiten, engl.: „Cluster“. Die Größe der Verwaltungseinheit hängt von der Größe der Festplatte ab, es können 8 bis 64 Sektoren zu einem Cluster gehören. Je größer die Festplatte, desto größer die Cluster. Mehrere Cluster hintereinander bilden eine Spur der Festplatte.

Nehmen wir an, eine Spur enthält 200 Sektoren zu je 512 Byte, das ergibt gerundet 100 000 Byte. Die Festplatte benötigt im Mittel 9 ms, um den Kopf in Position zu bringen, plus 4 ms für eine halbe ­Umdrehung. 13 ms für 100  000 Byte ergibt eine Wartezeit von 130 ns pro Byte. Allerdings ist das eine sehr optimistische Rechnung, denn es kommt nicht oft vor, dass hunderttausend ­aufeinanderfolgende Bytes von der CPU angefordert werden. Das zeigt aber auch, dass die Reihenfolge der Daten auf einem Massenspeicher optimiert werden sollte, um bessere Geschwindigkeiten zu erzielen. Im Unterschied dazu hängt bei internem Speicher die Geschwindigkeit nicht von der Anordnung der Daten ab.

Externer Speicher

Die Festplatten, Diskettenlaufwerke, Flash-Speicher und optischen Speicher werden etwas später behandelt.

Interner Speicher

Beginnen wir mit der Betrachtung der Halbleiter-Bausteine, die für RAM und ROM verwendet werden.

ROM – Der Nur-Lese-Speicher

ROM ist die englische Abkürzung für „Read Only Memory“ (Nur-Lese-Speicher, auch als Festwertspeicher bezeichnet). ROM verliert die Daten nicht, wenn der Strom abgeschaltet wird. Außerdem können die enthaltenen Daten im normalen Betrieb nicht geändert werden und sind gegen Fehlbedienungen, Programmabstürze und Attacken durch Computerschädlinge immun. Wegen dieser wertvollen Eigenschaften hat jeder Computer einen ROM-Baustein, in dem das Startprogramm gespeichert ist, mit dem die Arbeit nach dem Einschalten beginnt. Beim PC wird dieses Startprogramm als BIOS bezeichnet.

Ein ROM ist allerdings nicht völlig „Read Only“, denn die Daten müssen ja irgendwie in den Chip hineinkommen oder nötigenfalls geändert werden können. Mit speziellen Mitteln, Geräten oder Programmen ist das möglich.

Der RAM-Speicher

RAM bedeutet Random Access Memory, deutsch: „wahlweise ansprechbarer Speicher“ oder auch „Speicher mit wahlfreiem Zugriff“. Das bedeutet zweierlei:

  • Im Unterschied zum ROM kann man den Speicher nicht nur Lesen, sondern auch beschreiben. Die Reihenfolge und Häufigkeit, mit der Daten geschrieben oder gelesen werden können, ist beliebig.
  • Im Unterschied zur Festplatte kann jedes Byte einzeln adressiert werden, in beliebiger Reihenfolge.

Leider ist RAM ein flüchtiger Speicher. Das bedeutet: Strom weg - Daten weg. Nach dem Einschalten des PC muss dessen leerer RAM mit Programmen und Daten aus dem externen Speicher gefüllt werden. Dieser Vorgang ist das „Laden“ des Betriebssystems. Vor dem Ausschalten des PC müssen die veränderten Daten auf Festplatte zurückgeschrieben (gespeichert) werden, sonst gehen sie verloren. Der Begriff „speichern“ ist etwas unglücklich gewählt, denn dabei werden die bereits (im RAM) gespeicherten Daten auf einen externen Datenspeicher, die Festplatte, kopiert.

Der Arbeitsspeicher

Die wichtigste Verwendung für RAM-Bausteine ist der Arbeitsspeicher, der auch als Hauptspeicher bezeichnet wird. Der Arbeitsspeicher ist eine Baugruppe auf der Hauptplatine, die über schnelle Datenwege mit dem Prozessor verbunden ist. Der Prozessor benutzt ihn als Ablage für operative Daten, Zwischenergebnisse und auch für die Liste der nächsten Befehle. Im Inneren des Prozessors ist nur ganz wenig Platz für Daten, ohne ausreichend Arbeitsspeicher kann die CPU nicht arbeiten.

Wollen Sie mehr über Speicher wissen?




RAM


Die RAM-Speicherbausteine lassen sich in zwei Arten unterteilen, die auf ganz unterschiedlichen Technologien beruhen und dementsprechend in allen Kenndaten sehr unterschiedlich sind. Es gibt dynamischen RAM (DRAM) und statischen RAM (SRAM).

DRAM

Der Dynamische Speicher (DRAM) ist verblüffend einfach aufgebaut. Jede Speicherzelle besteht aus einem Kondensator und einem Transistor. Um eine „Eins“ zu speichern, wird der Kondensator aufgeladen. Soll eine „Null“ gespeichert werden, bleibt der Kondensator ungeladen. Wenn die CPU wissen will, was gespeichert ist (das nennt man eine Leseanforderung), gibt der Transistor die elektrische Ladung frei. Wenn eine „Eins“ gespeichert ist, fließt für einen kurzen Moment ein Entladestrom. Wenn eine „Null“ gespeichert war, fließt kein Strom. So oder so ist der Kondensator anschließend entladen. Der frühere Speicherinhalt muss wiederhergestellt werden, das nennt man „zerstörendes Lesen“. Ein solcher „Lesen-und-Wiederherstellen“-Zyklus dauert etwa 10 ns (10 Nano-Sekunden), es kann also bis zu 100 Millionen mal pro Sekunde erfolgen. Das Lesen der Daten beansprucht etwa die Hälfte dieser Zeit, die andere Hälfte wird für das Zurückschreiben gebraucht.

PC-3200-Modul mit DDR-400 Speicherschaltkreisen
RAM mit Kühlkörper

Halbleitermaterial ist kein perfekter Isolator. Wie der Name sagt, leitet es elektrischen Strom, wenn auch wenig. Deshalb verlieren die Kondensatoren ihre Ladung nicht nur durch das Lesen, sondern auch durch „Leckströme“. Darum muss die Ladung der winzigen Kondensatoren einige tausend Male in der Sekunde aufgefrischt (nachgeladen) werden. Während des Vorgangs der Auffrischung, die englisch als „Refresh” bezeichnet wird, können keine Daten gelesen werden.

DRAM ist wegen des simplen Funktionsprinzips günstig zu produzieren, wobei man hohe Packungsdichten erreicht. Deshalb wird DRAM als Arbeitsspeicher im PC eingesetzt. Mehrere einzelne Schaltkreise, auf einer kleinen Platine von etwa 15 x 2 cm aufgelötet, nennt man ein Speichermodul.

Bauformen von DRAM

< hoch zu RAM

Typ Modul Chip Speichertakt Übertragungsrate
DDR-1 PC1600 DDR-200 100 MHz 1600 MByte/s
PC2100 DDR-266 133 MHz 2100 MByte/s
PC2700 DDR-333 166 MHz 2666 MByte/s
PC3200 DDR-400 200 MHz 3200 MByte/s
DDR-2 PC2-3200 DDR2-400 100 MHz 3200 MByte/s
PC2-4200 DDR2-533 133 MHz 4200 MByte/s
PC2-5300 DDR2-666 166 MHz 5300 MByte/s
PC2-6400 DDR2-800 200 MHz 6400 MByte/s
PC2-8000 DDR2-1000 250 MHz 8000 MByte/s
PC2-8500 DDR2-1066 266 MHz 8500 MByte/s
DDR-3 PC3-6400 DDR3-800 100 MHz 6400 MByte/s
PC3-8500 DDR3-1066 133 MHz 8500 MByte/s
PC3-10600 DDR3-1333 166 MHz 10666 MByte/s
PC3-12800 DDR3-1600 200 MHz 12800 MByte/s
PC3-16000 DDR3-2000 250 MHz 16000 MByte/s
PC3-17066 DDR3-2133 266 MHz 17066 MByte/s

Dynamischer RAM wird seit Jahrzehnten in den verschiedensten Bauformen gefertigt. Vor dem Jahr 2002 wurden die PCs mit RAM in der Bauform SDRAM bestückt, das ist die Abkürzung für „Synchronous Dynamic Random Access Memory“. Seitdem heißen die verwendeten Bauformen DDR-1, DDR-2 und DDR-3.

DDR-1

Die Pentium-CPUs bis zum Pentium III arbeiteten mit sogenannten SDRAM-Speichermodulen zusammen, deren Geschwindigkeit für den Pentium 4 nicht ausreichte. 1999 kamen die ersten „DDR“-Module auf den Markt. DDR steht für Doppelte Daten-Rate und bedeutet, dass zweimal pro Speichertakt Daten übertragen werden. Die erste Generation dieser Speicher (DDR-1) wurde mit 100 MHz getaktet, wegen der Verdopplung wurden daraus 200 MHz. Da bei jedem Speicherzugriff gleichzeitig 8 Byte (64 Bit) übertragen werden, errechnet sich die Datenübertragungsrate als 200 MHz x 8 Byte = 1600 MByte/s. Ein Speichermodul „PC3200“, bestückt mit „DDR-400“ Chips, erreichte maximal 3200 MByte/s bei 200 MHz.

DDR-2

Pro Takt werden viermal Daten übertragen. Dadurch verdoppelt sich die Datenübertragungsrate erneut: Bei 100 MHz Takt werden 3200 MByte/s erreicht, maximal 8500 MByte/s bei 266 MHz sind möglich.

DDR-3

Pro Takt werden achtmal Daten übertragen. Die Datenübertragungsrate verdoppelt sich zum dritten Mal: Bei 100 MHz Takt werden 6400 MByte/s erreicht, maximal 12800 MByte/s bei 200 MHz sind möglich.

Welcher RAM ist der richtige für Sie?

Ob Sie DDR-1, 2 oder 3 brauchen, hängt von Ihrer Hauptplatine ab, denn jeder RAM-Typ hat einen anderen Steckplatz. Sehen Sie im Handbuch nach, welcher Typ passt. Die Geschwindigkeit können und sollten Sie (außer bei Laptops) etwas höher als das geforderte Minimum wählen. Meist ist die schnellste der gängigen Geschwindigkeiten gleichzeitig die beliebteste und aufgrund der hohen Verkaufszahlen auch die günstigste. Damit verbunden ist bei kompletter Neubestückung ein messbarer, aber kaum spürbarer Geschwindigkeitsvorteil.

Läuft ein neues Modul im Verbund mit einem älteren, so wird es automatisch auf dessen Takt gebremst, um einen stabilen Betrieb zu gewährleisten. Schnellere Speichertypen als in der Tabelle gelistet benötigen manuelle Einstellungen, da sonst nur der vom Hauptplatinen-Hersteller freigegebene Maximaltakt benutzt wird. Der Preis solcher Module steigt aber unverhältnismäßig stark an, obwohl keine spürbare Mehrleistung im normalen Betrieb erzielt wird.

SRAM

Der statische Speicher (SRAM) ist Elektronikbastlern als „Flip-Flop“ bekannt. Die Schaltung ist recht kompliziert, denn pro Bit werden mindestens 6 Transistoren benötigt. Dieser hohe Schaltungsaufwand bringt einen deutlichen Geschwindigkeitsvorteil:

  • SRAM ist etwa einhundert mal schneller als DRAM.
  • SRAM benötigt keine Auffrischung (Refresh).
  • Die Information wird beim Auslesen nicht gelöscht, deshalb entfällt der bei DRAM notwendige Wiederherstellen-Zyklus.

Deshalb wird SRAM in der CPU als Cache-Speicher verwendet. Etwa die Hälfte der in einer CPU enthaltenen Transistoren entfallen auf den SRAM.

Bitte nicht verwechseln:

  • SRAM = statisch (eine Transistorschaltung),
  • DRAM = dynamisch (Kondensatoren),
  • SDRAM = Synchroner DRAM = synchron angesteuerte Kondensatoren.

Warum kann man den Arbeitsspeicher nicht aus dem schnelleren SRAM fertigen?

Die CPU benötigt laufend Daten aus dem RAM. Während Prozessoren heute mit mehr als 2000 bis 3000 Megahertz arbeiten, schaffen DRAM-Speicher bestenfalls 800 MHz. Dieses Missverhältnis zwischen Speicher und Prozessortakt zwingt die CPU, sogenannte Wartezyklen einzuschieben, um auf Daten aus dem Speicher zu warten. Anders gesagt: Je schneller der Prozessor ist, desto öfter muss er auf Daten warten. In den letzten zehn Jahren sind CPUs etwa einhundert mal schneller geworden, während die RAM-Zugriffszeit im gleichen Zeitraum lediglich von 10 ns auf 7 ns gefallen ist. Schnellerer Speicher wäre wunderbar. Die DRAM-Technologie ist an der Grenze des Erreichbaren. Es wird intensiv nach alternativen Technologien gesucht, aber bisher ist keine der neuen Erfindungen in Massenproduktion gegangen.

SRAM wäre wegen mit seiner Zugriffszeit von unter 0,1 ns der ideale Ersatz, hat aber leider einige schwere Nachteile.

  • Ein Arbeitsspeicher aus SRAM von 1 GB Kapazität würde einige tausend Euro kosten.
  • SRAM belegt pro Bit eine etwa 15mal größere Fläche im Schaltkreis als DRAM
  • SRAM benötigt deutlich mehr Energie

Der höhere Energie- und Flächenbedarf begrenzen die Verwendung von SRAM, vom Preis mal abgesehen. Die benötigte Leiterplattenfläche wäre riesig und die Datenwege würden zu lang werden. Um eine Strecke von 30 cm zu durchlaufen, braucht ein Lichtstrahl eine Nanosekunde. Elektrische Signale sind geringfügig langsamer als das Licht. Was nützt eine Zugriffszeit von unter 0,1 ns, wenn die Daten für den Weg bis zur CPU eine Nanosekunde brauchen? Die CPU müsste ganze drei Takte warten (bei einer 3-GHz-CPU entfallen drei CPU-Takte auf eine Nanosekunde).

Abgesehen von den oben genannten Nachteile wäre die Leistungssteigerung eines SRAM Hauptspeichers nicht signifikant im Vergleich zu modernen Cachearchitekturen. Mit Multilevelcaches, gefertigt aus SRAM (mit maximal nur wenigen MB Kapazität) und intelligenten Schreibstrategien sind Zugriffszeiten von nahezu vollständig aus statischem RAM bestehendem Hauptspeicher möglich.




Flash-Speicher
Memory-Stick: 2=Controller, 4=Speicherchip, 5=Taktgeber, 6=Anzeige-LED, 7=Schreibschutzschalter, 8=Platz für zweiten Speicherchip

Verwendung

Das wichtigste Ziel bei der Weiterentwicklung von ROM über PROM und EPROM zu EEPROM war eine einfachere und schnellere Beschreibbarkeit. EPROM musste man zum Löschen und Beschreiben noch aus dem Gerät herausnehmen, bei EEPROMS brauchte man das nicht mehr. Die weitere Beschleunigung des Schreibvorganges führte zu den sogenannten Flash-Speichern. Ebenso wie bei allen ROM-Speichern verliert Flash-Speicher die Daten bei Stromausfall nicht.

Flash-ROM werden vielseitig verwendet, unter anderem:

  • Als USB-Memory-Sticks für den Datentransport zwischen Computern,
  • Als Speicher in MP3-Playern,
  • In Gimp-icon-vergrössern-verkleinern.png Solid State Disks als Ersatz für mechanische Festplatten,
  • Als Speicherkarten für Kameras, Mobiltelefone und Navigationsgeräte.

Leider herrscht bei den Bauformen der Speicherkarten ein unglaubliches Chaos. Es fehlt ein Standard. Es gibt bereits Universal-Kartenleser, die 36 verschiedene Karten lesen können. Samsung, Sony Ericsson, Nokia, Texas Instruments und andere Hersteller wollten 2009 einen Industriestandard Universal Flash Storage (UFS) erarbeiten. Er wurde 2012 veröffentlicht und kurz darauf "wegen Fehlern" zurückgezogen. Es scheint, dass die technische Weiterentwicklung zu schnell für die Standardisierungsbemühungen ist.

Lebensdauer

Flash-Speicher überstehen eine endliche Anzahl von Lösch/Schreibvorgängen, gegenwärtig einige hunderttausend bis wenige Millionen. Deshalb muss die Anzahl der Schreibvorgänge durch geeignete Software und die Ansteuerlogik minimiert werden. Das wird auf mehreren Wegen erreicht.

  1. Die zu schreibenden Daten werden längere Zeit im Cache-RAM des Betriebssystems gesammelt.
  2. Die Speicherzellen werden zu Blöcken von z. B. 4 kByte zusammengefasst. Ein Block wird stets im Ganzen geschrieben. Der Zustand jedes einzelnen Blockes wird in einer Tabelle registriert. Ausgefallene Blöcke werden durch Ersatzblöcke ersetzt.
  3. Nach einem „Wear Leveling“ genannten Verfahren[7] werden die Daten möglichst gleichmäßig im gesamten Speicherchip verteilt. Idealerweise wird damit eine gleichmäßige „Abnutzung“ aller Speicherblöcke erreicht. Zahlreiche Sticks (nicht alle) haben dieses Verteilverfahren in die Ansteuerelektronik integriert. Falls nicht, hat Windows Vista dafür eine Softwarelösung.

Wichtig: Lässt sich ein Stick nicht mehr beschreiben, kann er zumindest noch gelesen werden.

Vor dem Herausziehen abmelden!

Die zu schreibenden Daten, insbesondere die Verwaltungstabellen, werden von Windows eine längere Zeit im Cache-RAM behalten. Nur wenn Sie Windows von Ihrer Absicht informieren, den Stick zu entfernen, können Sie sicher sein, dass alle zu schreibenden Daten tatsächlich auf dem Stick ankommen. Gleiches gilt für Linux.

Datensicherheit

Ob USB-Sticks oder Kamera-Speicherkarten, sie gehen leicht kaputt und gehen verloren. Kontaktprobleme am Stecker führen ebenfalls zu Datenverlusten. Besonders gefährlich ist die Unsitte des Herausziehens eines USB-Sticks ohne vorheriges Abmelden.

Zwei Technologien

Single-Level-Cell-Speicherzellen, kurz SLC, sind Speicherzellen, von denen jede ein Bit speichern kann, als „0“ oder „1“.

Multi-Level-Cell-Speicherzellen, kurz MLC, sind Speicherzellen in denen mehr als ein Bit pro Zelle gespeichert wird. Gegenwärtig sind vier verschiedene Zustände unterscheidbar, denen die Ziffern „0“, „1“, „2“ und „3“ zugeordnet werden. Es wird daran geforscht [8], vier Bit (16 Zustände) pro Zelle zu speichern.

Erinnern Sie sich an die Erklärung, dass das Dezimalsystem für Computer ungeeignet ist, weil es schwer ist, zehn verschiedene Spannungen präzise zu unterscheiden? Vier verschiedene Zustände ist nicht ganz so schwer, aber es dauert länger als bei SLC, den gespeicherten Wert zu lesen und zu schreiben. Andererseits kann die doppelte Kapazität pro Flächeneinheit gespeichert werden.

Sie haben also die Wahl: Die größere Kapazität mit langsamer Zugriffszeit oder die halbe Kapazität, aber fast doppelt so schnell und mit einer etwa zehnmal größeren Anzahl von möglichen Schreibvorgängen.

Solid State Drive (SSD)

Eine größere Anzahl Flash-Speicher plus Ansteuerung in einem festplattengroßen Gehäuse ergeben einen schnellen, geräuschlosen, stromsparenden Massenspeicher, der anstelle magnetischer Festplatten verwendet werden kann. Mehr dazu im Kapitel Solid State Disk.




Festplatte
Die erste Festplatte der Welt, 1956

Vor mehr als 50 Jahren, am 13.09.1956, stellte IBM die erste Festplatte der Welt vor: IBM 350 RAMAC

Sie bestand aus 50 Scheiben mit einem Durchmesser von 60 cm (24 Zoll), wog eine halbe Tonne und hatte 5 Megabyte Kapazität. Sie erreichte eine Drehzahl von 1200 U/min und eine mittlere Zugriffszeit von 600 ms.

Das Gehäuse war 60 Zoll (1,52 m) lang, 68 Zoll (1,72 m) hoch und 29 Zoll (74 cm) breit.

Das Laufwerk wurde nicht verkauft, sondern für ca. 10.000 DM (5000 EUR) pro Monat an Unternehmen vermietet.

Es wurden mehr als 1000 Stück hergestellt, bis 1961 die Produktion eingestellt wurde. [9]

Im Laufe der Jahre wurden die Festplatten gleichzeitig größer und kleiner. Genauer: Kleiner wurden die Abmessungen. 1973 begann die Firma Seagate, Festplatten der Nenngröße 8 Zoll mit einer Kapazität von 30 MB zu produzieren[10]. 1980 konnte die Nenngröße auf 5,25 Zoll und 1980 auf 3,5 Zoll verringert werden[11]. Heute sind Festplatten von 3,5 Zoll und von 2,5 Zoll erhältlich. Größer wurde die Speicherkapazität, sie stieg pro Jahr um etwa 50%. Gleichzeitig fiel der Preis: Bei der ST506 (Seagate 1980, 5 MB) kostete 1 Megabyte noch 250 €. Der Preis ist pro Jahr um 40% gefallen, auf heutigen Festplatten kosten 1000 Megabyte etwa 5 Cent.


IBM-Festplatten waren 1979 schon kleiner.
6 × 8″ Scheiben mit insgesamt etwa 65 MB Speicher
Auswechselbarer Plattenstapel, 200 MB, 1970

Der Festplatte und ihrem Inhalt drohen zahlreiche Gefahren. Am häufigsten sind Bedienfehler, Fehler in Programmen und im Betriebssystem sowie Schadprogramme (Viren u.a.), die jederzeit unverhofft auftreten können. Die meisten dieser Fehler führen nur zu kleineren Schäden. Hardwarefehler sind vergleichsweise sehr selten, aber wenn sie auftreten, sind die Folgen verheerend.

Kein anderer Schaden verursacht so viel Stress wie ein Totalausfall der Festplatte. Die Schäden sind vielfältig:

  • Ihre Daten, Ihre Fotos, Ihre Emails, Ihre Musik- und Filmsammlung – alles ist verloren.
  • Eine neue Festplatte samt Einbau kostet hundert Euro oder mehr.
  • Sie werden mehrere Tage brauchen, um das Betriebssystem, Ihre Geräte, die Updates und Ihre Anwendungen erneut zu installieren und anzupassen.
  • Sie werden einige Tage nicht mit Ihrem PC arbeiten können.
  • Sie müssen Lizenzen neu erwerben oder reaktivieren lassen.
  • Sie werden noch wochenlang kleine Nachbesserungen vornehmen, um Ihre Programme wieder optimal an Ihre Bedürfnisse anzupassen.

Hardwarefehler werden verursacht durch

  • Lageänderungen
  • Erschütterungen und Vibrationen
  • Überhitzung
  • Verschleiß
  • Alterung

Gegen diese Gefahren gibt es zwei Strategien:

  • Wissen um die Risiken kann diese verringern, aber nicht völlig abschaffen.
  • Eine Datensicherung, regelmäßig und fachkundig durchgeführt, ist auf Dauer die einzige wirksame Gefahrenabwehr.

Im folgenden Text werden einige Grundkenntnisse über Festplatten vermittelt, anschließend werden nacheinander die Risiken betrachtet. Es folgt ein Abschnitt über Pflege und Wartung der Festplatte. Für weitergehende Informationen gibt es einen Anhang.

Grundwissen

Aufbau und Funktionsweise

Videoaufnahme einer geöffneten Festplatte

Eine typische Festplatte kostet 70 Euro, hat 1500 GB Kapazität und eine mittlere Zugriffszeit von 9 ms (Mitte 2010). Die Hersteller können immer mehr Daten auf den Scheiben unterbringen: Alle 18 bis 24 Monate verdoppelt sich die Festplatten-Speicherkapazität eines typischen neuen PC.

Die Festplatte nennt man einen Massenspeicher, ebenso wie die CD-ROM und DVD. Warum?

Eine typische Buchseite (35 Zeilen zu 60 Zeichen) oder eine Bildschirmseite (25 Zeilen mit je 80 Zeichen) enthält etwa 2000 Zeichen. In der heute meistverwendeten Unicode-Darstellung werden zwei Byte pro Zeichen benötigt. Auf einer 1500-GB-Festplatte könnte man also 375 Millionen Seiten speichern. Bei beidseitigem Druck ergäbe das je nach Papierqualität einen Stapel von fast 19 km Höhe! Eine einfache DVD mit 4,7 GB würde es immerhin auf einen Papierstapel von 58 m bringen, und eine CD-ROM mit bescheidenen 0,7 GB würde ein 8 m Bücherregal für die Aufbewahrung des Papierstapels erfordern. Diese Zahlen gelten für Text ohne Illustrationen. Bilder benötigen - je nach Qualität - zehn- bis hundertfach mehr an Speicherplatz als Text. Die Stapelhöhen werden deutlich kleiner, aber selbst ein hundertstel eines 10 km Stapels ist immer noch eine beeindruckende Menge Papier.

Ein anderes Beispiel: Auf 1,5 TB lassen sich 1,5 Millionen Minuten Musik unterbringen. Das reicht für eine drei Jahre dauernde 24-Stunden Beschallung.

„Hard Disk Drive“, abgekürzt HDD, ist die englische Bezeichnung für die Festplatte. Im Vergleich zur „Floppy Disk“, der biegsamen Scheibe, gibt es Unterschiede:

  • Die Scheiben sind starr.
  • Im Vergleich zur Diskette ist die Drehzahl viel höher: Einige tausend statt 300 Umdrehungen pro Minute.
  • Die Köpfe dürfen deshalb nicht auf der Scheibe schleifen, sondern sie schweben in einem minimalen Abstand darüber.
Hauptbestandteile

Handelsübliche Festplatten haben meist ein oder zwei Scheiben, die auf einer gemeinsamen Achse, der „Spindel“, angeordnet sind. Scheiben mit Spindel bilden den „Plattenstapel“. Die Scheiben bestehen oft aus speziellen Metalllegierungen, beschichtet mit einer 15 nm (Nanometer) „dicken“ Magnetschicht. Auch Glas wird manchmal als Trägermaterial verwendet, weil eine Glasoberfläche glatter poliert werden kann als Metall.

Den Bereich der Magnetschicht, der zur Aufzeichnung eines einzigen Bits dient, wird als „magnetische Domäne“ bezeichnet. Man kann sich das wie einen flachen Stabmagneten vorstellen. Die Festplatten der 80er Jahre mit einer Kapazität von 5 MByte konnten etwa 400 Bit pro Quadratmillimeter unterbringen, für ein einzelnes Bit stand also eine Fläche von etwa 100 x 25 Mikrometer zur Verfügung (50 Mikrometer ist die Dicke eines Haares). 1996 produzierte IBM erste Festplatten[12] mit „perpendicular recording“: Die „magnetischen Domänen“ ragen nun senkrecht in die Tiefe der Magnetschicht, um die Oberfläche optimal auszunutzen. Auf heutigen Terabyte-Festplatten folgen die Bits im Abstand von 0,3 nm, der Spurabstand beträgt 2 nm.

Ein Spindelantriebsmotor sorgt für eine hohe konstante Drehzahl. Die meisten modernen Festplatten drehen mit 7200 Umdrehungen pro Minute. Zunehmend werden „Green IT“ Festplatten verkauft, die mit etwa 5400 U/min rotieren. Das verringert ein wenig den Strombedarf, den Geräuschpegel und den Datendurchsatz. Ältere Notebook-Festplatten drehen meist mit 4200 U/min, aktuelle liegen bei 5400 oder 7200. Teure Profi-Festplatten bringen es auf 10.000 oder 15.000 U/min. Zum Vergleich: Auch bei Vollgas wird ein PKW-Motor selten mit mehr als 5000 Umdrehungen pro Minute betrieben; eine Flugzeugturbine erreicht bis zu 40.000 Umdrehungen pro Minute.

Auf den Scheibenoberflächen werden die Daten ringförmig in so genannten „Spuren“ abgelegt. Je dichter die Spuren beieinander liegen, desto mehr Daten passen auf die Platte. Aktuelle Festplatten haben 150.000 Spuren pro Zoll[13] und fast eine Million Bits pro Zoll auf dem Umfang.

Leseköpfe einer Festplatte

Zu jeder Oberfläche gehört ein kombinierter Schreib-/Lesekopf, zu zwei Scheiben gehören also vier Köpfe. Die Köpfe sind an Schwenkarmen, sogenannten „Actuatoren“ befestigt. Die Schwenkarme sind untereinander starr verbunden und bewegen sich stets gemeinsam zur gewünschten Spur. So sind stets mehrere Spuren gleichzeitig verfügbar, ohne dass die Köpfe weiterbewegt werden müssen. Die Spuren eines Plattenstapels, die genau übereinander liegen (auf der entgegengesetzten Oberfläche der gleichen Scheibe oder auf anderen Scheiben), bezeichnet man als „Zylinder“. Das Betriebssystem speichert umfangreichere zusammenhängende Informationen nach Möglichkeit in den Spuren eines Zylinders, um die Anzahl der Kopfbewegungen zu minimieren.

Die Plattenoberfläche ist in Kreisabschnitte, so genannte „Sektoren“, unterteilt. In der Mathematik ist ein Sektor ein tortenähnlicher Ausschnitt aus einem Kreis, auf der Festplatte sind damit gebogene Linien gemeint. Jede Spur ist in einige Tausend Sektoren (Bogenstücke) geteilt. Die dadurch entstehenden Datenblöcke sind die kleinste adressierbare Datenmenge. Jeder Datenblock kann durch Angabe von Spur, Sektor und Oberfläche (Kopf) eindeutig adressiert werden. Jeder Datenblock enthält 512 Byte, zu denen noch einige Verwaltungsinformationen dazukommen, z. B. eine Kontrollsumme, sowie ein kleiner Abstand zum nächsten Block. Alle Festplattenhersteller haben sich geeinigt, künftig zu einer Sektorgröße von 4096 Byte zu wechseln. Zurzeit (2010) wird sie bereits teilweise eingesetzt, die Elektronik „gaukelt“ dem Betriebssystem aber weiterhin 512 Byte große Sektoren vor. Diese Emulation hat ihre Gründe in der noch problematischen Unterstützung der neuen Sektorgröße.

Das Produkt von Kopfanzahl, Zylinderanzahl (= Spurenanzahl) und Zahl der Blöcke pro Spur (= Sektoranzahl) ergibt die Anzahl der Blöcke der Festplatte. Diese Blockzahl multipliziert mit der Kapazität eines Blocks (512 Byte) ergibt die Kapazität der Festplatte.

Bei 7200 Umdrehungen pro Minute erreicht der äußere Rand der Festplatte eine Geschwindigkeit von 130 km/h. Notebook-Festplatten haben einen kleineren Durchmesser von 2,5" und eine kleinere Drehzahl von 4200 oder 5400 U/min, deshalb erreichen sie „nur“ 60 bis 70 km/h.

Bei der schnellen Rotation wird die Luft über den Scheiben mitgerissen. In diesem Luftstrom „segeln“ die aerodynamisch geformten Magnetköpfe in einem konstanten Abstand von 10 nm (Nano-Meter) über der Scheibe. Das sind 10 Millionstel eines Millimeters! Zum Vergleich: Ein Haar ist 0,05 mm = 50 Mikrometer = 50.000 nm dick, also 5000-mal dicker!

Interessante Vergleiche
0,12 nm Durchmesser eines Siliciumatoms
0,25 nm Abstand Metallatome im Kristallgitter
1 nm Bitabstand auf Festplatte
3 nm Flughöhe des Kopfes über der Festplatte
22 nm Strukturbreite in der CPU
50 nm Mittler Durchmesser eines Virus
75 nm Spurabstand auf Festplatte
125 nm Tiefe der Pits auf DVD
320 nm Spurabstand auf Blu-ray
740 nm Spurabstand auf DVD
1600 nm Spurabstand auf CD
9000 nm Durchmesser einer Glasfaser (SM)
10 000 nm Grenze zwischen Fein- und Grobstaub
50 000 nm Mittlerer Durchmesser eines Haares

Die Zugriffszeit

Mit der Zugriffszeit wird angegeben, wie schnell eine Festplatte arbeitet. Die mittlere Zugriffszeit liegt bei modernen Festplatten zwischen 8 und 9 Millisekunden. Spezialplatten für Server erreichen Zeiten von bei 5 ms. Die Zugriffszeit setzt sich aus folgenden Faktoren zusammen:

  1. Der Positionierzeit gibt an, wie lange es durchschnittlich dauert, um den Kopf von einer Spur auf eine beliebige andere Spur zu positionieren. Kleine Kopfbewegungen dauern nur zwei bis drei Millisekunden. Für die Positionierung von ganz außen nach innen werden typisch 14 bis 18 ms benötigt.
  2. Die Latenzzeit gibt die Zeit an, die gewartet werden muss, damit die gewünschten Daten der Spur unter dem Schreib-Lesekopf erscheinen. Diese Wartezeit hängt direkt von der Drehzahl ab. Eine Festplatte mit 7200 U/min braucht 8,3 ms für eine volle Umdrehung. Im statistischen Mittel muss die Platte eine halbe Umdrehung machen, bis die gewünschten Daten unter dem Kopf vorbeirasen.
  3. Einige Mikrosekunden Wartezeit, die für den eigentlichen Lesevorgang, den Vergleich der Kontrollsummen und die Übertragung in den Arbeitsspeicher erforderlich sind.

Den dritten Faktor kann man vernachlässigen.

Das Diagnoseprogramm SMART

Die Festplattenhersteller bauen ein Diagnoseprogramm „S.M.A.R.T.“ in jede Festplatte ein. SMART steht für „Self Monitoring, Analysis and Reporting Technology“. Dieses Diagnoseprogramm wacht ununterbrochen über Ihre Festplatte. Es erkennt beschädigte Blöcke, sperrt sie und ersetzt sie durch Reserveblöcke. Es wird geschätzt, dass jede Festplatte 5% bis 20% ihrer nominellen Kapazität als „heimliche Reserve“ zurückhält, um kleine Schäden ausgleichen zu können. Das bedeutet im Umkehrschluss, dass kleine Schäden recht häufig sind.

Statistiken sagen aus:

  • Wenn SMART eine erste Warnung gibt, ist die Wahrscheinlichkeit eines Ausfalls in den nächsten Tagen oder Wochen dramatisch hoch.
  • Allerdings bedeutet das Ausbleiben einer SMART-Warnung nicht, dass keine Gefahr droht. Ein Drittel der Festplatten fällt ohne eine vorherige Warnung durch SMART aus. Dies liegt nicht zuletzt darin begründet, dass logische Fehler durch SMART nur in seltenen hardwarebedingten Fällen prognostiziert werden können.
Mehr zu SMART können Sie hier lesen.

Der Cache der Festplatte

Nicht nur der Prozessor benutzt einen Cache-Speicher, auch die Festplatte hat einen. Heutige Festplatten sind meist mit 8 MB oder 16 MByte RAM bestückt. Das ist mehr, als die ersten Festplatten als Gesamtkapazität hatten. Der Cache wird auf drei Arten genutzt:

  1. Wenn die CPU einen einzelnen Block anfordert, werden die restlichen Blöcke der Spur „auf Vorrat“ in den Cache-RAM eingelesen. Die Wahrscheinlichkeit ist hoch, dass die restlichen Blöcke bald gebraucht werden.
  2. Leseanforderungen werden sofort ausgeführt, denn die CPU wartet auf die Daten. Das Schreiben von Daten erfolgt aber verzögert. Die zu schreibenden Daten werden im Cache der Festplatte zwischengespeichert und die CPU erhält die Meldung, die Daten wären schon geschrieben. Sind sie aber nicht. Erst wenn keine Leseanforderungen der CPU eintreffen, nutzt die Festplatte diese Zeit, um die Daten auf die Magnetscheiben zu schreiben. Der Vorteil des Verfahrens: Die CPU kann sofort weiter rechnen und muss nicht warten, bis die Daten geschrieben sind.
  3. Eine Datei auf die Festplatte zu schreiben erfordert drei Schreibvorgänge: Die Datei selbst, der Eintrag im Inhaltsverzeichnis und der Eintrag in der Belegungstabelle. Einige Arten von Daten, z. B. die Verwaltungstabellen der Festplatte, werden sehr oft geändert. Es wäre sinnlos, jeden Zwischenstand zu speichern. Das Schreiben solcher Daten kann zusätzlich verzögert werden, bis die Elektronik „glaubt“, dass nun keine weiteren Änderungen zu erwarten sind. Das kann einige Sekunden dauern, bei Speichersticks bis zu einer Minute.

Allerdings hat diese Zwischenspeicherung einen gefährlichen Nachteil. Wenn Sie den PC versehentlich ausschalten, ohne ihn herunterzufahren, verlieren Sie möglicherweise Daten. Oft sind die Verwaltungstabellen betroffen, das bedeutet: Der gesamte Inhalt der Festplatte kann weg sein. Besonders gefährlich ist es in der ersten Minute nach dem Ende eines Schreibvorgangs. Wenn Sie dazu neigen, den USB-Memory-Stick oder die externe Festplatte spontan herauszuziehen oder abzuschalten, sollten Sie den Cache dauerhaft deaktivieren. Sie verlieren merklich Geschwindigkeit, aber Sie verlieren Ihre Daten nicht.

Ihnen ist noch nie etwas passiert? Das bleibt nicht für immer so.

Erschütterungen: Der plötzliche Tod

Sie haben vorhin gelesen, wie gering der Abstand der Magnetköpfe von der Festplatte ist. Stellen Sie sich zur Veranschaulichung vor, die Magnetscheibe auf 30 Meter, den Durchmesser eines Kettenkarussells, zu vergrößern. Im gleichen Maßstab vergrößert würde der Kopfabstand von 10 Nanometer auf 3 Mikrometer anwachsen, weniger als ein Haar dick ist (50 Mikrometer).

Nehmen wir nun an, dass sich das Karussell mit 7200 U/min dreht. Die außen befindlichen Sitze würden eine Geschwindigkeit von 40.700 km/h erreichen. Das ist 32-fache Schallgeschwindigkeit! Sie sollten besser nicht einsteigen: Sie würden mit einer Beschleunigung von 870.000 G, also mit dem 870.000-fachen Ihres Gewichts in den Sitz gepresst werden – trainierte Astronauten verlieren in der Zentrifuge bereits bei zehnfacher Erdbeschleunigung (10 G) das Bewusstsein. Angenommen, der leere Sitz wiegt 4 Kilogramm. Er müsste an vier je 10 cm dicken Stahlseilen aufgehängt sein, um nicht davonzufliegen (dass die Seile selbst ein beträchtliches Gewicht haben, ignorieren wir großzügig). Wenn sich der Sitz losreißt, fliegt er mit 11,3 km/s davon. Er könnte innerhalb einer Stunde die Erde umrunden oder - wenn die Geschwindigkeit konstant bleiben würde - in neun Stunden den Mond erreichen.


Haben Sie nun eine Vorstellung davon, warum Erschütterungen so gefährlich für die Festplatte sind? Wenn der Kopf die Oberfläche bei 130 km/h berührt, kann man sich das wie einen mikroskopischen Flugzeugabsturz vorstellen. Kopfaufsetzer können Ihre Festplatte in Sekundenbruchteilen zerstören. Die Oberfläche der Scheiben ist mit einer hauchdünnen Gleitschicht aus Polymer oder einer Schutzschicht aus diamantähnlichem Kohlenstoff („carbon overcoat“) überzogen. Dadurch kann die Festplatte „leichte“ Kopfaufsetzer verkraften. Wenn der Kopf bei einem stärkeren Aufsetzer die Schutzschicht verdampft oder durchdringt, wird die Magnetschicht beschädigt (und der Kopf vielleicht gleich mit). Die Daten, die sich dort befunden haben, sind weg. Den Datenverlust bemerkt man meist erst später. Wenn irgendwann ein Programm diesen beschädigten Bereich zu lesen oder zu beschreiben versucht und das nicht gelingt, wird der Bereich automatisch für die weitere Benutzung gesperrt.


Eine Scherzfrage: Wie nennt man es, wenn bei voller Drehzahl ein Kopf die Oberfläche der Scheibe berührt? Spanabhebende Datenverarbeitung! In der Fachsprache nennt man es einen „Headcrash“[14], und in schweren Fällen ist die Festplatte hinüber – einschließlich aller Daten.

Einzelteile einer Festplatte

Wie vermeidet man solche mechanischen Unfälle?

  • Den PC sollte man so aufstellen, dass er nicht kippelt – auch nicht, wenn man mit dem Knie anstößt. Noch besser so, dass man gar nicht erst mit dem Knie anstoßen kann!
  • Den PC niemals bewegen, wenn er eingeschaltet ist. Nach dem Ausschalten einige Sekunden warten, bis die Festplatte stillsteht.
  • Treten und schlagen Sie Ihren PC nicht, wenn er nicht so funktioniert, wie Sie es wollen! Schlagen Sie auch nicht mit der Faust auf die Tischplatte, auf der Ihr PC steht (oder schalten Sie den PC vorher aus). Werfen Sie keine Aktenstapel schwungvoll auf den Tisch.
  • Den PC immer in Gebrauchslage transportieren (Festplatte waagerecht), damit die Magnetköpfe nicht die Parkposition verlassen und auf der Festplatte herumkratzen. Im Auto gibt es zwei günstige Plätze für den Transport: Stehend angeschnallt auf einem Sitz oder stehend festgeklemmt hinter dem Beifahrersitz. Liegend im Kofferraum ist schlecht.
  • Wenn Sie Festplatten online von Privatpersonen kaufen, besteht ein hohes Risiko von Transportschäden durch mangelhafte Verpackung.
  • Schrauben Sie auf keinen Fall aus Neugier die Festplatte auf. Jeder Kubikzentimeter Luft enthält Tausende Staubkörner, selbst die kleinsten davon wirken auf Ihre Festplatte ebenso verheerend wie ein Felssturz auf Ihr Auto.
  • Vermeiden Sie Vibrationen. Hoffentlich liegt Ihr Subwoofer nicht auf dem PC oder die externe Festplatte nicht auf dem Subwoofer.

Beachten Sie: Nicht jeder Stoß und jede Überhitzung zerstört Ihre Festplatte sofort. Auch kleinste Schäden addieren sich und verringern die Lebensdauer. Darüber hinaus wird hierdurch die Wahrscheinlichkeit eines plötzlichen Totalausfalls gesteigert.

Schocktoleranz

Die Schreib-/Leseeinheit der Festplatte schwebt in einem selbst mit Spezialmikroskop kaum wahrnehmbaren Abstand über den sogenannten Plattern, die mit bis zu 150 km/h darunter rotieren, und ist für Stöße sehr empfindlich. 3,5"-Festplatten halten typisch 80 G im Betrieb und 300 G im ausgeschalteten Zustand aus (1 G = Fallbeschleunigung durch Erdanziehung). Angenommen, eine Festplatte fällt aus 60 Zentimetern Höhe auf einen dicken weichen Teppich, der sich um 3 mm zusammendrücken lässt. Die Bremsbeschleunigung errechnet sich als Quotient von Fallhöhe / Bremsweg, also 600 mm / 3 mm = 200 G. Es handelt sich dabei um einen Durchschnittswert. Da die Bremsung durch den Teppich nicht gleichmäßig verläuft, dürften die Spitzenwerte erheblich höher liegen. Ergebnis: Eine 3,5"-Festplatte ist vermutlich kaputt. Holz oder Beton federn erheblich weniger, was die Überlebenswahrscheinlichkeit minimiert.

2,5"-Festplatten sind für den mobilen Einsatz optimiert und tolerieren derzeit etwa 300 G im Betrieb und 1000 G in Ruhe. Das ist das Drei- bis Vierfache der üblichen 3,5"-Laufwerke.

Lageänderungen

Solange die Festplatte dreht, darf sie keinesfalls bewegt werden! Durch die hohe Drehzahl von meist 7200 Umdrehungen pro Minute ist die Scheibe der Festplatte bestrebt, ihre Lage im Raum beizubehalten, wie bei einem Spielzeugkreisel[15]. Bewegt man das Gehäuse der Festplatte, versucht die Scheibe, ihre Lage im Raum beizubehalten, und verformt sich dabei. Es kann zu Kopfaufsetzern kommen. Beim Basteln also den PC nicht auf die Seite kippen, solange sich die Festplatte dreht. Und wenn Sie einmal auf einer alten Festplatte die Daten vernichten wollen – stecken Sie ein Stromversorgungskabel an und drehen Sie die Festplatte zügig auf den Rücken. Das Kreischen ist gut zu hören ...

Lärm

Der amerikanische Internetprovider „WestHost“ verlor im Februar 2010 fast alle seine Festplatten durch eine Feuerlöschübung und brauchte mehr als sechs Tage, um den Betrieb wieder aufzunehmen[16]. Beim Ausströmen des für die Feuerlöschung benutzten Halongases entstanden laute Geräusche, welche die Festplatten ruinierten[17]. Gaslöschanlagen können einen Schalldruck von 130 dB verursachen. Bereits eine Lautstärke von 100 dB kann zu Datenverlusten führen. Die Hersteller von EDV-Feuerlöschanlagen haben deshalb begonnen, die Düsen der Gaslöschanlagen mit Schalldämpfern auszustatten[18]. Versuche in einer Redaktion sollen ergeben haben, dass bereits das laute „Anbrüllen“ einer Festplatte zu Lesefehlern führen kann.

Ihnen ist bisher noch nie etwas passiert?

Da haben Sie Glück gehabt. Bis jetzt. Die Festplatten werden jedes Jahr empfindlicher. 1993 hatte eine typische Festplatte eine Kapazität von 20 MByte (0,02 Gbyte), heute das fünfzigtausendfache. Die Drehzahl hat sich in fünfzehn Jahren von 3600 auf 7200 pro Minute verdoppelt, und der Abstand der Köpfe von der Plattenoberfläche hat sich von 1500 nm auf 10 nm verringert. Zum Vergleich: Ein Virus ist im Mittel 50 nm groß, ein Eisenatom hat 0,2 nm Durchmesser. Der Schwenkarm ist etwa 2,5 Millionen mal länger als der Abstand des Magnetkopfes von der Festplatte. Was glauben Sie wohl, wie stark sich dieser lange Arm bei Erschütterungen durchbiegt? Stellen Sie sich zum Vergleich eine 2,5 km lange Stange vor, deren Ende weniger als 1 mm vibrieren darf!

Haben Sie eine externe Festplatte? Gehören Sie zu den Leuten, welche die Festplatte hochheben, um das Kabel vom Netzteil leichter einstecken zu können? Oder um sie bequemer einschalten zu können? Hoffentlich nicht!

Überhitzung: Die verkannte Gefahr

Die Festplatte ist einer der größeren Stromverbraucher. Der Energiebedarf moderner 3,5"-Festplatten liegt durchschnittlich bei 5 Watt, unter hoher Last und beim Anlaufen dreimal mehr. Im Ruhezustand sinkt der Bedarf auf ein Watt. Die kleineren 2,5"-Platten brauchen etwa die Hälfte davon. Der Strom wird von der Elektronik und den Antrieben in Wärme umgewandelt. Die meiste Wärme entsteht an der Unterseite. Die Wärme steigt auf. In der Mitte der Platte geht das kaum: Dort sind die Magnetscheiben im Wege, und die Luft zwischen den Scheiben leitet die Wärme schlecht. Also kann die Wärme nur über die Seitenwände der Festplatte abgeleitet werden.


Die normale Betriebstemperatur einer gut belüfteten Festplatte liegt bei 30 bis 40 °C, kühler wird es im PC-Gehäuse kaum. Festplatten werden so konstruiert, dass sie bei einer normalen Betriebstemperatur die maximale Lebensdauer erreichen. Bei Temperaturen unter 10 °C und über 50 °C verdoppelt sich die durchschnittliche Ausfallrate. Bei 60 Grad steigt die Ausfallrate der Platte auf das sechsfache! [19] Bei etwa 65 °C droht sofortiger Ausfall.

Die Oberfläche der Magnetscheiben ist mit einem speziellen Polymer beschichtet. Diese hauchdünne Schicht (etwa 1 nm) schützt die darunterliegende Magnetschicht vor Beschädigungen, falls doch einmal ein Kopf aufschlägt, z. B. wegen einer Erschütterung bei einem Transport. Leider verdunstet dieses Polymer bei dauerhaft höheren Temperaturen[20]. Jedes Grad Celsius über der zulässigen Betriebstemperatur erhöht die Wahrscheinlichkeit eines Ausfalls um zwei bis drei Prozent.

Bei vielen Festplatten erzwingt die SMART-Festplattenelektronik Abkühlpausen bei drohender Überhitzung. Sie merken das daran, dass der PC bei hoher Festplattenauslastung für einige Sekunden „hängt“, meist mehrmals nacheinander.

Die Wärme muss weg! Aber wohin mit der Wärme?

  • Der Wärmeaustausch mit der umgebenden Luft spielt eine bedeutende Rolle. Die Luft sollte also die Festplatte gut umströmen können.
  • Die Wärmeleitung ist recht wirkungsvoll. Achten Sie darauf, dass die Festplatte mit vier Schrauben am Blech des Gehäuses angeschraubt ist, dadurch wirkt das Gehäuse als Kühlblech. Die bei Bastlern so beliebten Kunststoff-Rahmen, die einen Wechsel der Festplatte ohne Benutzung des Schraubendrehers ermöglichen, sind aus thermischer Sicht katastrophal (und auch sonst recht sinnlos: Wiegen denn drei Minuten Zeitersparnis pro Festplattenwechsel die Nachteile auf? Wie oft muss denn voraussichtlich die Festplatte gewechselt werden?).

Es ist also recht schwierig, die Wärme zu beseitigen. Daraus sind die folgenden Empfehlungen abgeleitet:

Festplatten-Zusatzlüfter

Sogenannte „grüne“ Festplatten benötigen wenig Energie und werden deshalb nicht heiß. Andere Festplatten sollten zusätzlich gekühlt werden, sonst könnte sich ihre Lebensdauer auf die Hälfte oder weniger reduzieren. Sie können selbst prüfen, ob eine Zusatzkühlung nötig ist. Fassen Sie doch mal mit dem Finger auf die Festplatte, wenn der PC nach längerem Betrieb heruntergefahren ist. Fühlt sich die Oberfläche wärmer an als Ihr Finger? Dann ist Zusatzkühlung ratsam.

Zwei Arten der Kühlung haben sich bewährt: Ein Lüfter an der Stirnseite oder an der Unterseite der Festplatte. Ein Festplatten-Zusatzlüfter kostet 10 bis 15 Euro. Kaufen Sie einen Lüfter mit größerem Durchmesser. Lüfter mit einem Durchmesser unter 3 cm sollten Sie nicht mal geschenkt nehmen. Sie sind laut und halten nicht lange. Ein Lüfter mit 6 cm Durchmesser hat die vierfache Lüfterfläche und befördert etwa die dreifache Luftmenge. Das erlaubt die Verringerung der Lüfterdrehzahl auf ein Drittel, wodurch sich die Lebensdauer der Lager verdreifacht. Durch die geringere Drehzahl ändert sich das Geräusch von einem lauten, unangenehmen hohen Sirren zu einem viel leiserem Ton in einer angenehmeren Tonlage. Die Strömungsgeräusche der Luft werden praktisch unhörbar.

Achten Sie außerdem auf die Lager. Viele Festplattenlüfter haben leider ein Gleitlager (um es deutlich zu sagen: eine Metallachse in einem Plasteloch). Lange hält das nicht. Kaufen Sie nur Lüfter mit Kugellager, auch wenn sie ein wenig teurer sind. Sie gewinnen Laufruhe und eine längere Lebensdauer.

Stellen Sie den PC nicht direkt neben eine Wärmequelle, und verdecken Sie die Lüftungsöffnungen nicht.

Die Festplatte muss so eingebaut sein, dass die erwärmte Luft wegströmen kann. Insbesondere muss über und unter der Festplatte genügend Platz sein! Stellen Sie den PC nicht direkt neben eine Wärmequelle, und verdecken Sie die Lüftungsöffnungen nicht.


Dauerbetrieb

Nach den Preis-Leistungs-Daten unterscheidet man Server-, Desktop- und Notebook-Festplatten. Als Desktop-Festplatten werden die handelsüblichen Festplatten für „Normalverbraucher“ bezeichnet. Die Server-Festplatten haben im Vergleich zu Desktop-Platten den halben Scheibendurchmesser. Das halbiert die mittlere Positionierzeit und erlaubt es, die Drehzahl zu verdoppeln. Sie sind für Dauerbetrieb zugelassen und haben fünf Jahre Garantie. Allerdings kosten sie das Zehnfache einer Desktop-Festplatte und haben eine relativ geringe Kapazität.

Gönnen Sie Ihrer Festplatte Pausen! Lassen Sie die Festplatte in längeren Pausen automatisch abschalten! Kaum jemand weiß, dass die meisten Desktop-Festplatten nicht für den Dauerbetrieb konzipiert sind. Das Problem hierbei ist die Wärmeentwicklung. Viele Hersteller erlauben nur etwa 10 Stunden Betriebszeit pro Tag, danach sollte die Festplatte abkühlen können. Wenn diese Betriebsbedingungen eingehalten werden, erreichen viele Festplatten eine Lebensdauer von mehr als fünf Jahren. Der Zusatzlüfter sollte aber überwacht und bei Bedarf gewechselt werden, damit die Temperatur der Festplatte niedrig bleibt.

Zum Vergleich: Würden Sie Ihr Auto täglich 10 Stunden lang mit 80 km/h fahren, hätte es pro Jahr etwa 300.000 km zurückgelegt. Alle 15.000 km wäre eine Wartung mit Ölwechsel fällig, also 20 Wartungen in einen Jahr. Wann haben Sie Ihrer Festplatte das letzte Mal einen Ölwechsel gegönnt? (Das ist natürlich ein Scherz! Festplatten sind wartungsfrei. Aber nicht verschleißfrei.)

Die Server-Festplatten haben im Vergleich zu Desktop-Platten die doppelte Drehzahl und die halbe Positionierzeit, sind im Unterschied zu „normalen“ Festplatten für Dauerbetrieb zugelassen und haben fünf Jahre Garantie. Allerdings kosten sie das Zehnfache einer Desktop-Festplatte.

Verschleiß: Das unabwendbare Ende

Was passiert, wenn man den PC ausschaltet?

„Fliegen heißt Landen“ - eine alte Fliegerweisheit, die auch auf die Festplatte zutrifft. Wenn die Festplatte die Drehzahl verringert, verringert sich auch der Auftrieb der Köpfe, und die Magnetköpfe „landen”. Wie geht das ohne Head-Crash ab?

Windows schickt den Befehl „Festplatte parken“ gegen Ende des Herunterfahrens. Aber auch wenn der Strom unvermittelt ausfällt, gibt es keinen Headcrash. Der Antriebsmotor wird zu einem Dynamo umgeschaltet. Mit der Schwungmasse der Spindel wird Strom erzeugt, um die Köpfe in die Parkposition in der innersten Spur zu bewegen. Dort ist die „Geschwindigkeit über Grund“ am kleinsten, außerdem ist die ­„Landebahn“ dort metallisch und hochglanzpoliert. Sobald sich die Köpfe über der Landeposition befinden, erfolgt die nächste Umschaltung: Der Spindelmotor arbeitet jetzt als Generatorbremse[21] und bremst die Scheiben sehr schnell ab. Die Köpfe setzen auf, der Verschleiß ist dabei minimal.

Renommierte Hersteller geben an, dass die Köpfe 50.000 bis 500.000 Start-Stop-Zyklen aushalten. Bei normaler Nutzung sollte das ausreichen. Kommen Sie aber nicht auf die Idee, nach jeweils drei Minuten Leerlauf die Festplatte abzuschalten, um Strom zu sparen! Dann haben Sie Ihre Festplatte möglicherweise schon nach einem Jahr kaputtgespart. Dabei würde man wohl auch keinen Strom sparen, denn der Anlaufstrom des Motors ist sehr viel größer als der Leerlaufstrom bei ununterbrochenem Betrieb.

Neuerdings gibt es Festplatten, die ihre Köpfe auf einer „Landerampe“ absetzen, was den Verschleiß weiter verringert.

Wie kündigen sich Probleme an?

Wenn die Festplatte nicht innerhalb von etwa drei Sekunden ihre Normdrehzahl erreicht, schaltet der Antrieb sicherheitshalber ab. Manchmal läuft sie nach mehreren Einschaltversuchen doch noch an. Das sollte Sie aber nicht beruhigen. Reagieren Sie umgehend – ein verschlissenes Lager repariert sich nicht von allein!

Eins der Anzeigelämpchen am Gehäuse, vermutlich rot, zeigt die Aktivität der Festplatte an. Während der Arbeit flackert die Anzeige. Wenn Windows unerwartet für einige Sekunden „stehenbleibt” und auf nichts mehr reagiert, während die Gimp-icon-vergrössern-verkleinern.png Festplattenaktivitätsanzeige Dauerlicht zeigt, kommen hauptsächlich zwei Ursachen dafür in Betracht:

  • Möglicherweise ist die Festplatte überhitzt, und die SMART-Elektronik erzwingt gerade eine kleine Abkühlpause. Nach einigen Sekunden geht es ohne Fehlermeldung weiter, als wäre nichts geschehen. In diesem Fall sollten Sie die Lüfter kontrollieren.
  • Die Festplatte hat Oberflächenschäden, und das Betriebssystem versucht unermüdlich, ob sich die Daten vielleicht doch noch lesen lassen. Wenn es gelingt, macht Windows ohne Fehlermeldung weiter. Oft sind mehrere benachbarte Sektoren betroffen. Mit dem Gratis-Tool „HD Tune“ können Sie die Festplattenoberfläche testen. Beschädigte Regionen markiert HD Tune mit roten Kästchen.

Wenn die Festplatte die gesuchten Daten nicht findet, fahren die Köpfe mehrmals an den Plattenrand zurück und zählen die Spuren neu ab. Wenn Sie dieses rhythmische Klacken hören, steht eventuell das Lebensende der Festplatte sehr dicht bevor. Wenn das Klacken lauter wird oder sie gar ein Kreischen oder Kratzen hören, müssen Sie sich sehr schnell entscheiden:

  • Falls Sie gewillt sind, 500 oder 1000 Euro für eine professionelle Datenrettung auszugeben, dann knipsen Sie den PC sofort aus! Nicht erst herunterfahren, denn in jeder Sekunde könnte der Schaden größer werden. Und schalten Sie ihn nicht wieder an.
  • Falls Sie so viel Geld keinesfalls ausgeben wollen, sollten Sie unverzüglich anfangen, die allerwichtigsten Daten auf einen Speicherstick oder eine externe Festplatte zu kopieren. Machen Sie schnell, vielleicht haben Sie nur wenige Minuten bis zum Totalausfall.


Für Festplattenausfälle gibt es fast immer Warnzeichen – achten Sie stets auf Auffälligkeiten und zögern Sie nicht, umgehend um Rat zu fragen!

Sie haben den Eindruck, dass der PC lauter als sonst ist und Sie verdächtigen die Festplatte? Bei den Einstellungen des Bildschirmschoners finden Sie die Energieverwaltung. Stellen Sie zeitweilig ein, dass die Festplatte nach einer Minute Nichtbenutzung abschaltet. Wenn Sie dann die Maus loslassen, bleibt die Festplatte nach einer Minute stehen. Ist der PC immer noch laut? Dann wird es wohl ein Lüfter sein.

Übrigens:
Haben Sie eine einigermaßen vollständige, einigermaßen aktuelle Datensicherung? Stellen Sie sich vor, Ihre Festplatte würde jetzt, in diesem Moment kaputtgehen. Wie groß wäre dann der Datenverlust und wie lange würde die Wiederbeschaffung der Daten bzw. die erneute Eingabe dauern? In der Mehrzahl der Fälle ist eine professionelle Datenrettung möglich, aber diese kann mehrere tausend Euro kosten!

Wie man eine Datensicherung durchführt, können Sie im Wiki-Buch Datensicherung lernen. Wenn Sie Ihrer Festplatte misstrauen, lesen Sie diese Hinweise.

Pflege und Wartung der Festplatte

Was können Sie für Ihre Festplatte tun?

Rechtzeitig austauschen!

Den Inhalt einer intakten Festplatte auf eine neue zu kopieren ist mit einem geeigneten Gimp-icon-vergrössern-verkleinern.png Image-Programm leicht möglich: 5 Minuten schrauben und klicken plus eine Stunde auf das Ende des Kopiervorgangs warten. Wenn jedoch die ersten Schäden aufgetreten sind, kann es aufwändig, sehr, sehr teuer oder unmöglich werden. Wechseln Sie deshalb eine alte Festplatte aus, bevor sie versagt! Sie haben von einigen Merkmalen gelesen, die auf einen möglicherweise bevorstehenden Ausfall hinweisen.

Wenn Sie sich noch nicht entscheiden können, Ihre Festplatte auszuwechseln, bedenken Sie:

  • Alle Festplatten sind für eine endliche Betriebszeit projektiert. 20.000 Stunden entsprechen entweder fünf Jahren mit täglich 11 Stunden oder zwei Jahre bei ununterbrochenem Betrieb. Danach steigt die Ausfallwahrscheinlichkeit an.
  • Eine neue Festplatte wird nicht nur größer, sondern auch schneller und wahrscheinlich stromsparender und leiser sein.

Festplatte entlasten

Das Betriebssystem führt eine Liste, welche Programmteile und -bibliotheken wann zuletzt benötigt worden sind. Wenn der Platz im Arbeitsspeicher nicht mehr ausreicht, lagert das Betriebssystem die am längsten nicht benutzten Komponenten in den „Swap-Bereich“ aus - das ist ein dafür reservierten Bereich der Festplatte. Wird die Komponente erneut benötigt, wird sie aus dem Swap-Bereich in den RAM zurückgelesen. Dieses ständige Auslagern und Zurückholen führt zu einer merklichen Festplattenaktivität. Der Swap-Bereich ist der am häufigsten benutzte Bereich der Festplatte.

  • Deshalb sollten Sie Ihren PC mit genügend Arbeitsspeicher ausstatten. Das Betriebssystem muss dann weniger oft Daten auf die Festplatte auslagern, wodurch der PC spürbar schneller wird.
  • Vielleicht haben Sie eine ungenutzte ältere Festplatte? Bauen Sie diese ein und verlegen Sie die Swap-Datei auf die zweite Festplatte. Ein nennenswerter Anteil der Festplattenzugriffe entfällt auf die zweite Festplatte, und auf der ersten verringern sich merklich die Zugriffszeiten. Allerdings sollte die Haupt-Festplatte ihr Anschlusskabel keinesfalls mit einem anderen Massenspeicher teilen müssen.
  • Schalten Sie die Festplatte in Arbeitspausen aus, wenn die Pause deutlich länger als eine Stunde dauert. Sie können dazu den PC in den Standby-Modus oder den Ruhezustand versetzen oder herunterfahren. In kurzen Pausen (weniger als eine halbe Stunde) den PC eingeschaltet lassen.

Oberflächentest

Führen Sie gelegentlich einen Oberflächentest durch – einmal im Vierteljahr genügt. Dazu klicken Sie unter Windows im Arbeitsplatz oder im Explorer mit der rechten Maustaste auf das zu prüfende Laufwerk, dann links auf Eigenschaften. Unter Extras finden Sie die Fehlerüberprüfung und die Optimierung. Man kann auch ein Diagnosetool des Festplattenherstellers verwenden, das meist auch SMART-Werte auslesen kann.

Defragmentierung

Defragmentierung

Führen Sie gelegentlich einen Oberflächentest durch – einmal im Vierteljahr genügt. Dazu klicken Sie unter Windows im Arbeitsplatz oder im Explorer mit der rechten Maustaste auf das zu prüfende Laufwerk, dann links auf Eigenschaften. Unter Extras finden Sie zwei wichtige Buttons: Die Fehlerüberprüfung und die Defragmentierung. Jetzt defragmentieren. Bei der Gimp-icon-vergrössern-verkleinern.png Defragmentierung werden die Dateien besser angeordnet, so dass zukünftige Zugriffe mit weniger Bewegungen der Magnetköpfe und somit auch schneller ausgeführt werden. Es handelt sich nicht um ein „Aufräumen“ im Sinne von Müll beseitigen, sondern nur um eine bessere Anordnung der Daten.

Ob sich eine Defragmentierung lohnt, hängt vom verwendeten Dateisystem ab. Wenn Sie im „Arbeitsplatz“ mit der rechten Maustaste auf ein Laufwerk klicken und „Eigenschaften“ wählen, sehen Sie den Dateisystemtyp hinter „Dateisystem“.

Wenn Ihre Festplatte das Dateisystem NTFS oder EXT3 benutzt, lohnt eine Defragmentierung nicht den Zeitaufwand (bei NTFS lohnt sich der Zeitaufwand schon, günstig ist, wenn die Partition nicht zu voll ist). Beim Dateisystem FAT oder FAT32 ist alle paar Monate eine Optimierung sinnvoll. Wie macht man das? Wenn Sie auf der erwähnten Eigenschaften-Seite des Laufwerks das Register    Extras    wählen, finden sie den Button Jetzt defragmentieren.

Führen Sie aber KEINESFALLS eine Defragmentierung, einen Oberflächentest oder einen vollständigen Virenscan durch, wenn Sie Unregelmäßigkeiten beobachtet haben! Die Belastung durch diese Programme könnte Ihrer Festplatte den „Todesstoß“ versetzen!

Die Defragmentierung bricht immer wieder ab

Die Defragmentierung beginnt jedesmal von vorn, wenn ein Programm auf die Festplatte zugreift. Schuld sind meist die Programme, die in der Gimp-icon-vergrössern-verkleinern.png Taskleiste links von der Uhrzeit aufgeführt sind. Einige von ihnen können vielleicht zeitweise gestoppt werden. Wenn das nicht reicht, sollten Sie es im Gimp-icon-vergrössern-verkleinern.png „abgesicherten Modus“ versuchen: Drücken Sie während des Windows-Starts die Taste F8 und wählen Sie den „abgesicherten Modus“. Im abgesicherten Modus werden nur die unentbehrlichsten Treiber und Programme gestartet, und normalerweise stört dann nichts mehr bei der Defragmentierung.

Wenn eine begonnene Defragmentierung nicht zum Ende kommt, sollte sie bald fortgesetzt werden. Weil während der Defragmentierung ein Teil der Daten zeitweise am hintersten, entferntesten Ende der Festplatte zwischengelagert wird, vergrößern sich die Positionierungszeiten. Die Festplatte wird langsamer statt schneller! Führen Sie die Defragmentierung deshalb möglichst bald bis zum Ende durch! (Dies trifft nur für Windows95/98 zu)

Neue Entwicklungen

Wenn man einen Flash-Speicher mit großer Kapazität (solche wie in den USB-Sticks) in einem 2,5 Zoll Festplattengehäuse einsetzt, trägt diese Konstellation den Namen „Solid State Disk“ (SSD). Diese „SSD-Festplatten“ sind sehr schnell, entwickeln wenig Wärme, sind absolut geräuschlos (denn es steckt kein Motor drin) und sie brauchen nur sehr wenig Strom, aber sie sind mit knapp 75 Cent pro GB entsetzlich teuer. Der geringe Stromverbrauch macht sie besonders für Notebooks attraktiv. Einige Spitzenmodelle können Daten schneller liefern, als sie ein SATA-2-Anschluss mit 3 Gbit/s (300 MByte/s) transportieren kann.

Die verwendeten Flash-Speicherzellen werden in SLC- oder MLC-Technologie hergestellt. SLC braucht weniger Energie und ist schneller (vor allem beim Schreiben), langlebiger, aber erheblich teurer als MLC[22].

Der in SSDs verwendete Flash-Speicher lässt sich leider nur hunderttausend (MLC) bis einige Millionen mal (SLC) beschreiben. Die Steuerungselektronik berücksichtigt diese Eigenschaft und verteilt die Daten so auf der SSD, dass der aus den Schreibzyklen resultierende Verschleiß gleichmäßig verteilt wird. Weil die SSD-Technologie noch relativ neu ist, gibt es keine gesicherten Daten über ihre Lebensdauer, aber vermutlich halten sie mindestens so lange, wie mechanische Festplatten. Die Hersteller geben meist drei Jahre Garantie, einige Modelle sind auch bereits mit 5 Jahren Garantie erhältlich.

Eine SSD-Festplatte dürfen Sie keinesfalls defragmentieren! Es reduziert die Lebensdauer, denn die Anzahl der Schreibvorgänge ist begrenzt. Außerdem ist es völlig nutzlos, denn bei einer SSD werden die Speicherzellen elektrisch digital adressiert (es werden keine Schreibköpfe bewegt!), das heißt jede Speicherzelle wird gleich schnell erreicht und somit hat die Fragmentierung keinen Einfluss auf die Geschwindigkeit.

Wenn eine herkömmliche Festplatte mit ein wenig zusätzlichem Flash-Speicher ausgestattet wird, erhält man eine „Hybrid Disk“ oder „Hybrid Hard Disk“ (HHD). Sie sind nicht ganz so teuer wie SSD, aber schneller und stromsparender als herkömmliche Festplatten. Bei den gegenwärtig erhältlichen Exemplaren sind diese Vorteile allerdings so gering, dass sich die Anschaffung angesichts des hohen Preises kaum lohnt. [23][24]






NAS


Network Attached Storage, abgekürzt NAS, ist ein Netzwerkspeicher für die gemeinsame Nutzung durch mehrere PC. Die kleineren Geräte mit einer Festplatte sind nicht viel größer als ein dickes Buch. Im Prinzip handelt es sich um einen kleinen Fileserver, oft mit dem Betriebssystem Linux. Weil es sich um PCs ohne Ein- und Ausgabegeräte handelt, werden sie über den Webbrowser eines der angeschlossenen PC konfiguriert. NAS haben außer einem Einschalter keine Bedienelemente.

NAS sind optimal geeignet, wenn mehrere PC unabhängig voneinander auf gemeinsame Daten zugreifen sollen, z. B. Fotos, Musik oder Videos. Der Benutzer kann seine Dateien in Ordnern oder Partitionen ablegen. Außer bei sehr wenigen Einstiegsgeräten gibt es eine Benutzerverwaltung mit der Möglichkeit, Zugriffsrechte zu vergeben. Oft können die Daten verschlüsselt werden. Manche Geräte unterstützen Streaming Media (Web-Radio und Web-TV). Manchmal ist ein USB-Anschluss für einen gemeinsamen Drucker oder für den Anschluss einer externen Festplatte vorhanden. Gespeicherte Videos und Fotos können auf einem iPhone oder neueren Fernsehern wiedergegeben werden.

NAS für den Heimgebrauch sind auf geringen Stromverbrauch und günstigen Preis optimiert. Die meisten Geräte haben einen Gigabit-Netzwerkanschluss, der theoretisch 100 MByte/s transportieren könnte. Realistisch kann ein Gigabit-Netzwerk nur 40 MByte/s erreichen. Doch in preiswerten NAS werden leistungsschwache Prozessoren verbaut. Wenn gar noch mehrere PC gleichzeitig auf die Daten zugreifen, kann der Datendurchsatz eines NAS auf weniger als 10 MByte/s sinken. Um Musik oder Filme abzuspielen, reicht das trotzdem aus. Doch das Kopieren größerer Dateien kann nervtötend lange dauern. Zum Vergleich: Eine externe USB-2.0-Festplatte schafft 60 MByte/s, eine interne SATA-Festplatte erreicht bis zu 300 MByte/s.

Eine interessante Idee ist es, ein NAS-Leergehäuse zu kaufen. Dann können Sie die Festplatten selbst aussuchen, und wenn sie in einigen Jahren zu klein werden, diese gegen größere auswechseln. Nehmen Sie 24×7 Festplatten, die Dauerbetrieb aushalten (oder sind Sie sicher, dass Ihr NAS die Festplatten bei Nichtbenutzung parkt?). Sie sollten leise, energiesparende Festplatten mit 5400 U/min bevorzugen. Diese erreichen beim Lesen um die 100 MByte/s – mehr als ausreichend. Schnellere Festplatten wären Verschwendung von Geld und Energie.

Einige DSL-Router, wie z. B. die neueren Fritz!Boxen, haben einen USB-Anschluss, an den man eine externe Festplatte anstecken und als NAS-Gerät nutzen kann. Eine prima Idee! Doch an meiner Fritz!Box 7490 dreht sich die Festplatte rund um die Uhr, auch wenn niemand darauf zugreift. Für deren Lebensdauer ist das gar nicht gut. Ist das auch bei der Konkurrenz so? Wird es ein Software-Update geben?

Gibt es Alternativen zu NAS?

  • Ist Ihre interne Festplatte zu klein? Eine externe Festplatte am eSATA-Anschluss erreicht 100 MB/s, eine interne Festplatte ist noch schneller. Deshalb wäre es unvorteilhaft, eine zu klein gewordene interne Festplatte mit einem NAS zu ergänzen. Sämtliche Programminstallationen und die wichtigsten Daten sollten auf die interne Platte passen. Externe Festplatten und NAS-Systeme sind der optimale Speicherplatz für Multimedia-Dateien.
  • Gemeinsam genutzte Daten könnte man auch auf der Festplatte eines der PCs im Netzwerk ablegen. Dieser PC müsste allerdings ständig eingeschaltet sein, was energie- und lärmintensiv wäre. Eine Energierechnung über 200 Euro wäre nicht ungewöhnlich. Kleine NAS brauchen etwa 10 Watt (20 Euro pro Jahr), und man kann sie in jede Ecke stellen, wo ihr geringes Betriebsgeräusch nicht stört.
  • Eine Alternative zu einem NAS wäre ein „richtiger“ Fileserver. Die Hard- und Software dafür kostet 2000 Euro, die Installation ist kompliziert und die Stromrechnung ist hoch. Mit Linux wäre es weniger teuer, doch einen Linux-Server einzurichten ist definitiv nichts für Anfänger.

Viele Geräte haben zwei oder mehr Festplatten und/oder manchmal noch freie Slots für zusätzliche Festplatten.

Mit zwei oder mehr gleich großen Festplatten kann man einen RAID-Verbund konfigurieren (RAID bedeutet: die Daten werden so auf mehrere Festplatten verteilt, dass auch bei Ausfall einer Festplatte keine Daten verloren gehen). Die Hersteller werben mit der dadurch erheblich größeren Ausfallsicherheit. Doch sind Festplattenausfälle relativ selten. Schäden am Dateisystem durch Stromausfälle, versehentliches Löschen von Dateien und Ordnern und Schäden durch Computerviren sind viel häufiger die Ursache für Datenverluste. Nach Aussagen von Händlern und Datenrettern ist ein Ausfall des Controllers häufiger als der Ausfall einer Festplatte. Dagegen hilft ein RAID-System nicht.

Was tun, wenn die NAS-Elektronik defekt ist? Solange Sie noch Garantie haben, können Sie das defekte Gerät einschicken und Sie erhalten ein neues Gerät, allerdings ohne Ihre Daten. Sie sollten vorher Ihre Daten retten. Wenn Sie Glück haben, können Sie die Festplatte herausnehmen, in einen PC stecken und lesen. Das oft zur Speicherung verwendete Linux-Dateisystem EXT2 oder EXT3 lässt sich lesen, wenn Sie den PC mit einer Linux-Rettungs-CD booten. Doch manche Hersteller verwenden ein proprietäres (herstellereigenes) Dateisystem, dass Sie nicht Auslesen können. Wenn Sie gewaltiges Glück haben, hat Ihr Händler noch ein baugleiches Gerät im Regal stehen.

Was kann ich einem privaten Nutzer empfehlen? Kaufen Sie ein einfaches NAS-System, verzichten Sie auf gespiegelte Festplatten. Kaufen Sie für das eingesparte Geld eine große externe Festplatte für die Datensicherung und machen Sie von Zeit zu Zeit eine Kopie Ihres NAS-Systems und anderer wichtiger Daten. So kombinieren Sie die Vorteile eines NAS-Systems mit der Gewissheit, auch bei Stromausfällen und anderen Unfällen nicht ohne Ihre Daten dazustehen.



CD und DVD


Vergangenheit und Zukunft

CD

Die CD (Compact Disc) wurde von Philips und Sony zu einer Zeit entwickelt, als man Musik noch auf Vinyl-Schallplatten kaufte. Die Musik-CD sollte die Schallplatte ablösen. Um die Entwicklungskosten gering zu halten, wurden nur wenige Änderungen vorgenommen. Die Spirale ist geblieben, die Windungen konnten näher zusammenrücken. Die Herstellung der Platten ist geblieben: Es werden Vertiefungen in die Scheibe gepresst. Im Unterschied zur Vinyl-Platte wird die Musik digital gespeichert. Die Abtastung erfolgte berührungslos mit Laser statt mit einer kratzenden Nadel. Die Musik-CD erreichte 1983 die Marktreife. Die Idee war naheliegend, die CD-Laufwerke auch für Daten zu nutzen. Allerdings kamen auf Musik-CDs kleine Datenfehler vor. Beim Anhören von Musik stört es kaum, wenn für weniger als eine tausendstel Sekunde der Ton nicht stimmt. Für die Sicherheit von Daten sind die Anforderungen höher. Deshalb wurden zusätzliche Fehlerkorrekturmethoden entwickelt. 1982 wurden die ersten CD-ROM-Laufwerke auf Messen gezeigt. Anfangs kosteten sie über 1000 DM. 1992 konnte man die ersten CD-Brenner für 22 000 Mark[25] kaufen, ein einzelner Rohling kostete 20 bis 50 Mark.

DVD

Für Filme, Lexika, Routenplaner und andere große Datenmengen reichte die Kapazität eine CD-ROM bald nicht mehr aus. Die Digital Versatile Disc (etwa digitale vielseitige Disk) kurz DVD wurde entwickelt. „Vielseitig“ deshalb, weil sie gleichermaßen für Daten, Musik und Videos geeignet ist. Die ersten DVD-Laufwerke kamen 1996 in den Handel. 1999 wurden die ersten DVD-Brenner für 2500 DM verkauft. Im Laufe der Jahre sind die Preise gefallen. Im Sommer 2011 kostete ein DVD-Laufwerk noch 15 Euro, ein Brenner mittlerer Qualität 25 Euro.

Blu-Ray

Inzwischen ist die Speicherkapazität von DVDs nicht mehr für alle Zwecke ausreichend. Das normale Fernsehbild (Auflösung 720 × 576) kommt mit weniger als einer halben Million Bildpunkte aus, der neue hochauflösende Fernsehstandard HDTV (Auflösung 1920 x 1080) hat 2 Millionen Bildpunkte pro Bild. Die verfünffachte Datenmenge passt nicht mehr auf eine DVD.

Zwei konkurrierende Formate wurden von der Industrie entwickelt: Blu-ray und HD-DVD. Die beiden Technologien waren etwa gleichwertig. Mitte 2006 kamen die ersten Player auf den Markt. Eine Zeit lang gab es Filme in beiden Formaten zu kaufen. Nachdem immer mehr Filmstudios vom HD-DVD-Lager zu Blu-ray gewechselt sind, hat Toshiba am 20. Februar 2008 offiziell den Stopp der HD-DVD-Produktion verkündet. Allerdings gibt es inzwischen zahlreiche Filme, die auf HD-DVD erschienen sind. Die Firma LG hat als erste einen Kombi-Brenner angeboten: Eine Technik namens „Super Multi Blue“ liest und schreibt BD, DVD+, DVD-, DVD-RAM und CD, zusätzlich werden auch HD-DVD gelesen. Mit diesem oder vergleichbaren Geräten ist man für alles gerüstet.

Beachten Sie: Damit BD-Filme nicht kopiert werden können, sind sie verschlüsselt. Um Filme ansehen zu können, müssen Grafikkarte und Bildschirm die Kopierschutztechnik „HDCP“ beherrschen und digital verbunden sein (per DVI, Displayport oder HDMI).

Blu-Ray-Brenner kosten im Sommer 2011 etwa 100 €. Nur unwesentlich weniger, etwa 80 €, kosten DVD-Brenner, die BD nur lesen, aber nicht schreiben können.

BD-Scheiben haben eine Kapazität von 25 GB. Mit mehreren übereinandergelegten Schichten wächst die Kapazität entsprechend. Zwei-lagige Scheiben gibt es schon, an der Entwicklung drei- und vierlagiger Schichten wird gearbeitet.

Funktionsprinzip

Querschnitt einer CD. Die Laserabtastung erfolgt von unten.
Beschreibbare DVD im Querschnitt (Single Layer)

Ob CD, DVD, Blu-Ray-Disk oder HD-DVD - all diese Datenträger funktionieren nach dem gleichen Prinzip, lediglich die Abstände der Bits unterscheiden sich. Der Datenträger besteht aus mehreren Schichten.

  • Bei der industriellen Fertigung wird, ebenso wie bei der Fertigung von Schallplatten, eine genaue Musterscheibe hergestellt, die als Druckstempel oder Gießform verwendet wird. Die Vertiefungen werden Pits (dt.: Gruben) genannt, die verbleibende ebene Fläche zwischen den Pits heißt Land. Das Muster wird auf eine Aluminiumschicht übertragen, die als Reflexionsschicht dient. Glasklares Polycarbonat dient als Schutzschicht. Beim Lesen wird die Oberfläche der Aluminiumschicht mit einem Laser abgetastet. Von der glatten Oberfläche (Land) wird er reflektiert, an den Pits wird der Laserstrahl zerstreut. Das reflektierte Licht wird von einer Photodiode ausgewertet.
  • Bei beschreibbaren Rohlingen besteht die reflektierende Schicht aus einem wärmeempfindlichen Material. Durch Erhitzen der Schicht mit einem Laser wird punktweise die Farbe verändert.

Die Daten sind in einer Spirale angeordnet, die von innen nach außen verläuft. Sind wenig Daten auf der Scheibe, bleibt der äußere Teil ungenutzt. Dadurch ist es möglich, kleinere CDs mit 8 cm Durchmesser herzustellen. Zu Werbezwecken werden sogar CDs in rechteckiger Form hergestellt, in der Größe von Kreditkarten oder noch kleiner.

Was bedeuten die Bezeichnungen auf den Verpackungen von CD und DVD Rohlingen?

  - alle CD-Formate, die DVD-Formate vom DVD-Forum und Blu-ray
  + alle DVD-Formate von der konkurrierenden DVD-Alliance
  ± alle DVD-Formate
  R Recordable, d. h. beschreibbar (aber nur einmal)
  RW Rewritable, d. h. wiederbeschreibbar (gewöhnlich etwa 30 mal)
  RAM Random Access Memory, d. h. direktes Schreiben und Lesen wie auf Festplatte
  DL Dual Layer, d. h. zwei Datenschichten pro Seite

Was für Scheiben gibt es?

  • Die Scheibe heißt CD, wenn sie Musik enthält und in einem CD-Player abspielbar ist.
  • Eine industriell beschriebene Datenscheibe mit unveränderlichen Daten heißt CD-ROM (Compact Disk – Read Only Memory) bzw. DVD.
  • Einmalig beschreibbare Scheiben: Die CD-R, DVD-R und DVD+R
Die organische Farbschicht wird punktweise auf 500 bis 700 Grad Celsius erhitzt. Dadurch entsteht ein Bitmuster aus dunklen Punkten auf dem unveränderten hellem Untergrund.
  • Mehrfach (aber nur im Ganzen) beschreibbare Scheiben: Die CD-RW, DVD-RW und DVD+RW
Durch gleichmäßiges Erwärmen der gesamten Fläche auf „nur“ 200 Grad Celsius kehrt das Material in seinen Urzustand zurück. Die gesamte Schicht verfügt wieder über gleichmäßige Reflexionseigenschaften und kann erneut gebrannt werden. Das Löschen eines Teils der Scheibe ist nicht möglich.
  • Mehrfach, auch partiell beschreibbare Scheiben: Die DVD-RAM
Jeder Sektor lässt sich einzeln, unabhängig von anderen, löschen und beschreiben.

Weil das Beschreiben von Rohlingen mit Hitze verbunden ist, nennt man den Vorgang „Brennen“. Auch das Laufwerk, der „Brenner“, heizt sich auf und beginnt sich durch Wärmeausdehnung zu verformen. Handelsübliche Brenner sind nicht für den Dauereinsatz gebaut. Deshalb wird empfohlen, nicht mehr als zwei bis maximal drei CD oder DVD nacheinander zu brennen, sonst könnte das Resultat minderwertig sein. Gönnen Sie Ihrem Brenner danach mindestens 30 Minuten Abkühlpause, sonst könnte er Schaden nehmen.

Wie schnell muss ein Laufwerk sein?

Die CDs wurden ursprünglich für die Speicherung von Musik entworfen. Auf jeden Zentimeter der Spur passt die gleiche Musikdauer. Weil aber die äußere Spur etwa 2,5 mal länger als die Innenspur ist, muss die Drehzahl variieren, um eine gleichmäßige Datenübertragungsrate zu erreichen. Das Abspielen einer Audio-CD beginnt innen mit 520 Umdrehungen pro Minute. Der Lesekopf bewegt sich ganz gemächlich auf seiner Spur nach außen. Dabei verringert sich die Drehzahl allmählich bis auf etwa 210 U/min.

Als Maß für die Geschwindigkeit gilt die „einfache Geschwindigkeit”. Sie wird anhand der Datenübertragungsrate festgelegt:

  • Eine Musik-CD liefert 150 kByte/s,
  • eine Film-DVD bringt es auf 1350 kByte/s (das ist das 9-fache einer Musik-CD)

Ein DVD-Laufwerk mit 4-facher Geschwindigkeit liefert die Daten also ebenso schnell wie ein CD-ROM-Laufwerk mit 4 x 9 = 36-facher Geschwindigkeit.

Handelt es sich aber um eine Datenscheibe, soll der Lesekopf möglichst schnell die gewünschte Position erreichen. Im Mittel braucht der Kopf 50 bis 100 ms, um die gewünschte Spur zu erreichen. Die Scheibe dreht rasend schnell, um eine hohe Datenrate zu erreichen. Es werden Drehzahlen bis 10.000 U/min erreicht, was einer Umfangsgeschwindigkeit von 225 km/h entspricht. Zum Vergleich: Ein Automotor erreicht bei Vollgas im Leerlauf etwa 7.000 rpm (rotation per minute, deutsch: Umdrehungen pro Minute). Wie gut, dass die Scheiben außen keine Sägezähne haben und sich die Schublade normalerweise erst öffnet, wenn die Scheibe stillsteht!

Warum sind so hohe Geschwindigkeiten nötig?
Um ein neues Programm zu installieren, muss das Laufwerk nicht besonders schnell sein. Wenn Sie aber eine DVD mit einem Lexikon, einem Telefonbuch oder einem Routenplaner einlegen, wird Ihnen auch ein schnelles Laufwerk die Daten möglicherweise nicht schnell genug lesen. Wenn Sie massig Platz auf der Festplatte haben, kann man bei vielen Programmen während der Installation wählen, ob die Daten von der DVD (fast) komplett auf die Festplatte kopiert werden sollen.

Für jede Sorte Rohlinge hat der Hersteller eine maximale Schreibgeschwindigkeit festgelegt, die auf der Verpackung aufgedruckt und auf dem Rohling kodiert ist. Der Brenner liest diese Info und prüft dann, ob der Rohling tatsächlich dieser Geschwindigkeit gewachsen ist, indem er in einem reservierten Bereich am Innenrand ein paar Probe-Zentimeter brennt.

Bei einem Brenner lohnt es selten, den hohen Preis für den schnellsten verfügbaren Brenner zu zahlen. Der zweitschnellste Brenner ist deutlich günstiger und reicht vermutlich auch. Ein DVD-Brenner mit 4x Geschwindigkeit braucht 15 Minuten für eine volle DVD, mit 8x noch 8 Minuten, mit 16x noch 6 Minuten. Rohlinge, die mit den hohen Brenngeschwindigkeiten klarkommen, sind teurer. Berücksichtigen Sie auch, dass die Brenner ihre Höchstgeschwindigkeit nur im letzten (äußeren) Drittel erreichen. Wenn die Scheibe nur halb voll ist, sind die Unterschiede gering.

Ein externer Brenner ist nur dann sinnvoll, wenn Sie ihn tatsächlich im Wechsel für mehrere PCs verwenden wollen. Einbau-Laufwerke sind billiger (weil das Gehäuse und das Netzteil wegfallen) und schneller: Die USB-Schnittstelle schafft eine Datenübertragungsrate von 40 bis 45 MByte/s, interne Schnittstellen je nach Typ von 100 MB/s bis 300 MB/s.

Beschriftung oder Aufkleber?

CD und DVD nicht mit Kuli beschriften oder mit harten Gegenständen misshandeln! Die Oberfläche ist sehr empfindlich! Beschriftung mit einem CD-Marker ist optimal. Faserschreiber von Markenherstellern sind ebenfalls geeignet. Neue Techniken wie „Lightscribe“ oder „Laserflash“ verwenden den vorhandenen Laser. Nach dem Brennen der Daten wird die Scheibe gewendet, damit der Laser die Beschriftung in die Oberseite brennen kann. Das geht aber nur einfarbig, wenn auch mit 256 Helligkeitsabstufungen. Bei hohen Ansprüchen an die Beschriftungsqualität gibt es spezielle beschichtete Rohlinge, die etwas teurer sind und die in vielen neueren Tintendruckern bedruckt werden können.

CD-Aufkleber sind aus mehreren Gründen nicht empfehlenswert:

  • Bei der hohen Drehzahl sind selbst kleine Unwuchten kritisch und können die CD unlesbar machen.
  • Alterung oder Hitze können zu Luftblasen unter dem Label führen. Wird die Blase zu hoch, stößt sie mit dem Laser zusammen, der bei der hohen Drehzahl zerstört oder dejustiert wird.
  • Das Label kann sich ablösen und dabei das Laufwerk beschädigen. Besonders bei Hitze (im Auto!) ist die Gefahr groß.

Ein Aufkleber auf einer DVD ist noch weniger ratsam als auf einer CD. Die sechsfach höhere Datendichte macht die DVD deutlich empfindlicher gegen Unwuchten als eine CD.

  • Die Scheibe erwärmt sich im Laufwerk. Wegen der unterschiedlichen Wärmeausdehnungskoeffizienten von Papier und Plaste verzieht sie sich.

Der Unterschied zwischen CD, DVD, Blu Ray und HD-DVD

Der wesentliche Unterschied betrifft die Abstände zwischen den Spuren sowie zwischen den Bits innerhalb der Spur. Eine DVD hat einen halb so großen Abstand zwischen den Spuren sowie den halben Abstand der Bits innerhalb der Spur im Vergleich zur CD. Durch die Verwendung eines kurzwelligen, blauen Laser für Blu-ray wurden noch kleinere Spurabstände und kleinere Abstände zwischen den Pits möglich, was die Speicherkapazität gegenüber der DVD weiter erhöht hat.

Nutzbare Kapazität

CD 0,64 GB einseitig einschichtig
CD 0,70 GB einseitig einschichtig
CD 0,80 GB einseitig einschichtig
DVD-RAM 4,70 GB einseitig einschichtig
DVD-5 4,70 GB einseitig einschichtig
DVD-9 8,50 GB einseitig zweischichtig
DVD-RAM 9,40 GB beidseitig einschichtig
DVD-10 9,40 GB beidseitig einschichtig
DVD-17 17,00 GB beidseitig zweischichtig
Blu-ray 25 GB einseitig einschichtig
Blu-ray 50 GB einseitig zweischichtig
Blu-ray 100 GB einseitig vierschichtig

Die Kapazität einer CD-ROM beträgt 640, 700 oder 800 MB, was einer Musik-Abspielzeit von 72, 80 oder 99 Minuten entspricht. Die heute üblichen CD-Rohlinge haben meist eine Kapazität von 700 MB = 80 Minuten Musik.

Eine einfache DVD hat eine Kapazität von 4,7 GB. Es gibt zwei Möglichkeiten, die Kapazität zu erhöhen: Zwei Schichten übereinander und/oder Benutzung von Ober- und Unterseite.

Beidseitige DVDs werden im Presswerk aus zwei einseitigen DVDs zusammengeklebt. Zum Lesen beider Seiten muss die DVD gewendet werden. Die Produktion beidseitig beschreibbarer Rohlinge war im Standard nie vorgesehen gewesen, und mittlerweile sind auch die industriell gefertigten beidseitigen DVDs aus der Mode gekommen.

Bei einer zweischichtigen DVD (Dual Layer) liegen zwei Aufzeichnungsebenen auf einer Seite übereinander. Zum Abtasten der zweiten Ebene wird die Laser-Brennweite geändert und der Laser wird schräg gestellt, um durch die Lücke zwischen den oberen Spuren hindurch auf die untere Ebene zu blicken. Allerdings hat die untere, versteckte Schicht nur eine reduzierte Kapazität von 3,8 GB. Zusammen mit der oberen Schicht kommt man auf 8,5 GB.

Bei Blu-ray und HD-DVD können noch mehr Schichten übereinander gestapelt werden. Weil der Laser äußerst dicht an die Scheibe herangerückt ist, kann er genau genug auf die gewünschte Lesetiefe eingestellt werden. Bei HD-DVD sind sogar schon Muster mit 200 GB (acht Schichten) vorgestellt worden.

Praxis-Tipp

Industriell gefertigte DVDs lassen sich auf jedem Gerät wiedergeben. Bei selbstgebrannten DVDs gibt es mitunter Probleme: DVD+R werden von einigen Playern nicht gelesen.

Manchmal sind die Rohlinge von schlechter Qualität. Vor dem Kauf einer größeren Menge Rohlinge sind Tests zu empfehlen. Die Lebensdauer der Daten (und manchmal auch die Kompatibilität zu fremden Playern) kann man verbessern, indem man den Brenner mit gedrosselter Geschwindigkeit betreibt. Es ist logisch, dass bei halber Geschwindigkeit die Bits mit saubereren Kanten und tieferem Schwarz gebrannt werden.

Datensicherheit

In der Beschichtung gibt es stets kleine Abweichungen, zudem enthält jede Scheibe bald zahlreiche kleine und große Kratzer. Unmittelbar nach dem Beschreiben gibt es bereits „schwächelnde“ Sektoren, und beim Lesen treten weitere Fehler auf. Die Elektronik des Laufwerks erkennt und repariert kleine Schäden automatisch. Bei mittelgroßen Schäden werden mehrere Leseversuche unternommen. Dabei wird jeder Leseversuch mit der halben Drehzahl des vorhergehenden Versuches unternommen. Gelingt die Reparatur nicht, wird ein Lesefehler gemeldet.

Allerdings gibt es seltene Ausnahmen: Mitunter ist das Fehlermuster so speziell, dass die Reparatur fehlschlägt, aber die Korrekturelektronik hält den Fehler für repariert und meldet keinen Fehler. Das Ergebnis: Ein Programm lässt sich partout nicht installieren oder stürzt ständig ab, obwohl Sie bei der Installation keine Fehlermeldung bekommen haben.

Die größte Datensicherheit erreichen Sie mit DVD-RAM, im Gegensatz zu den beiden anderen wiederbeschreibbaren DVD-Varianten DVD-RW und DVD+RW. Eine DVD-RAM ist mindestens 30 Jahre lagerfähig, mindestens 10 000 mal beschreibbar und hat das beste Fehlermanagement. Auf der Oberfläche erkennt man kleine Rechtecke. Durch diese Markierungen kann jeder Sektor zielgenau erreicht, geschrieben und gelesen werden. Jeder Sektor kann einzeln beschrieben werden. Vor allem wird jeder Sektor nach dem Beschreiben kontrollgelesen, so dass bei mangelhafter Aufzeichnungsqualität auf einen anderen Sektor ausgewichen werden kann.

M-Disk

Vielleicht gibt es bald eine haltbare DVD. Die organische Schicht wie in CD und DVD wird bei der „M-Disk“ durch eine anorganische, metallhaltige Schicht abgelöst[26]. Dieses „gesteinsähnliche“ Material ist gegen Sauerstoff, Stickstoff und Wasser beständig und soll mindestens 1000 Jahre haltbar sein[27]. Die Scheibe wird in einem normalen DVD-Laufwerk abspielbar sein. Zum Beschreiben wird ein Brenner mit extrem starken Laser benötigt, der bei 500°C Mikrolöcher in die Schicht brennt.

Die Rohlinge sollen drei Dollar pro Stück kosten und eine Kapazität von 4,7 GB haben. Hitachi und LG Storage wollen die Laufwerke entwickeln. Im Herbst 2011 soll es die ersten Produkte geben.

Leseprobleme und Reinigung

Wenn eine Scheibe Probleme macht, gibt es drei mögliche Ursachen:

  1. Die Scheibe ist verschmutzt oder verfettet. Man legt die CD oder DVD zur Reinigung auf eine ebene, weiche Unterlage und wischt sie vorsichtig mit einem staubfreien Tuch ab. Unterwegs kann man sie auch mal an seinem Baumwollhemd abwischen. Vorsicht! Niemals mit kreisförmigen Bewegungen reinigen, sondern immer radial. Kratzer in Drehrichtung sind besonders gefährlich.
  2. Die Schwachstelle am Laufwerk ist die optische Linse, welche – ähnlich wie der Bildschirm eines Röhren-Fernsehers – Staub, Kondensat und Nikotin geradezu anzieht. Diesen Schmutz entfernt man am Besten von Zeit zu Zeit mit Pressluft. Die weitverbreiteten Reinigungs-CD bringen meist eine Verbesserung, in seltenen Fällen wird aber die Linsenführung verbogen oder das Öl der Führungsschienen auf die Linse geschmiert.
  3. Die Linse wird im Betrieb sehr warm. Durch thermische Mikrorisse wird die Linse nach einigen Jahren trüb, unabhängig vom Staubanfall. Glaslinsen sind langlebiger, aber Linsen aus Plaste werden am häufigsten verbaut, weil sie billiger sind.

Wenn Sie öfters Probleme haben und Ihr Laufwerk schon älter ist, sollten Sie überlegen, ob Sie statt eines Reinigungssets für 10 Euro lieber ein neues Laufwerk für 20 Euro kaufen. Die Reinigung bringt nicht immer eine Verbesserung.

Wenn Sie sowohl ein Lese-Laufwerk als auch einen Brenner haben, sollten Sie zum Lesen vorrangig das Lese-Laufwerk verwenden. Das höhere Gewicht des Brenn-Lasers führt zu einem schnelleren Verschleiß der Mechanik, und aus den gleichen Grund ist der Brenner vermutlich auch langsamer.

Lagerung

Industriell gefertigte Scheiben sind sehr lange haltbar, denn die Daten werden mechanisch in die Scheibe gepresst. Selbstgebrannte Scheiben basieren auf chemischen Prozessen. Die Scheiben sind licht- und wärmeempfindlich, besonders gegen ultraviolettes Licht. Deshalb sind sie bestenfalls wenige Jahre haltbar. Wenn eine längere Lagerung geplant ist, sollten Sie Markenmaterial mit einem speziellen UV-Schutz verwenden.

Die Datenträger sollten kühl und dunkel gelagert werden. Auf dem Fensterbrett im Sommer können sie schon nach einem Monat kaputt sein. Im Sommer ist das Auto ein gefährlicher Ort. Generell reagieren die DVD±R wegen ihrer organischen Farbstoffe noch empfindlicher auf Sonnenlicht und Hitze als die DVD±RW mit ihren anorganischen Farbpigmenten.

Ein weiteres Problem sind die verwendeten Kunststoffe. Einige Bestandteile gasen aus, und das Polycarbonat, das Trägermaterial, wird selbst bei normaler Lagerung spröde. Es ist nicht ungewöhnlich, dass die ersten der selbstgebrannten DVDs nach ein bis zwei Jahren nicht mehr fehlerfrei gelesen werden können. Falls der Windows-Explorer wegen eines Fehlers das Lesen abbricht, hilft vielleicht ein Programm wie „Unstoppable Copier“, welches die beschädigten Stellen überspringt.

Entsorgung und Vernichtung

Polycarbonat ist ein wertvoller Rohstoff und gut für Recycling geeignet. CDs und DVDs aus Zeitschriften o. ä. kann man auf einer Spindel sammeln und in vielen Elektronikmärkten oder Sammelstellen abgeben. Bei Scheiben mit persönlichen Daten zerkratzt man die Oberfläche mit einem Messer oder Schraubendreher. Für besonders kritische Daten (Patientenlisten, Geschäftsberichte) zerschneidet man die Scheiben zwei oder mehr Stücke und entsorgt die Hälfte sofort, die andere Hälfe einem späteren Zeitpunkten. Man kann die Scheiben auch zerbrechen, aber dazu sollte man sie vorsichtshalber in eine Tüte stecken, denn die entstehenden Splitter sind sehr spitz und erreichen eine große „Sprungweite“.

Lohnt es, einen älteren PC mit Blu-Ray nachzurüsten?

Einen älteren Rechner mit Blu-ray nachzurüsten ist allerdings nicht sinnvoll. Blu-ray stellt höchste Anforderungen an die Rechenleistung des PC und an die Grafikkarte. Die hohe Anforderung kommt durch den Verschlüsselungsprozess zustande, der illegales Kopieren verhindern soll. PCs des Baujahres 2007 oder früher erfüllen die Anforderungen nicht oder nur knapp.

Im Jahr 2009 werden weniger als vier Prozent aller verkauften PC ein Blu-ray-Laufwerk haben[28]. Es gibt Prognosen, dass es 16% im Jahr 2013 sein könnten. Es gibt zu wenig Inhalte auf Blu-ray, so dass sich die Investition nicht lohnt.




Das Diskettenlaufwerk


Ein lange Zeit unverzichtbarer, heute ungebräuchlicher magnetischer Datenträger ist die Floppydisk. Der seltsame Name stammt aus Zeiten, in denen die Datenträger noch biegsam waren. Das Diskettenlaufwerk (Floppy Disk Drive) wird mit FDD abgekürzt.

Floppy-Laufwerk 8" aus dem Jahr 1973 neben einem modernen 3,5" Laufwerk

Funktionsweise

Schreiben

Disketten benutzen die Methode der elektromagnetischen Speicherung. Das Grundprinzip arbeitet folgendermaßen: Wenn Strom durch einen elektrischen Leiter fließt, erzeugt er ein magnetisches Feld. Dieses Feld kann je nach Stromrichtung verschiedene Wirkungsrichtungen haben und beeinflusst alle magnetischen Materialien in Reichweite. Beim Diskettenlaufwerk heißt der stromdurchflossene Leiter „Schreibkopf“.

Die Diskette ist mit einer magnetischen Oberfläche versehen, auf der der Schreibkopf aufliegt. Ändert man die Stromrichtung am Schreibkopf, ändert sich die Magnetisierung der Oberfläche. Die Magnetisierung bleibt erhalten, auch wenn man den Schreibstrom abschaltet.

Wenn sich die Diskette unter dem Schreibkopf dreht, entsteht ein Bitmuster aus verschieden magnetisierten Bereichen. Die Übergänge zwischen diesen Bereichen mit unterschiedlicher Polarität – also die Stellen, wo die Magnetisierung wechselt – nennt man Flussumkehr. Diese Stellen sind die eigentlichen Informationsträger.

Man kann jeder Flussumkehr den Wert 1 zuordnen und Stellen ohne Flussumkehr mit 0 werten.

Lesen

Beim Lesen einer Diskette wird ein weiteres Phänomen genutzt: die Induktion. Wenn ein Leiter in ein veränderliches Magnetfeld gerät, entsteht ein Stromfluss in diesem Leiter.

Man verwendet den Schreibkopf gleichzeitig als Lesekopf. Wenn sich der Datenträger am Lesekopf vorbeidreht, erzeugt jede Flussumkehr (jeder Wechsel der Magnetisierung) einen Spannungsimpuls, der verstärkt und ausgewertet wird.

Die magnetische Speicherung hat einen grundsätzlichen Nachteil: Die Datenträger sind anfällig gegenüber Magnetfeldern. Selbst kleine Felder können zu Veränderungen der magnetischen Ausrichtung auf dem Medium führen und somit die Daten beschädigen. Sogar das extrem schwache Erdmagnetfeld verändert über Jahre die magnetische Ausrichtung auf einem solchen Datenträger. Bei aufgewickelten Magnetbändern beispielsweise reicht das Magnetfeld einer Schicht bis in die darüber- und daruntergewickelte Schicht. Deshalb muss man bespielte Datenbänder alle ein bis zwei Jahre umwickeln, damit die aufgezeichnete Information sich nicht zerstört.

Aufbau der Diskette

Plastehülle und Inneres einer 3,5"-Diskette

Die ersten Disketten waren 8 Zoll groß, spätere Disketten maßen 5,25 Zoll. Das englische Wort „Floppy“ bedeutet schlapp bzw. biegsam. Tatsächlich waren die 8-Zoll-Disketten biegsam und empfindlich. Diese alten Disketten sind inzwischen ausgestorben. Sofern heute noch Disketten verwendet werden, sind sie 3,5" Zoll groß (etwa 10 cm). Sie werden beidseitig beschrieben und haben eine Kapazität von 1,44 MByte. Sie stecken in einer steifen Hülle und sind nicht mehr „floppy“. Das Innere einer Diskette besteht aus einer flexiblen Plastikscheibe, auf die eine magnetische Schicht (z. B. Eisenoxid) aufgetragen wird. Die Hülle der Diskette ist mit einem weichen Vlies ausgekleidet. In der Hülle ist beidseitig ein Schlitz für die Magnetköpfe. Der Schlitz wird durch einen flexiblen Schieber verdeckt.

Aufbau des Diskettenlaufwerks

Wenn man eine 3,5" Diskette in das Laufwerk einschiebt, wird über einen Mechanismus aus Hebeln und Federn die Schutzklappe der Diskette beiseite geschoben und anschließend werden die Köpfe auf die Magnetscheibe abgesenkt.

Bei einer Lese- oder Schreibanforderung werden zwei Motoren aktiv. Der erste Motor, der „Spindelmotor“, befindet sich an der Unterseite des Laufwerks und dreht die Magnetscheibe mit 300 U/min.

Der zweite Motor ist ein Schrittmotor. Er bewegt die Magnetköpfe (je einer über und unter der Diskette) auf die benötigte Spur.

Die beiden Magnetköpfe schleifen ständig auf der Oberfläche der Diskette. Der Motor läuft nur bei Bedarf an. Eine Zeitschaltung im BIOS sorgt dafür, dass bei Nichtbenutzung des Laufwerks der Spindelmotor nach einigen Sekunden abgeschaltet wird.

Vorteile, Nachteile und Alternativen

Vorteile:

  • unkomplizierte Handhabung
  • einfacher und robuster Schreibschutz
  • günstige Medien
  • noch einigermaßen weit verbreitet

Nachteile:

  • Der 1,44-MB-Standard ist durch die geringe Speicherkapazität kaum noch zeitgemäß.
  • Bei Notebooks verzichten die Hersteller fast ausnahmslos auf das Diskettenlaufwerk - es ist zu groß und braucht zu viel Strom. Bei stationären Computern wird immer seltener ein Diskettenlaufwerk eingebaut.
  • Defektanfällig. Für mittel- und langfristige Datensicherung sind Disketten ungeeignet.
  • Die Datenübertragung läuft mit heute indiskutabel langsamen ≈60 kB/s.

Preis:

  • Ein internes Laufwerk kostet etwa 10 Euro. Heutige Hauptplatinen besitzen oft noch einen passenden Anschluss dafür; je moderner allerdings, desto seltener. Ein Anschlusskabel liegt meist bei.
  • Ein externes Floppy mit USB-Anschluss kostet etwa 30 Euro. Der Vorteil: Es kann an mehrere PCs angesteckt werden, auch an ein Notebook.

Alternativen:

  • Es gibt Diskettenlaufwerke mit 2,88 MB, die aber äußerst selten verwendet werden.
  • ZIP-Laufwerke mit 100, 250 oder 750 MB Kapazität sind inzwischen aus der Mode gekommen.
  • LS120-Laufwerke mit 120 MB Kapazität (LS = Laser Servo). Sie arbeiten mit magnetischer Aufzeichnung, aber die Positionierung des Kopfes erfolgt mit Laser-Unterstützung. Die LS120-Laufwerke können auch mit den klassischen 1,44 MB-Disketten arbeiten! Es gibt sie nur intern mit IDE-Interface. Sie haben nur geringe Verbreitung erreicht und werden nicht mehr verkauft.
  • CD-Brenner und nachfolgende Technologien haben eine hohe Kapazität und recht gute Haltbarkeit der Medien. Allerdings ist der Zeitaufwand für das Schreiben (und das spätere Löschen der Scheibe) bei einer kleinen Datenmenge relativ hoch. Für Datenweitergabe mittels CD-R beste Eignung, da CD-Laufwerke faktisch überall vorhanden und Medien günstig sind. Für schnelle Datensicherung zwischendurch mittels DVD-RAM sehr gut geeignet, da Wechsellaufwerk-ähnliches Verhalten (einfach und sehr sicher). Allerdings kommt nicht jedes Laufwerk mit DVD-RAM zurecht, außerdem sind schnelle 5x-Medien kaum erhältlich
  • USB-Memory-Sticks. Für den schnellen Datenaustausch zwischen Rechnern sind sie oft die erste Wahl. Windows 2000 und neuere Betriebssysteme erkennen Memory-Sticks ohne jegliche Treiberinstallation. Um jemandem eine Datei samt Datenträger zu überlassen, sind sie noch zu teuer.




Eingabegeräte
deutsche Computertastatur


Funktionsweise der PC-Tastatur

Sowohl beim Druck auf eine Taste als auch beim Lösen einer Taste schickt die Tastatur ein Gimp-icon-vergrössern-verkleinern.png Unterbrechungssignal an die CPU. Das Betriebssystem liest dann den Scancode (die Nummer) der jeweiligen Taste von der Tastaturelektronik und ermittelt, welche der Modifizier-Tasten (Umschalttaste, Strg, Alt, AltGr, Feststelltaste, Num, Rollen) im Moment aktiv sind. Das Betriebssystem (bzw. das Anwendungsprogramm) verknüpft den Scancode mit einem Zeichen. Dabei wird eine Tabelle benutzt, in der für jedes Land die landesübliche Tastenbelegung enthalten ist.

Tastenbelegung

Auf den ersten Schreibmaschinen waren die Buchstaben alphabetisch angeordnet. Weil sich beim schnellen Schreiben die Typenhebel benachbarter Tasten oft verhakten, wurde um 1870 die Tastaturbelegung geändert. Diejenigen Buchstaben, die in der englischen Sprache am häufigsten verwendet wurden, platzierten die Konstrukteure am weitesten voneinander entfernt. Dadurch kam es nur noch selten vor, dass benachbarte Typenhebel aufeinander folgten und sich verhakten. Diese Tastenbelegung wird auch heute noch weltweit verwendet.

Inzwischen gibt es ergonomische Tastaturen und auch Tastaturen mit anderen, optimierten Belegungen. Das Umgewöhnen wird Ihnen vermutlich nicht leicht fallen. Falls ein Familienmitglied oder Kollege eine ungewöhnliche oder fremdsprachige Tastatur benutzen will und die anderen bei der klassischen Tastatur bleiben wollen – kein Problem! Windows kommt ohne weiteres mit mehreren Tastaturen klar: Eine kommt an den PS/2-Tastaturanschluss, weitere Tastaturen können an USB angesteckt werden. Die momentan nicht benötigte Tastatur können Sie einfach beiseite legen. Wenn Sie eine drahtlose Tastatur gekauft haben, können Sie Ihre alte Tastatur als Reserve angesteckt lassen (falls mal am Sonntag die Batterien leer sind und keine Ersatzbatterien zu finden sind).

Warnung:

  • Einige Programme, vor allem ältere, und auch das BIOS funktionieren manchmal nicht mit einer USB-Tastatur. Wenn Sie noch eine alte Tastatur mit PS/2-Stecker haben, werfen sie diese nicht voreilig weg!
  • Mit entsprechender BIOS-Einstellung kann man den PC bequem über die Tastatur einschalten. Das ist recht praktisch, wenn der PC in einem Schrank oder in einem Computertisch hinter einer Klappe steht. Bei einer USB-Tastatur klappt das Einschalten und die BIOS-Bedienung natürlich nur dann, wenn der verwendete USB-Anschluss auch bei ausgeschaltetem PC mit Strom versorgt wird. Das ist nicht bei allen Anschlüssen möglich und muss vielleicht im BIOS oder mittels Jumper auf der Hauptplatine aktiviert werden. Probieren Sie, an welchem USB-Port die LED unter der Maus leuchtet.

PCs mit zwei PS/2-Anschlüssen für Tastatur und Maus werden kaum noch verkauft. Doch in letzter Zeit gibt es vermehrt PCs mit einer grün/violett gekennzeichneten PS/2-Buchse, an die man entweder eine Maus oder eine Tastatur anstecken kann. Das hängt möglicherweise mit Kompatibilitätsproblemen zusammen. Einige Programme, vor allem ältere, und auch das BIOS haben in seltenen Fällen Probleme mit einer USB-Tastatur. Wenn Sie noch eine alte Tastatur mit PS/2 Stecker haben, werfen Sie diese nicht voreilig weg! Bei Problemen mit USB-Schnittstellen können Sie mit einer PS/2-Tastatur das BIOS einstellen und die Windows-Treiber reparieren.

Sondertasten

Bei einer Schreibmaschine haben fast alle Tasten zwei Bedeutungen. Drückt man die Umschalt-Taste (engl. „Shift“), wird auf die zweite Tastenbelegung umgeschaltet und es werden große Buchstaben oder eine andere Zweitbelegung geschrieben. Wenn die Feststelltaste (engl. „Caps Lock“) aktiviert ist, werden alle Buchstaben groß geschrieben. Erneutes Drücken von Caps Lock deaktiviert den Großschreibmodus.


Auf einer Computertastatur gibt es noch weitere Umschalttasten: Zur Shift-Taste kommen noch Strg, Alt, Alt Gr, Num und Rollen hinzu. Die meisten Tasten einer Computertastatur haben deshalb vier und mehr verschiedene Bedeutungen, je nachdem ob die Taste Shift, Strg, Alt, Alt Gr, Num gedrückt ist oder eine Kombination davon. Diese Tastenkombinationen funktionieren nicht nur in einem Textprogramm, sondern auch im Explorer und vielen anderen Programmen.

Umschalttaste „Shift“ Großbuchstaben wie bei einer Schreibmaschine
Feststelltaste „Caps Lock“ Wenn sie aktiviert ist, werden alle Buchstaben groß geschrieben. Erneutes Drücken deaktiviert den Großschreibmodus.
Feststelltaste „Num Lock“, meist nur mit „Num“ beschriftet Sie wirkt nur auf den Ziffernblock. Wenn das „Num“-Lämpchen leuchtet, sind die Tasten mit Ziffern und Rechenzeichen belegt. Drückt man die Num-Taste, erlöscht das „Num“-Lämpchen. Die Tasten steuern nun den Kursor.
Taste „Alt Gr“ Noch eine Gruppe von Zeichen, z. B. auf Taste „E“ das „€“, oder auf dem „Q“ das „@“.
Taste „Alt“ In Kombination mit anderen Tasten als Maus-Ersatz. Befehle können schneller eingegeben werden, z. B. kann man mit Alt-s ein Dokument speichern oder mit Alt-F4 ein Fenster schließen. Alt steht für „Alternativ“.
Taste „Strg“ Sie wird für die Eingabe so genannter „Steuerzeichen“ oder Befehlssequenzen (Short-Cuts) verwendet. Strg ist die Abkürzung von „Steuerung“, nicht von „String“! Auf englischen Tastaturen ist sie mit „Ctrl“ beschriftet (Control). Besonders nützlich sind die folgenden Zeichenkombinationen: Strg-Z für „Letzten Befehl rückgängig machen“, Strg-A für „Alles markieren“, Strg-C für „Kopieren“, Strg-X für „Ausschneiden“ und Strg-V für „Einfügen“.
Windows-Taste und Windows-Menü-Taste Sie wird für Sonderfunktionen verwendet, z. B. ruft Win-E den Explorer auf, Win-Pause die Systemeigenschaften und Win-L sperrt den PC. Probieren Sie es aus!
Taste „Druck“ engl.: „PrtScr“ (Print Screen). Kopiert den gesamten Bildschirminhalt in die Zwischenablage, von wo er mit einem Grafikprogramm abgeholt und weiterverwendet werden kann, z. B. zum Ausdrucken. Bei gedrückter Alt-Taste wird statt des ganzen Bildschirms nur das aktive Fenster in die Zwischenablage kopiert. Das ist sehr praktisch beim Erstellen von Bedienungsanleitungen oder um eine Fehlermeldung zu dokumentieren.

Ergonomie

Für Vielschreiber dürfte eine weiße Tastatur mit schwarzen Buchstaben augenfreundlicher sein als eine schwarze mit weißen Buchstaben. Achten Sie darauf, dass die Tasten keine hochglänzende Oberfläche haben.

Tastaturen können sich recht unterschiedlich „anfühlen“. Die meisten Tastaturen nutzen die „Rubber-Dome-Technik“: Unter den Tasten sind leitfähige Noppen aus Gummi. Die Tastaturen sind sehr flach und leise. Andere Tastaturen arbeiten mit einem mechanischen Taster und einer Spiralfeder. Diese Tastaturen sind viel langlebiger und werden von Vielschreibern und Spielern bevorzugt.

Den Widerstand der Tasten beim Drücken, den Tastenweg und das Geräusch beim Betätigen („Klappern“) sollten Sie vor dem Kauf ausprobieren. Manche Tasten („<“, „+“, „Entf“ und andere) befinden sich nicht auf allen Tastaturen an der gleichen Stelle, was sehr störend sein kann, wenn Sie an eine bestimmte Tastenbelegung gewöhnt sind.

Tastatur und Maus für Tablet und Smartphone

Wer ein Tablet oder Smartphone intensiv nutzen möchte, vermisst häufig Tastatur und Maus. Doch viele Android-Mobilgeräte sind USB-kompatibel. Zwei Voraussetzungen müssen erfüllt sein:

  • Der Chipsatz des Mobilgerätes muss USB OTG (On-the-go) unterstützen. Etwa ab 2012 ist das bei den meisten Geräten der Fall.
  • Das Betriebssystem muss USB OTG unterstützen. Das ist ab Android 3.1 der Fall. Bei älteren Geräten hilft eventuell ein Firmware-Update.

Sie können beide Voraussetzungen mit der kostenlosen App „USB-OTG-Checker“ überprüfen.

Ein spezielles USB-OTG-Adapterkabel oder ein USB-OTG-Adapterstecker wird benötigt. Diese gibt es in zwei Ausführungen: Mit Micro-USB-Stecker und mit Mini-USB-Stecker. Am anderen Ende befindet sich eine USB-Buchse, in die jede USB-Maus oder -Tastatur hineinpasst. Sogar USB-Speichersticks und Kameras mit USB-Speicher funktionieren fast immer. Man kann ein USB-Hub verwenden, um Maus, Tastatur und weitere Geräte gleichzeitig anzuschließen. Alle angesteckten Geräte werden vom Akku des Mobilgerätes mit Energie versorgt, was dessen Betriebsdauer spürbar verkürzt. Ein aktives Hub ist von Vorteil, es schont den Akku des Mobilgerätes. Das Problem: Viele Mobilgeräte haben nur eine USB-Buchse, deshalb kann das Ladegerät nicht gleichzeitig angesteckt werden. Hoffentlich ist der Akku gut geladen!

Die Bedienung mit der Maus ist intuitiv, allerdings funktioniert die rechte Maustaste wie die linke oder sie wird ignoriert. Sobald eine Tastatur angesteckt ist, erscheint die Bildschirmtastatur nicht mehr. Damit hat man ein Sonderzeichenproblem: Es wird die US-englische Tastenbelegung erwartet. Einige wichtige Tasten: Y→Z, Z→Y, ö→;, Ö→:, ä→’, Ä→“, ü→[, Ü→}, +→], *→}, #→\, ß→-, ?→_, ´→=, `→+.

Schutz und Reinigung der Tastatur

Wenn Sie Ihre Tastatur bei Nichtbenutzung vor Staub und Getränken schützen wollen, brauchen Sie dafür keine Tastaturabdeckung kaufen. Legen Sie die Tastatur einfach mit den Tasten nach unten auf den Tisch. Legen Sie die Tastatur einfach mit den Tasten nach unten auf den Tisch. Bei einem Notebook könnten Sie auf die Idee kommen, den Deckel eines Notebooks zu schließen. Tun Sie das möglichst selten − die Deckelscharniere sind empfindlich, geradezu eine Sollbruchstelle.

Auf Computertastatur und Maus können hunderte mal mehr Bakterien und Keime zu finden sein als auf einem Toilettensitz. Hauptursachen: Verzicht auf das Händewaschen nach der Toilette und Essen bzw. Naschen am PC. Krümel, Haare, Insekten und Schweißrückstände sind ein prima Nährboden für Keime.

Wie kann man eine Tastatur reinigen? Tastatur mit den Tasten nach unten leicht auf den Tisch klopfen. In die Ritzen blasen ist hilfreich, ein Pinsel ist besser, ein wenig Pressluft ist prima. Alkohol tötet Bakterien: Wickeln Sie ein alkoholisiertes Reinigungstuch um die EC-Karte und ziehen Sie diese durch die Ritzen.

Ein Tipp für Brillenträger: Nach jeder Brillenreinigung kann man das Reinigungstuch weiterverwenden, um ein paar Tasten abzuwischen. Falls Sie Desinfektionsmittel aufsprühen wollen: Vorsicht! Bei manchen Tastaturen (vor allem bei Notebooks) ist die Elektronikplatine unter den Tasten nicht vor Feuchtigkeit geschützt. Die Elektronik darf nicht feucht werden, sonst könnte die Platine aufquellen oder es könnte Kurzschlüsse geben.

Notlösungen

Sie sitzen an einer wichtigen Arbeit und die Tastatur ist kaputt? Wenn nur eine selten gebrauchte Taste klemmt: Halten Sie die Alt-Taste gedrückt, tippen Sie auf dem Ziffernblock den ASCII-Code des Zeichens ein und lassen Sie die Alt-Taste los. Alt-6-5 beispielsweise ergibt „A“. Die bessere Lösung für Windows XP, Vista, Windows 7 und Nachfolger: Unter Zubehör -> Eingabehilfen finden Sie die Bildschirmtastatur. Sie können auch „OSK“ an der Eingabeaufforderung oder im Suchfeld eintippen, falls diese Tasten noch funktionieren. Benutzer von Windows 8 wechseln zum Desktop, klicken mit der rechten Maustaste auf eine freie Stelle und „Anpassen“. Im „Center für erleichterte Bedienung“ finden Sie die Bildschirmtastatur.



Maus (engl.: „Mouse“)

Mechanische Maus

Die mechanische Maus

Funktionsweise: Eine gummierte Kugel rollt auf der Tischplatte. Im Inneren des Gehäuses wird die Kugel gegen zwei rechtwinklig zueinander angeordnete Walzen gedrückt und dreht diese mit. Auf die Walzen sind Zahnscheiben aufgesetzt. Ein Zähler registriert, wie viele dieser Zähne sich an der Lichtschranke vorbeidrehen.

Damit die Kugel auf einer glatten Tischfläche nicht rutscht, ist meist ein Mousepad und eine periodische Innenreinigung nötig.

Mechanische Mäuse sind inzwischen veraltet.

Trackball

Trackball: Stellen Sie sich eine Maus vor, die „auf dem Rücken liegt“, mit der Kugel nach oben. Die Kugel hat einen Durchmesser von drei bis vier Zentimetern und wird mit den Fingerspitzen gedreht. Der Vorteil: Ein solcher Trackball benötigt wenig Platz auf dem Tisch und ist eine Alternative für reisende Notebookbenutzer, die das Touchpad nicht mögen. Trackballs haben zwar eine Kugel, aktuelle Modelle sind aber eigentlich keine mechanischen Mäuse, da die Kugel optisch abgetastet wird.



Die optische Maus

Vor vielen Jahren bezeichnete man eine Kugel-Maus als „optisch“, wenn sie kabellos (über Infrarot) mit dem PC verbunden war. Die Infrarotübertragung war recht unzuverlässig, es störten bereits kleinste Hindernisse auf dem Tisch. Heute erfolgt die kabellose Übertragung über Funk, und die Bezeichnung „optisch“ bezeichnet eine Maus, welche die Unterlage mit einem optischen Sensor abtastet.

Funktionsweise

Eine Leuchtdiode beleuchtet die Unterlage, ein Foto-Chip (ähnlich wie in einer Digitalkamera) fotografiert ständig die Tischplatte. Ein Programm vergleicht die Fotos und ermittelt daraus, ob eine Bewegung stattgefunden hat.

Vorteil

  • Nie wieder Maus reinigen!
  • Lange Lebensdauer

Nachteil

  • Normale optische Mäuse sind für Notebooks wegen des ständigen Stromverbrauchs nur bedingt geeignet. Es gibt spezielle stromsparende optische Mäuse für Notebooks.
  • Drahtlose optische Mäuse ohne Akkus brauchen alle paar Monate neue Batterien; das verursacht regelmäßige, wenn auch geringe Kosten und gelegentlich Ärger, wenn gerade keine Batterien zur Hand sind. Logitech und einige andere Hersteller bieten Mäuse mit eingebautem Akku an.
  • Bei einigen exotischen Maustypen schaltet die Elektronik in Arbeitspausen ab, um Energie zu sparen. Um die Maus aufzuwecken, muss man eine Maustaste oder - besser - das Mausrad drücken. Das kann äußerst nervig sein.
  • Ein weiteres Problem: Wenn die Maus-Ladestation über USB-Anschluss mit Strom versorgt wird, dürfen Sie den PC nach der Arbeit nicht stromlos machen, sonst wird Ihre Maus nicht nachgeladen und ist irgendwann leer. Wenn Sie nun aber auf die empfohlene abschaltbare Steckdosenleiste verzichten, könnten die jährlichen Bereitschaftsstromkosten deutlich höher ausfallen als pro Monat ein Batteriesatz für die Maus. Eine Zwickmühle ...
  • Auf Glasplatten, durchsichtigen Schreibtisch-Unterlagen und extrem reflektierenden Flächen funktionieren optische Mäuse nicht. Notfalls bleibt Ihnen nichts anderes übrig, als ein Blatt Papier unter die Maus zu legen, dann funktioniert sie immer. Manchmal gibt es auch Probleme mit dunkel furnierten Tischplatten, Karopapier, 40 x 60 cm großen Schreibtischkalendern und manch anderen gemusterten Oberflächen. Neu im Angebot finden sich Mäuse mit Laserabtastung. Hier sind solche Probleme seltener. Die neueste Technologie von Logitech heißt „Darkfield“ und kommt auch mit Glastischen und lackierten Schreibtischoberflächen klar.

Mausrad

Mit dem Rad auf der Oberseite der Maus kann man in langen Texten schnell hoch und herunter rollen. Kennen Sie übrigens die Einrastfunktion? Umschalt-Taste gedrückt halten und auf das Mausrad drücken?

Es gibt auch Mäuse, deren Rad auf seitlichen Druck empfindlich reagiert. So kann man in waagerechter Richtung rollen.

Im Juli 2008 hat die Firma Genius das „Opto-Wheel“ vorgestellt [29]. Das Rädchen auf der Maus-Oberseite ist durch einen optischen Sensor ersetzt worden. Durch Streichen des Fingers über den Sensor kann man das Dokument in jede Richtung scrollen.

Anschlüsse

Für die Maus stehen am PC ein PS/2 Anschluss und mehrere USB-Anschlüsse zur Verfügung. Man kann sogar mehrere Mäuse anschließen, alle funktionieren gleichberechtigt. So kann jeder seine Lieblingsmaus benutzen. Wenn die Batterie in Ihrer kabellosen Maus leer ist, können Sie zu Ihrer alten Maus greifen. Mäuse haben oft einen USB-Anschluss, auf den ein PS/2-Adapter aufgesteckt ist. Tipp: Verwenden Sie diesen Adapter und stecken Sie die Maus an den PS/2-Anschluss, dann sparen Sie einen USB-Anschluss für andere Verwendungen.

Relativ neu ist die Unifying-Technologie von Logitech. Ein winziger USB-Empfänger kann die Verbindung mit bis zu sechs Geräten gleichzeitig halten. Die Übertragung erfolgt verschlüsselt im 2,4 GHz-Frequenzbereich. Die Technik ist stromsparend, die Batterielaufzeit kann drei Jahre erreichen. Besonders praktisch bei Notebooks: Sie können mehrere Eingabegeräte anschließen und belegen nur einen der knappen USB-Ports. Der Stick ist so klein, dass er ständig eingesteckt bleiben kann, ohne Schaden zu nehmen.

Mögliche Probleme

Funkmaus synchronisieren

Nach dem Kauf, einer Reparatur oder einem Batteriewechsel müssen Maus und Tastatur synchronisiert werden. Das bedeutet, dass beide eine unbenutzte Funkfrequenz suchen. Wie geht die Synchronisierung vonstatten? Sie sollten die der Maus beiliegende Anleitung lesen. Wenn Sie diese nicht finden, funktioniert meist das folgende Verfahren: An der Unterseite der Maus sowie am Sender-/Empfänger-Basisteil gibt es eine kleine Taste. Drücken Sie kurz nacheinander die Taste an der Maus, dann an der Basisstation und noch mal an der Maus, und es sollte funktionieren. Dieser Hinweis gilt analog für kabellose Tastaturen.


Mehrere Funkmäuse können Probleme machen

Wenn Sie mehrere PC im gleichen Raum mit Funkmäusen ausstatten wollen, sollten Sie nicht mehrere Mäuse des gleichen Modells kaufen oder zumindest ein Rückgaberecht vereinbaren. Es ist nicht ausgeschlossen, dass alle Mäuse die gleiche Funkfrequenz benutzen und sich gegenseitig stören. Mäuse verschiedener Hersteller benutzen meist verschiedene Frequenzkanäle und werden sich vermutlich nicht gegenseitig stören.

Funkmaus und -tastatur funktionieren beide nicht

Das kann Ihnen passieren, wenn die Geräte nicht synchronisiert sind. Windows überprüft beim Hochfahren, welche Geräte angeschlossen sind. Nicht synchronisierte Geräte gelten als nicht vorhanden. Was tun?

Synchronisieren Sie zuerst die Geräte. Doch das nützt zunächst nichts, denn Windows benutzt Geräte nicht, die beim Hochfahren noch nicht betriebsbereit waren. Drücken Sie nun kurz auf die Einschalttaste des PCs. Das ist für Windows die Aufforderung zum Notfall-Herunterfahren. Beim nächsten Start erkennt Windows, dass jetzt Eingabegeräte vorhanden sind. Nun sollten die Geräte funktionieren.

Abgesicherter Modus geht nicht

Wenn Windows Probleme hat, vor allem nach Abstürzen und bei Problemen mit Treibern, fährt Windows im „abgesicherten Modus“ hoch. In diesem Modus werden nur die unverzichtbaren Standardtreiber geladen, um Reparaturarbeiten zu erleichtern. Leider betrifft das mitunter die Treiber von speziellen Funkmäusen und Funktastaturen. Ohne Treiber funktionieren weder Maus noch Tastatur. Sie können Windows nicht mehr bedienen und reparieren. Deshalb sollten Sie eine klassische Maus und Tastatur, falls vorhanden, für Notfälle aufheben. Das ist auch dann hilfreich, wenn die Batterie der Maus leer ist.


Die Maus ist kaputt

Sie müssen eine Arbeit unbedingt fertigstellen? Sie haben eine neue Maus angesteckt und Windows fordert Sie auf, auf „Weiter“ zu klicken, um den Maustreiber zu installieren? Mit der Tabulator-Taste können Sie reihum zu jedem Button wechseln, der Mausklick wird durch die Enter-Taste ersetzt. Alt-Enter ersetzt den Klick mit der rechten Maustaste. In Options-Menüs können Sie mit den Kursortasten des Ziffernblocks navigieren und mit der Leertaste eine Option auswählen. Im Windows-Explorer wechseln Sie mit der Tab-Taste zwischen Ordner- und Dateiliste. Wenn Sie die Alt-Taste drücken, wird in der Menüzeile in jedem Wort ein Buchstabe unterstrichen. Wenn Sie den entsprechenden Buchstaben tippen, wird das zugehörige Untermenü aufgeklappt.

Mit der Windows-Taste rufen Sie das Startmenü auf. Bei gedrückter Alt-Taste können Sie zwischen laufenden Anwendungen wechseln. Mit Alt-F4 können Sie jedes Programm beenden und auch Windows herunterfahren.




Touchpad

Touchpad

So heißt die berührungsempfindliche Fläche, die vor allem bei Notebooks verwendet wird. Durch Bewegung des Fingers auf dem Touchpad wird der Mauszeiger bewegt. Statt des linken Mausklicks kann die Fläche am gewünschten Punkt angetippt werden, sogar Doppelklick ist möglich. Das Touchpad ist eine prima Erfindung, wenn man unterwegs ist und keine Tischplatte in der Nähe ist. Für Zuhause kaufen sehr viele Notebook-Besitzer eine konventionelle Maus, weil die Arbeit damit wesentlich schneller geht (wenn eine Tischplatte in der Nähe ist). Für Notebooks gibt es spezielle Mäuse: Klein, energiesparend, mit aufrollbarem Anschlusskabel. Auch Trackballs können eine geeignete Alternative zu einem Touchpad sein.

Von IBM stammt eine weitere Lösung: Ein Steuerknüppel inmitten der Tastatur, TrackPoint genannt. Drückt man seitlich gegen diesen Stick, bewegt sich der Mauszeiger in die entsprechende Richtung. Einige Notebook-Hersteller bieten so einen Stick an, unter dem geschützten Namen TrackPoint aber nur Lenovo, da IBM ihre Notebook-Sparte mittlerweile an dieses Unternehmen veräußert hat.



Grafiktablett und Maus

Grafiktablett

Ein Grafiktablett ist ein Zeigegerät für Computereingaben. Die Spitze eines stiftförmigen Sensors wird über eine Platte bewegt. In der Platte befindet sich ein Gitternetz aus Sensordrähten. Der Stift sendet Daten über seine Position und den ausgeübten Druck an das Tablett; die so gewonnenen Bewegungsdaten werden vom Grafiktablett an den Computer übermittelt.

Grafiktabletts haben eine sehr viel höhere Auflösung als Touchscreens. Der Stift muss die Oberfläche nicht berühren, man kann eine Zeichnung auf das Tablett legen und durchpausen.

Haben Sie schon einmal versucht, mit der Maus Ihren Namen zu schreiben? Es ist schwierig. Linien mit einem Stift zu ziehen, zu malen oder zu schreiben ist einfacher und viel genauer als mit einer Maus. Deshalb werden Grafiktabletts vor allem bei der digitalen Bildbearbeitung, beim Zeichnen und in der Videobearbeitung eingesetzt.

Elemente eines Joysticks
[[
Anschlüsse für Joysticks

Joystick

Joysticks (von englisch joy = „Freude“ und stick = „Stock“) sind in der Technik weit verbreitet. Sie dienen zur Steuerung von Flugzeugen, Waffen, Baukränen, Baggern, Landmaschinen und anderen Fahrzeugen. Joysticks als Zubehör für Computer und Spielkonsolen werden ähnlich verwendet. Man steuert mit ihnen Fahrzeuge und Personen im Spielgeschehen. Meist gibt es zwei Achsen, um nach links/rechts sowie oben/unten zu steuern. Digitale Joysticks übermitteln dem PC nur die Richtung der Bewegung (links, rechts, vor, zurück). Analoge Joysticks übermitteln zusätzlich, wie weit der Stick bewegt worden ist. Viele neuere Joysticks sind mit „Force-Feedback“ ausgestattet, wobei das Spielgeschehen (z. B. holpriges Gelände) durch Vibrieren für den Spieler fühlbar gemacht wird. Der Coolie-Hat ist eine Art Mini-Steuerknüppel am Steuerknüppel, mit dem man bei manchen Spielen einen schnellen Blick rundum werfen kann.

Joysticks kommen zugunsten von Spezialsteuerungen aus der Mode. Für Autorennen beispielsweise gibt es Eingabegeräte in Form eines Lenkrades mit Fußpedalen. Die nebenstehenden Joystick-Anschlüsse sind an Computern kaum noch zu finden. Moderne Sticks werden an USB angeschlossen. Für den Anschluss älterer Sticks gibt es Adapter.



Bildschirme


Pixel-Auflösung

Der Computer als digital arbeitendes Gerät erzeugt digitale Bilder. Das bedeutet, dass jedes Bild - ob auf dem Bildschirm oder auf einem Ausdruck - aus vielen kleinen Pünktchen besteht. Diese Pünktchen nennt man Gimp-icon-vergrössern-verkleinern.png Pixel, das ist ein Kunstwort aus „Picture Element“. Wenn die Pixel genügend dicht angeordnet sind, vermag das Auge sie nicht mehr einzeln wahrzunehmen und sie verschmelzen zu einem Gesamteindruck.

Den Anzahl der Punkte pro Längeneinheit bezeichnet man als Auflösung. Bei einem Drucker gibt man sie als Dot Per Inch (DPI, Punkte pro Zoll) an. 300 DPI (das sind 12 Punkte pro Millimeter) sind das heute übliche Minimum. Einige Drucker schaffen 600 oder 1200 dpi.

Bei Monitoren und Kameras bezeichnet man die Anzahl der waagerechten und senkrechten Bildpunkte als Auflösung. Welche Auflösung die höchstmögliche ist, hängt sowohl von der Größe der Bildpunkte als auch von der Größe des Monitors ab. Größere Monitore können mehr Bildpunkte darstellen als kleine.

Die typischen höchsten Auflösungen von Bildschirmen je nach Bildschirmdiagonale sind:

640 × 480 wird von nahezu jedem Monitor beherrscht
800 × 600 für 14-Zoll-Monitore (36 cm)
1024 × 768 für 15-Zoll-Monitore (38 cm)
1280 × 1024 für 17-Zoll-Monitore (43 cm)
1600 × 1200 für 19-Zoll-Monitore (48 cm)
1920 × 1080 bei 22-Zoll-Monitoren (56 cm)
2560 × 1440 bei 27-Zoll-Monitoren (69 cm)

Auflösungen können dabei nach unten hin variabel eingestellt werden, wobei das Bild bei unterschiedlichen Auflösungen eventuell über das Menü des Monitors entzerrt und zentriert werden muss.

LCD-Bildschirme haben nur eine einzige feste Auflösung, auch „native“ oder „nominelle“ Auflösung genannt. Eine höhere als die nominelle Auflösung ist unmöglich einzustellen (manche Grafiktreiber unterstützen es dennoch, schaffen dann aber nur eine virtuell verschiebbare Oberfläche. Die angezeigte Fläche wird dabei nicht größer). Geringere Auflösungen sind möglich, aber stets mit einem gewissen Verlust an Schärfe verbunden. Geradzahlige Teile, etwa von 1600 × 1200 auf 800 × 600, werden dabei meist noch am akzeptabelsten dargestellt.

TFT-Größe Übliche Native Auflösung
17 Zoll 1280 × 1024
19 Zoll 1280 × 1024, 1366 × 768, 1440 × 900
21-23 Zoll 1600 × 1200, 1680 × 1050, 1920 × 1080
24-27 Zoll 1920 × 1200, 1920 × 1080
30 Zoll + 2560 × 1600, 2560 × 1440

Ein Vergleich mit dem Fernsehen:

720 × 576 für PAL-Auflösung (herkömmliches Fernsehen), also recht grobkörnig
1280 × 768 für HDTV-Ready
1920 × 1080 für den HDTV-Standard (High Definition TV)

Jeder Computermonitor kann auch alle niedrigeren Auflösungen darstellen. Das Bild wird dabei grobkörniger. Bei TFT-Flachbildschirmen kann das Bild unscharf werden. Das kann man während des Startvorgangs des Betriebssystems sehen: In der Startphase verwenden die meisten Betriebssysteme die Auflösung 640 × 480 Pixel, da nahezu jeder Monitor und vor allem jede Grafikkarte sie beherrscht. Höhere Auflösungen sind nur möglich, wenn für die Grafikkarte ein passender Treiber installiert ist. Ausnahme: Windows hat einen Standardtreiber für die Auflösung 800 × 600, der mit fast allen Grafikkarten funktioniert. Nachdem das Laden der Treiber abgeschlossen ist, wird von der grobkörnigen auf die vom Benutzer gewünschte, voreingestellte höhere Auflösung umgeschaltet.

Warum gibt es verschiedene Auflösungen?

Ob ein Film, das Fernsehbild oder ein Foto, all das wird in einer festen Auflösung aufgenommen, die von der Kamera abhängt. Eine 2-Megapixel-Kamera erzeugt stets Fotos in der Auflösung 1600 × 1200. Wenn der Bildschirm diese Auflösung nicht schafft, wird entweder nur ein Ausschnitt des Fotos dargestellt, oder das Bild wird durch Weglassen einiger Bildpunkte verkleinert.

Auflösung verringern

Wie erfolgt das etwas brutal klingende „Weglassen“? Angenommen, es soll ein Bild der Auflösung 1600 × 1200 auf einem Bildschirm der Auflösung 1280 × 1024 angezeigt werden. Vergleichen wir die Breite der Bildschirme. 1600 verhält sich zu 1280 wie 5:4. Aus fünf Pixeln in der Waagerechten müssen vier Pixel werden. Wie geht das?

  • Eine einfache Elektronik würde einfach die Spalten 5, 10, 15, 20 usw. weglassen. Sollte dort eine schmale senkrechte Linie sein, verschwindet sie. Pech gehabt.
  • Eine etwas bessere Elektronik würde von den Pixeln in Spalte 4 und 5 deren Farb- und Helligkeitsmittelwert berechnen und durch ein Pixel ersetzen. Ist das Pixel in Spalte 4 weiß und in Spalte 5 dunkelblau, werden beide Pixel durch ein einzelnes hellblaues ersetzt.
  • Hochwertige Grafikkarten verwenden leistungsfähige, rechenintensive Algorithmen, mit denen die Bildpunkte beiderseits (Spalten 4 und 6) und sogar über und unter dem wegzulassenden Pixel berücksichtigt werden können.

Auflösung vergrößern

Wenn die Auflösung des Bildschirms größer ist als die des Fotos, gibt es zwei Möglichkeiten: Entweder wird das Bild in Originalgröße in der Mitte des Bildschirms scharf dargestellt, mit einem schwarzen Rand ringsherum. Oder es werden Bildpunkte in Höhe und Breite verdoppelt, bis das Foto den Bildschirm ausfüllt. Eine herkömmliche Fernsehkamera beispielsweise produziert Bilder mit einer Auflösung von 768 × 576 Bildpunkten. Das ist viel weniger, als heutige Bildschirme darstellen können. Daher sieht das klassische Fernsehen auf einem Computermonitor (und auf einem HDTV-Fernseher) grobkörnig aus.

Analoges geschieht bei Ausdrucken eines Fotos. Nehmen wir an, die Kamera hat ein Bild 1600 × 1200 aufgenommen. Viele Drucker haben eine Auflösung von 300 Bildpunkten pro Zoll. 1600 Pixeln ergeben gedruckt 5,33 Zoll (13,5 cm). Das Bild wird also in einer natürlichen Größe von 13,5 × 10 cm ausgedruckt. Wenn Ihnen das zu klein ist, kann das Grafikprogramm aus jedem Bildpunkt vier machen: Zwei nebeneinander und zwei untereinander. Nun ist das Bild 27 × 20 cm groß. Ein gutes Programm wird benachbarte Pixel etwas angleichen, um bessere Farbverläufe zu bekommen.

Computererzeugte Darstellungen

Völlig anders ist die Lage bei Darstellungen, die vom Computer erzeugt werden. Ob Windows-Desktop, Word-Schriftarten oder die Szene eines Computerspiels - der PC kann das alles in jeder gewünschten Auflösung „produzieren“. Mehr noch: Innerhalb der Darstellung können einzelne Bildkomponenten in der Größe verändert werden, beispielsweise kann man eine größere Schrift für Menüs auswählen. Probieren Sie doch mal: Während Sie eine Webseite geöffnet haben (z. B. die, welche Sie gerade lesen) drücken Sie die Taste Strg und halten Sie die Taste gedrückt, während Sie am Rädchen der Maus drehen! So können Sie die Ansicht von Webseiten vergrößern oder verkleinern.

Computerschriften

Bei den meisten heute verwendeten Schriftarten handelt es sich um „True Type“ Schriften. In vielen Schreibprogrammen sind die True-Type-Schriften in der Liste der verfügbaren Schriften mit „TT“ gekennzeichnet. Das Aussehen der Buchstaben ist nicht als Pixelmuster gespeichert, sondern als Formel. Die Ziffer drei beispielsweise kann, extrem vereinfacht, als zwei übereinanderstehende, nach links geöffnete Halbkreise beschrieben werden. Für jede Schriftart gibt es eine Formelsammlung. Aus der entsprechenden Formel kann der PC für jedes Zeichen das Pixelmuster in jeder beliebigen Größe generieren. Deshalb sind TrueType Schriften immer scharf.

Welche Auflösung ist für mich die richtige?

Durch eine „höhere Auflösung“ kann bei gleichbleibender Auflösung der einzelnen Elemente (Buchstaben, Bilder, ...) ein größerer Ausschnitt einer Web- oder Textseite dargestellt werden. Der Vorteil: Man muss weniger scrollen. Buchstaben, Symbole und Bedienelemente, deren Darstellung nicht veränderbar ist, werden kleiner dargestellt. Die meisten Menschen benutzen eine Auflösung von 1024 × 768 auf einem 17“ Bildschirm, bei einer hervorragenden Sehstärke sind auch 1280 x 1024 gebräuchlich. Eine niedrigere Auflösungen einstellen zu müssen ist unpraktisch, man muss zu viel aufwärts/abwärts und rechts/links rollen. Trotzdem sind vor allem ältere Menschen mit schlechtem Sehvermögen oft zu niedrigen Auflösungen gezwungen.

Farb-Auflösung

Die Helligkeit eines Bildpunktes wird als Digitalzahl gespeichert. Bei einem Grauwertbild können mit 8 Bit 256 Schattierungen dargestellt werden - das ist normalerweise ausreichend.

Ein Farbbild ist aus drei Farben zusammengesetzt. Bei einen High-Color-Bild stehen für Rot und Blau je fünf Bit zur Verfügung (32 Abstufungen) und sechs Bit für Grün (64 Abstufungen). Heute sind acht Bit pro Farbe üblich, was 2(8+8+8) = 65 536 Farben ermöglicht und als True Color bezeichnet wird. Für spezielle Zwecke (z. B. wissenschaftliche und medizinische Fotografie) werden auch Auflösungen von 10, 12, 14 und 16 Bit pro Farbe verwendet.



TFT-Flachbildschirme

Prinzip eines TFT-DN-Monitors
1: Glas
2 & 3: Vertikale und horizontale Polarisationsfilter
4: RGB Farbfilter
5 & 6: Horizontale und vertikale Elektroden
7: Polyamidschicht
8: Zwischenraum

Weil die TFT-Bildschirme als Alternative zum Röhrenbildschirm angeboten wurden, mussten sie den gleichen 15-poligen analogen Anschluss haben. Dadurch konnte sich jeder Nutzer für einen TFT-Bildschirm entscheiden, ohne die Grafikkarte wechseln zu müssen. Die Ablösung der CRT-Geräte ist nahezu vollständig. Es gibt jedoch immer noch spezielle Anwendungen, wo CRT-Geräte unersetzbar sind.

TFT ist die Abkürzung von Thin Film Transistor (Dünn-Film-Transistor). Diese Fototransistoren sind so dünn, dass sie durchscheinend sind. Das ist eine Weiterentwicklung der LCD-Technik (Liquid Crystal Display). Allen TFT-Bildschirmen gemeinsam ist das Wirkprinzip:

Zu jedem Bildpunkt gehören drei winzige Farbfilter: Rot, Grün und Blau. Mit jedem Filter ist ein Fototransistor verbunden. Das Licht einer möglichst gleichmäßigen weißen Hintergrundbeleuchtung wird durch die Farbfilter in die drei Grundfarben zerlegt und danach mehr oder weniger stark abgeschwächt. Das „Restlicht“ trifft dann das Auge des Betrachters, wo die drei Farben zu einer Mischfarbe verschmelzen.

Hintergrundbeleuchtung

Anfangs wurden die Displays von hinten mit Leuchtstoffröhren beleuchtet (CCFL-Technik). Ältere Displays und Fernseher benutzten vier Röhren. Um Herstellungskosten und vor allem Energie zu sparen, werden oft nur noch zwei Leuchtstoffröhren eingebaut (2CCF-Technik). Es ist nicht leicht, damit eine gleichmäßige Ausleuchtung zu erreichen. Um die Bildhelligkeit und den Kontrast zu verbessern, wird eine möglichst helle Hintergrundbeleuchtung benötigt. Die gegenwärtig technisch beste (und teuerste) Lösung ist die Verwendung von weißen LEDs. Vorteile dieser LED-Displays sind deren geringere Bautiefe, gleichmäßigere Ausleuchtung, ein größerer Farbraum, längere Lebensdauer und im Vergleich zu Leuchtstoffröhren ein halbierter Energiebedarf.

Die LED-Hintergrundbeleuchtung wurde zuerst in hochwertigen Notebooks verwendet, um eine längere Akkulaufzeit zu erzielen. Inzwischen ist die LED-Technologie in der Mittelklasse angekommen.

Im hellen Sonnenlicht ist auf einem TFT-Display nichts mehr zu erkennen, weil die Helligkeit der Hintergrundbeleuchtung nicht mit der Sonne mithalten kann. Es gibt aber eine Lösung dafür: das transflektive Display. Das Sonnenlicht wird ins Innere des Bildschirms durchgelassen und dort reflektiert. Das Sonnenlicht ersetzt oder ergänzt die Hintergrundbeleuchtung. Dabei wird sogar Strom gespart. Transflektive Displays werden für neuere Smartphones genutzt. Neuerdings gibt es auch große transflektive Displays, die beispielsweise im Schaufenster aufgestellt werden können.

Farbfilter

Es gibt inzwischen mehrere Arten der TFT-Technik. Verbreitet sind die TN-Panele (Twisted Nematic), weil sie am billigsten herzustellen sind und prinzipbedingt den geringsten Energiebedarf haben. Allerdings ist die Farbwiedergabe mäßig (etwa 260 000 Farben) und bei größeren Blickwinkeln verringert sich der Farbkontrast. Die nächsten Entwicklungsschritte waren DSTN-Panele (Double-Super-Twist-Technik) mit etwas besseren Farben, und die TSTN-Panele (Triple Supertwisted Nematic) sind noch besser.

Makro-Ansicht des Ausschnittes eines Farb-TFT-Displays

Die Auflösung

TFT-Bildschirme haben ein festes Raster von Bildpunkten, bei einem 17" und 19" Gerät sind es 1280 Bildpunkte waagerecht und 1024 Pixel senkrecht. Liefert die Grafikkarte ein Bild mit 1280 × 1024 Bildpunkten, ist die Zuordnung eindeutig und das Bild ist scharf. Wenn Sie Probleme mit der Sehleistung haben und deshalb die Grafikkarte auf eine kleinere Auflösung einstellen, zum Beispiel 1024 × 768 Pixel, hat der Grafikprozessor im Bildschirm drei Möglichkeiten:

  1. Es werden nur 1024 × 768 Pixel benutzt, der Rand des Bildschirms bleibt schwarz. Damit wird nur (1024/1280) × (768/1024) = 3/5 = 60 % des Bildschirms benutzt.
  2. Jeder vierte Bildpunkt in der Waagerechten und jeder dritte in der Senkrechten wird weggelassen. Bei größeren Flächen und breiten Linien ist das kein Problem. Schmale Linien (zum Beispiel von Buchstaben) können aber nicht einfach weggelassen werden, ohne die Darstellung zu verstümmeln. Buchstaben würden sowohl in der Höhe als auch in der Breite ungleichmäßig oder unlesbar.
  3. Der Prozessor im Bildschirm kann nach komplizierten Formeln errechnen, welche Bildpunkte an welcher Stelle des Bildschirms weggelassen werden dürfen und welche nicht. Diese Berechnung heißt „interpolieren“. Je leistungsfähiger der verwendete Prozessor, desto bessere Interpolationsformeln kann er verwenden. Trotzdem wird das Bild IMMER ein wenig oder ein wenig mehr unscharf sein.

Brillenträgern und älteren Personen sind Schrift und Windows-Symbole in der höchsten Auflösung meist zu klein; sie ziehen meist eine Auflösung von 1024 x 768 oder mitunter sogar 800 × 600 Bildpunkten vor, was besonders unscharf aussieht. Daher ist vor allem diesem Benutzerkreis zu empfehlen, ihren Wunschmonitor vor dem Kauf in der benötigten Einstellung sorgfältig zu prüfen. Es gibt durchaus TFT-Monitore mit hervorragender Interpolation, aber nicht in der untersten Preislage.

Gedanken vor dem Bildschirmkauf

Viele Leute kaufen einen neuen PC zwei- bis dreimal so oft wie einen neuen Monitor. Monitorkauf ist also eine Langzeitinvestition. Der Monitor ist das wichtigste Ausgabegerät. Ein mangelhafter Monitor verstärkt die Neigung zu Augen- und Kopfschmerzen, denn das Gehirn muss das von den Augen gelieferte unscharfe Bild nachbessern. Die Augenoptiker sind sich nicht einig darüber, ob ständige Anstrengung beim Sehen die Verschlechterung der Sehstärke beschleunigt.

Schätzen Sie zukünftige Entwicklungen ab. Denken Sie daran, wie schnell die Pixelzahl bei Digitalkameras in den letzten Jahren gestiegen ist. Auch im Internet gibt es einen Trend zu größeren Auflösungen und zunehmenden Detailreichtum bei Grafiken und Fotos. Das bedeutet für Sie:

Geizen Sie nicht beim Kauf des Monitors. Sie werden ihn jahrelang vor Augen haben.

Monitore werden zwar am Fließband produziert, trotzdem ist jedes Exemplar anders. Kaufen Sie möglichst keinen Bildschirm von der Palette oder im Versandhandel. Wenn Sie Wert auf Qualität legen, sollten Sie die Qualität nicht nur nach dem Vorführmodell beurteilen, sondern sich Ihr Exemplar in der nativen Auflösung vorführen lassen. Häufig wird die Wahl auf HDTV fallen, also 1920 x 1080 Pixel, und Sie sollten dann prüfen, bei welcher Bildschirmgröße, also z.B. 22, 24 oder sogar 27 Zoll, Ihnen die Darstellungsgröße einzelner Elemente, z.B. Desktop-Icons oder Programmmenüs, am ehesten zusagt.

Die Reaktionszeit von TFT-Bildschirmen wird von den Produzenten nach recht unterschiedlichen Methoden gemessen und ist teils geschönt. Es ist ratsam, Testberichte zu lesen.

Monitore mit integriertem Lautsprecher sind problematisch, da bei TFT-Monitoren die flache Bauweise es schwierig macht, einen guten Klang zu erhalten.

Ein „normaler“ Fernseher kann nicht an den PC angeschlossen werden, dafür braucht würde er eine Spezialbuchse brauchen. Die beliebte Kennzeichnung „HDTV vorbereitet“ sagt nichts über einen PC-Anschluss aus (eigentlich bedeutet diese Aussage nur, dass die Elektronik fähig ist, ein hochwertiges 1920 x 1080 HDTV-Bild so weit zu verschlechtern, dass es angezeigt werden kann).

Selbst wenn der Fernseher einen PC-Anschluss hat: Weil sich die Anzahl der Pixel bei Fernsehen (720 x 576 bzw. 1920 x 1080 bei HDTV) und PC unterscheidet, gibt es Schärfenprobleme bei TFT-Kombigeräten. Ende 2008 gab es noch kein Gerät, das gleichzeitig als Fernseher und als Computermonitor uneingeschränkt zu empfehlen ist. Sie werden sich wohl entscheiden müssen, was Ihnen wichtiger ist, und davon ausgehend die Bildschirmauflösung wählen.

Die immer beliebter werdenden Heimprojektoren (Beamer) verwenden die TFT-Technologie, daher gelten fast alle bisherigen Darlegungen auch für sie.

Ergonomie

Achten Sie beim Kauf auf das Prüfsiegel. Die schlechteste Norm ist MPR-1 darauf folgen MPR-2, TCO-92, TCO-95, TCO-99 TCO-03 und TCO-06. Die TCO-06, verabschiedet im Jahr 2006, wird mittlerweise von vielen Bildschirmen übertroffen.

Achten Sie beim Kauf eines großen LCDs mit hoher Auflösung darauf, dass die Grafikkarte dessen hohe Auflösung erreicht. Die maximale Auflösung bei Single-DVI beträgt 1920 x 1200 Pixel. Noch mehr Bilddaten können über einen DVI-Kanal nicht transportiert werden. Für eine höhere Auflösung brauchen Sie eine spezielle Dual-Link-Grafikkarte. Dual-DVI schickt über jeden der beiden DVI-Kanäle eine Hälfte der Bildinformation und kann damit eine Auflösung von maximal 2560 x 1600 Pixeln erreichen. Noch höhere Auflösungen sind nur über Thunderbolt, DisplayPort oder HDMI 1.4 möglich.



Grafikkarte


Grafikkarte nVidia Geforce 6600GT mit aktiver Kühlung, AGP
Grafikkarte nVidia Geforce 6200GT mit passiver Kühlung, PCI-Express

Die Grafikkarte verbindet den Computer mit dem Monitor. Die Elektronik der Grafikkarte steuert den Elektronenstrahl, der durch Beschuss der Fluoreszenzschicht des Bildschirms ein leuchtendes Bild erzeugt. Damit das Bild flimmerfrei ist, muss der Elektronenstrahl des Monitors jeden Bildpunkt etwa 85mal pro Sekunde zeichnen.

Flachbildschirme flimmern nicht, deshalb genügt es, 60 mal pro Sekunde (mit 60 Hertz) das Bild zu aktualisieren.

Auf den meisten Grafikkarten sind 64 MB RAM oder mehr eingebaut. Ein Teil dieses „Video-RAM“ wird als Arbeitsspeicher für den Gimp-icon-vergrössern-verkleinern.png Grafikprozessor verwendet. Ein anderer Teil des RAM wird als Gimp-icon-vergrössern-verkleinern.png BildWiederholSpeicher (BWS) benutzt. In diesem BWS ist für jedes Pixel (Picture Element = Bildpunkt) des Bildes gespeichert, wie hell und in welcher Farbe er leuchten soll. Die Elektronik der Grafikkarte liest immer wieder, 60-mal pro Sekunde oder öfter, Punkt für Punkt die gespeicherte Farbinformation und aktualisiert die Bildschirmdarstellung.

Auflösung und Farbtiefe

Als Auflösung bezeichnet man die Anzahl der Bildpunkte, die horizontal und vertikal untergebracht werden können. Eine Auflösung von 800 x 600 bedeutet, dass das Bild aus 800 Pixeln in der Waagerechten und 600 Pixeln in der Senkrechten besteht.

Farbtiefe nennt man die „Feinheit“ der Abstufung, mit der Farben gespeichert und wiedergegeben werden können. Eine Farbtiefe von 24 Bit bedeutet, dass acht Bit auf jede der drei Grundfarben entfallen. Weil 28 = 256 ist, kann man 256 Helligkeitsabstufungen für jede der Grundfarben kodieren. Für Rot, Grün und Blau jeweils 256 Helligkeitsabstufungen ergeben 256 x 256 x 256 = 2 hoch 24 = 16.777.216 mögliche Farbkombinationen.

Bei einer Auflösung von 1024 x 768 werden 786 432 Pixel dargestellt. Bei True-Color (24 Bit = 8 Bit pro Grundfarbe = 3 Byte) werden 1024 x 768 x 3 = 2.359.296 Byte für die Darstellung benötigt, aufgerundet auf die nächste Zweierpotenz ergibt das also 4 MByte Bildwiederholspeicher.

Bei 1600 x 1200 Bildpunkten x 32 Bit Farbtiefe benötigt man 8 MByte RAM auf der Grafikkarte. Wenn Sie mit Ihrem PC nicht spielen wollen, ist mehr RAM auf der Grafikkarte nicht nötig.
Tatsächlich hat ihre Grafikkarte viel mehr RAM. Grafikkarten mit weniger als 64 MByte RAM werden nicht mehr hergestellt. Der restliche RAM wird bei 3D-Darstellungen als Arbeitsspeicher für den Grafikprozessor verwendet.

Obwohl jede Einstellung der Grafikkarte eine andere Menge RAM benötigt, ist für jeden Grafikmodus eindeutig festgelegt, welche Bits im Grafik-RAM für welchen Bildpunkt zuständig sind. Während der Elektronenstrahl über den Bildschirm huscht, liest eine Elektronik, deren Kern ein „RAM Digital Analog Converter“ (RAMDAC) ist, die Farbinformation für jeden Bildpunkt aus dem BWS und wandelt diesen Digitalwert in drei analoge Helligkeitssignale um, eins für jede der drei Grundfarben. Diese drei Farbsignale, ergänzt um Synchronsignale für Zeilen- und Bildanfang, werden über das Kabel zum Monitor gesandt.

Blender3D FreeTip.gif

Empfehlung: Sehen Sie doch einmal nach, wie Ihr Computer eingestellt ist:
Wenn Sie mit Windows arbeiten, klicken Sie mit der rechten Maustaste auf einen freien Bereich Ihres Desktops, dann mit der linken Taste auf „Eigenschaften“. Wählen Sie die Registerkarte „Einstellungen“. Links unten sehen Sie die Farbtiefe, und rechts unten finden Sie einen Schieberegler, unter dem die momentane Auflösung steht. Mit „Abbrechen“ kommen Sie wieder zurück.

Bauformen der Grafikkarte

Etwa bis ins Jahr 2000 waren PCI-Grafikkarten üblich, denn die Gimp-icon-vergrössern-verkleinern.png PCI-Steckplätze der Hauptplatine hatten die schnellste Übertragungsrate. Weil PCI mit den wachsenden Anforderungen an die Grafikleistung nicht mehr mithalten konnte, bekam die Grafikkarte einen speziellen Steckplatz auf der Hauptplatine: den Gimp-icon-vergrössern-verkleinern.png AGP-Steckplatz. AGP ermöglichte die doppelte Datenübertragungsrate wie PCI. Seit 2006 gibt es den heute noch genutzten Typ Gimp-icon-vergrössern-verkleinern.png PCI-Express, der einen abermals deutlich beschleunigten Datentransfer ermöglicht.

Grafikkarten gibt es bereits ab 30 Euro, wohingegen Spitzenmodelle auch über 500 Euro kosten können. Gerade bei diesen Modellen ist der Preisverfall extrem hoch, weswegen sich für den durchschnittlichen Nutzer der Kauf kaum lohnt.

3D-Darstellung

Spielszenen heutiger Spiele sind dreidimensional. Es ist eine gewaltige Rechenarbeit nötig, um eine naturgetreue Darstellung zu erhalten. Die Oberflächen müssen berechnet, gefärbt und texturiert werden. Textur ist das Aussehen der Oberfläche: Spiegelnd, matt, geriffelt, textil, geknittert, ... Es muss ermittelt werden, welche Teile eines Körpers im Hintergrund durch davor befindliche Körper verdeckt werden. Lichtreflexe und Schattenwurf sind zu berechnen. Die Rechenarbeit wird zwischen der CPU und der Grafikkarte geteilt: Vereinfacht gesagt, liefert die CPU die Umrisse und die GPU (Grafik Prozessor Unit, deutsch: der Grafikprozessor) füllt sie aus. Die von der GPU durchzuführenden Berechnungen sind zahlreich, aber einfach und lassen sich gut parallelisieren (gleichzeitig ausführen). Heutige leistungsfähige GPUs haben hunderte Prozessorkerne, während die CPU mit zwei bis vier Kernen auskommen müssen. Nvidia glaubt, im Jahr 2015 werden 5000 „Stream-Prozessoren“ in einer GPU stecken. [30]

Onboard-Grafikkarte

Es geht auch ohne Steckplatz. Manche Hersteller integrieren eine preiswerte Grafikkarte auf die Hauptplatine. Diese „Onboard-Grafikkarte“ hat Vorteile:

  • Durch den Wegfall einer separaten Grafikkarte wird das PC-System um ein paar Dutzend Euro billiger.
  • Der Energieverbrauch verringert sich gegenüber einer Mittelklasse-Grafikkarte um etwa 50 Watt.

Für typische Office-Anwendungen ist eine Onboard-Grafikkarte völlig ausreichend, und für viele Home-PCs auch. Eigentlich wird eine separate Grafikkarte vor allem für aktuelle Action-Computerspiele und für spezielle grafische Anwendungen benötigt, z. B. für Videoschnitt und eventuell für hochauflösende Videos.

Wenn irgendwann die Leistung der Onboard-Grafiklösung nicht mehr ausreicht, kauft man eine separate Grafikkarte und steckt sie in einen freien Steckplatz, soweit vorhanden. In seltenen Fällen gibt es dabei Probleme, wenn die Abschaltung der Onboard-Komponente nicht funktioniert.

Shared Memory

Geradezu verheerend wirkt es sich aber auf die Leistung aus, wenn die Grafikelektronik keinen eigenen RAM bekommt, sondern sich einen Teil des Hauptspeichers mit dem Prozessor teilen muss. Das nennt man eine „Shared Memory“-Architektur. Bei einer Auflösung von 1024 x 768 mit High Color beispielsweise muss der Grafikchip pro Sekunde 1024 x 768 x 32 Bit x 85 Hz = 267 Millionen Byte lesen. Weil der Elektronenstrahl der Bildröhre nicht stoppen kann, erzwingt die Grafikelektronik den Vorrang für das Lesen der Bildinformation. Der Prozessor, die Festplatte und andere Komponenten müssen für ihre Speicherzugriffe auf eine der zeitlichen Lücken warten, welche die Grafikelektronik übrig lässt.

Wenn man mehr vorhat, als gelegentlich im Internet zu surfen oder kleine Texte zu verfassen, kann man Shared Memory nicht empfehlen. Von der Leistung mal ganz abgesehen, funktionieren manche neueren Spiele deshalb nicht, weil sie eine Grafikkarte mit eigenem Speicher voraussetzen.

In der Standardeinstellung einer Onboard-Grafikkarte werden meist 64 MB RAM für die Grafikelektronik vom Arbeitsspeicher „abgezweigt“. Wenn der PC beispielsweise 256 MB RAM hat, bleiben noch 256 – 64 = 192 MB Hauptspeicher übrig. Das ist nicht viel und bremst den PC aus. In Prospekten wird das verständlicherweise nicht hervorgehoben, sondern mit Formulierungen wie „bis zu 256 MB RAM“ verschleiert. Wenn Sie einen solchen PC nicht für 3D-Spiele verwenden wollen, können Sie im BIOS einstellen, dass nur 8 MB für die Grafikkarte abgezweigt werden sollen. 58 MB von 256 MB zurückzugewinnen macht den PC etwas schneller. Bei heutigen RAM-Größen von 1 GB und mehr lohnt diese Änderung nicht, der Effekt ist nicht messbar.

Turbo-Cache und Hyper-Memory

nVidia hat sich etwas einfallen lassen, um Grafikkarten billiger zu machen: „Turbo-Cache“ ist eine verbesserte, auf PCI-Express basierende, Shared-Memory-Technik. Bei ATI heißt diese Technik „Hyper Memory“. Grafikkarten werden mit einem Minimum an eigenem RAM bestückt, denn Grafik-RAM ist teuer. Wenn dieser kleine eigene Video-RAM nicht ausreicht, wird wie beim Shared Memory ein Teil des Hauptspeichers mitbenutzt. Weil die PCI-Express-Schnittstelle eine schnellere Datenübertragung als AGP ermöglicht, ist der Leistungsverlust weniger nachteilig als bei konventionellem Shared Memory. Wenn die Grafikkarte mindestens 8 MB eigenen RAM hat, tritt bei Büroanwendungen kein Geschwindigkeitsverlust ein. Bei Spielen und 3D-Anwendungen kommt man nur auf die halbe Leistung wie bei einer ausreichend mit RAM bestückten Grafikkarte.

Dual-Monitor-Lösungen

Es gab schon vor Jahrzehnten Profi-Grafikkarten mit zwei Monitoranschlüssen. Architekten und Konstrukteure konnten auf einem großen Bildschirm die Zeichnung darstellen, während ein kleinerer Zweitbildschirm für Befehle und Hilfsaufgaben verwendet wurde. Heute ist diese Technik bezahlbar geworden, fast jede Grafikkarte hat zwei Anschlüsse. Die Möglichkeit, zwei Bildschirme gleichzeitig anzuschließen, ist sehr interessant. Windows ermöglicht es, beliebige Fenster ganz einfach auf den zweiten Bildschirm zu verschieben. Zwei 19" Bildschirme haben die gleiche Gesamtfläche wie ein 27" Bildschirm, kosten aber sehr viel weniger. Man kann auch einen alten Monitor sinnvoll als Zweitgerät weiter nutzen, wenn man genügend Platz auf dem Tisch hat. Die Bildschirme dürfen unterschiedliche Eigenschaften haben, denn in der Regel kann man Auflösung und Bildfrequenz für beide Anschlüsse der Grafikkarte unterschiedlich einstellen.

Anschlüsse

DCI-I male connector.jpg VGA Card outputs2.jpg
DVI-I Stecker Grafikkarte
eines Adapters von hinten

VGA und DVI

Im Bild rechts sehen Sie die rückwärtigen Anschlüsse einer modernen Grafikkarte. Oben ist der klassische 15polige VGA-Anschluss zu sehen, in der Mitte ein kleiner runder Composite-Anschluss für den Anschluss eines Fernsehers und unten ein DVI-D Anschluss.

Anfangs waren alle TFT-Flachbildschirme mit dem klassischen VGA-Stecker ausgestattet, um sie an jede Grafikkarte anschließen zu können. Das brachte nicht die bestmögliche Bildqualität, denn die digitale Bildinformation im Bildwiederholspeicher wurde zuerst im RAMDAC in ein analoges Signal umgewandelt und im TFT-Flachbildschirm in ein Digitalsignal zurückverwandelt. Deshalb haben heute die meisten Grafikkarten und TFT-Bildschirme einen DVI-Anschluss (Digital Visual Interface). Es gibt mehrere Arten DVI-Anschlüsse, die wichtigsten sind DVI-D (nur digital), DVI-A (nur analog) und DVI-I (integriert, das heißt: analog und digital). An DVI-A und DVI-I kann man über einem Adapter auch einen Monitor mit dem klassischen 15-poligen Stecker anschließen. Das kleinere der nebenstehenden Fotos zeigt die Steckerseite eines solchen Adapters. Wenn Sie die nebenstehenden Fotos vergleichen, sehen Sie: Der Stecker (DVI-I) hat vier Stifte beidseits neben dem flachen senkrechten Kontakt, am Anschluss der Grafikkarte (DVI-D) fehlen die dazugehörigen Kontaktbuchsen. Außerdem ist das längliche Masse-Pin des DVI-I-Steckers etwas breiter als beim DVI-D-Stecker. Der Stecker passt also nicht. Das bedeutet, die Grafikkarte hat für den digitalen Ausgang keinen RAMDAC und kann kein Analogsignal erzeugen. Suchen Sie nicht in Fachgeschäften nach einem anderen Adapter, Sie werden niemals einen VGA-Bildschirm anschließen können. Nur ein TFT-Flachbildschirm passt, falls er einen DVI-Anschluss hat. Manche Flachbildfernseher haben einen DVI-Eingang, so dass man einen Computermonitor einsparen kann.

DVI unterstützt Auflösungen bis 1600 x 1200 Pixel bei einer Bildwiederholfrequenz von 60 Hertz. Bei der Auflösung von 1920 x 1200 Bildpunkten verringert sich die Bildwiederholfrequenz auf 52 Hertz. Solange keine schnellen Bewegtbilder übertragen werden, ist das unkritisch. Für höhere Auflösungen braucht man einen DVI Dual-Port. Damit sind maximal 2560 x 1920 Pixel bei 60 Hertz möglich.

DVI-D ist aufwärtskompatibel zu HDMI. Das bedeutet: DVI-D lässt sich mit einem Adapter nach HDMI konvertieren.

VGA oder DVI - was ist besser?

Einen Röhrenmonitor passt nur an den VGA-Anschluss, da hat man keine Wahl. Bei TFT-Monitoren trifft man oft beide Anschlussmöglichkeiten an, damit man sie auch an eine ältere Grafikkarte ohne DVI anstecken kann. Wenn man die Wahl hat, sollte man DVI bevorzugen. Bei digitaler Übertragung sind Qualitätsverluste im Monitorkabel ausgeschlossen, deshalb dürfen DVI-Kabel bis zu 5 Meter lang sein. Bis 10 m sind möglich, wenn das Kabel aus hochreinem Kupfer mit hervorragender Isolierung gefertigt ist. Bei VGA-Kabeln sollte die zulässige Kabellänge bis zum Monitor möglichst nicht über zwei Meter betragen, sonst lässt die Darstellungsqualität nach. Mit bloßem Auge kann man den Unterschied aber nur selten erkennen. Die Bildschirmhersteller haben sich geeinigt, die VGA-Schnittstelle nur noch bis zum Jahr 2015 zu unterstützen[31].

Wenn Sie einen Fernseher an den PC anschließen wollen, sollten Sie den Fernseh-Fachhändler fragen, ob Ihr Fernseher geeignet ist. Videos und manche Spiele sehen auf dem Fernseher richtig gut aus. Allerdings hat ein „normaler“ Röhrenfernseher (ohne HDTV) eine deutlich schlechtere Auflösung als ein Computerbildschirm und ist für Texte und Internet kaum geeignet. Versuchen Sie mal, sich 80 Buchstaben nebeneinander auf einem Röhrenfernseher vorzustellen!


HDMI

Als Nachfolger von DVI wird seit 2003 die HDMI Schnittstelle (High Definition Multimedia Interface) entwickelt. Sowohl die Filmindustrie als auch die Herstellern von Unterhaltungselektronik unterstützen HDMI. Bild- und Tondaten werden digital mit einem Kabel mit 19-poligem Miniatur-Stecker übertragen. Leider gibt es die Versionen HDMI 1.1, 1.2, 1.3 und 1.3a mit unterschiedlichen Übertragungsbandbreiten und unterschiedlichen Steckertypen. Kabellängen von 5 Metern sind problemlos möglich, mit hochwertigen Kabeln 10 bis 15 Meter. Der Kopierschutz HDCP ist integriert. [32]

HDMI ist abwärtskompatibel zum Vorgängerstandard DVI: Mit Adapter kann man einen DVI-Bildschirm an eine HDMI-Grafikkarte anschließen.

DisplayPort

Die Video Electronics Standards Association (VESA) hat eine neue Schnittstelle „DisplayPort“ entwickelt. Es gibt Stecker in Normal- und Mini-Ausführung. Gegenüber dem DVI-Standard sind Stecker und Buchsen deutlich kleiner. Dadurch können zukünftige Handys und andere kleine Geräte mit einem Bildschirmanschluss ausgestattet werden. Apple ist Vorreiter beim DisplayPort. Ihr Bildschirm hat keinen DisplayPort-Anschluss? Es gibt Adapter für VGA, DVI und HDMI. Ebenso wie bei DVI und HDMI wird der Kopierschutz HDCP verwendet.

Der DisplayPort ist technisch besser als DVI. Über eine Hauptverbindung können 2560 x 1600 Pixel mit 10 Bit Farbtiefe angesteuert werden. Ein Zusatzkanal kann für USB, Lautsprecher oder Eingabegeräte wie Mikrofon, Kamera oder berührungsempfindliche Bildschirme genutzt werden.

Thunderbolt

Auf Basis des Displayport-Standards wurde von Intel und Apple die Schnittstelle Thunderbolt entwickelt welche neben den DisplayPort-Bilddaten auch eine Übertragung von PCI-Express ermöglicht. Dabei werden Datenraten von 10 GBit/s auf zwei Kanälen erreicht - viermal so schnell wie USB 3.0. Zusätzlich definiert der Standard die Kaskadierung von Monitoren, so dass über eine einzige Schnittstelle mehrere Monitore hintereinander gehangen werden können. Dabei müssen die Verwendeten Monitore jedoch neben einem DisplayPort/Thunderbolt-Eingang auch über einen entsprechenden Ausgang verfügen an den das nachfolgende Gerät angeschlossen werden kann.

Mehrere Hersteller haben Thunderbolt-Peripherie angekündigt. Interessant ist die Schnittstelle dabei für sehr datenintensive Anwendungen wie schnelle Festplatten-Verbünde und Geräte zur Aufnahme von sehr hochauflösenden Videos.

Einbau einer Grafikkarte

Achtung beim Selbsteinbau! Moderne Grafikkarten brauchen viel Strom - mitunter mehr als über die kleinen Kontakte des Steckplatzes zugeführt werden kann. Leistungshungrige Karten müssen mit ein oder zwei Zusatzsteckern direkt an das Netzteil angeschlossen werden. Betreiben Sie die Grafikkarte nicht mal eine Sekunde ohne diese Zusatzversorgung, sonst könnte sowohl die Grafikkarte als auch die Hauptplatine durchbrennen!

Wollen Sie mehr über Grafikkarten wissen?




Multimedia


Die Digitalisierung

Analog-Digital-Wandlung, anschließend Digital-Analog-Wandlung

Das obere Bild zeigt als rote Linie die Spannung, wie sie vom Mikrofon kommt. Der dargestellte Abschnitt entspricht einer Zeitspanne von weniger als einer tausendstel Sekunde. Die Soundkarte wandelt dieses Analogsignal in digitale Daten um, siehe die mittlere Darstellung.

In der Ausgaberichtung erzeugt die Soundkarte Töne aus digitalen Daten, die aus einer Datei oder von einer CD stammen oder von einem Computerspiel synthetisch erzeugt werden. Dabei entsteht eine treppenförmige Spannung. Die Stufen werden mit einem Filter geglättet, und es entsteht eine Analogspannung entsprechend der roten Linie. Diese ist der Ausgangslinie im oberen Bild sehr ähnlich, die kleinen Unterschiede sind nicht hörbar.

Wie geht die Digitalisierung des Mikrofonsignals genau vor sich? Die Amplitude des Tonsignals wird in regelmäßigen, sehr kurzen Intervallen gemessen. Der CD-Standard sieht eine „Samplingrate“ von 44,1 kHz und eine „Auflösung“ von 16 Bit vor.

  • Die Samplingrate gibt an, wie oft pro Sekunde die Lautstärke gemessen wird. Um CD-Qualität zu erreichen, muss 44.100 mal pro Sekunde die Lautstärke des Tons gemessen werden.
  • Auflösung bedeutet, dass die Lautstärke mit einer Genauigkeit von 16 Bit gemessen wird, das sind 65.536 Abstufungen.

Das ist ausreichend, um Töne mit einer Frequenz bis 22 kHz zu reproduzieren. Das erreichbare Maximum liegt höher: Hochwertige Soundkarten können mit 96 kHz digitalisieren, und Soundkarten für Musiker erreichen 192 kHz mit 24-Bit-Auflösung. Je höher diese Werte, desto besser die Qualität. Andererseits werden die erzeugten Sounddateien sehr groß. Deshalb können Auflösung und Samplingrate bei allen Soundkarten reduziert werden, um den besten Kompromiss zwischen Qualität und Speicherbedarf einzustellen. Eine Abtastung mit 11 kHz bei 8-Bit-Auflösung benötigt gegenüber CD-Qualität nur ein Viertel des Speicherplatzes, aber erreicht gerade noch die Qualität eines Telefongesprächs.

Welche Datenmenge entsteht bei der Digitalisierung pro Tonkanal?
Qualität Samplingrate Auflösung Speicherbedarf
Telefonqualität 11 kHz 8 Bit = 1 Byte 11.000 x 1 = 11 kByte pro Sekunde
CD-Qualität 44 kHz 16 Bit = 2 Byte 44.000 x 2 = 88 kByte pro Sekunde
Beste Studioqualität 192 kHz 24 Bit = 3 Byte 192.000 x 3 = 576 kByte pro Sekunde

Eine Stereo-Aufnahme hat zwei Kanäle, also müssen die obigen Werte verdoppelt werden. Eine Digitalisierung in bester Studioqualität (192 kHz/24 Bit/Stereo) würde nach reichlich einer Sekunde eine Diskette füllen! Eine CD wäre schon nach zehn Minuten voll.

AC97

Intel hatte die Idee, dass moderne CPUs genug Leistung haben, um neben den normalen Aufgaben auch noch die Analogdaten zu berechnen. Herausgekommen ist die AC97-Spezifikation (Audio Codec 97). Dadurch genügt ein einfacher Chip für die Soundausgabe, der mittlerweile auf jeder Hauptplatine verbaut ist. Die Prozessorlast steigt bei Nutzung dieses Chips stark an. Wenn Ihre Computerspiele ruckeln, können Sie durch Einbau einer Soundkarte (in der Preislage um 50 bis 100 €) die Prozessorlast signifikant verringern.

Soundkarte mit 5.1 Klang. Beachten Sie die Anschlüsse: Rot ist für das Stereo-Mikrofon. Blau, Schwarz und Grün sind für ein 5.1 Soundsystem. Darunter befindet sich der Joystick-Anschluss.

Raumklang

Die Firma „Creative Labs“ hat die Raumklangtechnologie EAX entwickelt. Eine konkurrierende Technologie A3D der Firma „Aureal“ wurde von Creative Labs übernommen und in EAX integriert.

Man könnte zwar annehmen, dass für den Raumklang zwei Lautsprecher ausreichen, weil der Mensch auch nur zwei Ohren hat. Versuche haben aber ergeben, dass für einen optimalen Raumklang ein Surround-System mit drei oder mehr Lautsprechern empfehlenswert ist.

Wenn ein zusätzlichen Subwoofer (ein Lautsprecher für Basstöne) als dritter Kanal angeschlossen ist, spricht man von einem 2.1 Soundsystem. Es können auch 5, 6 oder 8 Lautsprecher angeschlossen werden. Lautsprechersysteme werden mit den Ziffernkombinationen 2.1, 4.1, 5.1 oder 7.1 bezeichnet. Die zweite Ziffer steht für den Subwoofer, die erste Ziffer gibt die Anzahl der „Satellitenlautsprecher“ an. Wenn die erste Ziffer ungerade ist, steht in der Mitte außer dem Subwoofer ein zusätzlicher Hochtonlautsprecher. Die anderen Lautsprecher sind rechts und links verteilt.

Spiele übermitteln über den DirectX Treiber den gewünschten Klang an die Soundkarte, die den gewünschten Raumklang berechnet. Aber nicht nur Spieler profitieren vom Raumklang. Hochauflösendes Fernsehen, neuere Video-DVDs und neuere Musik-CDs benutzen die zusätzlichen Kanäle.

Physiologisches

Gesunde Jugendliche können Töne zwischen 16 Hz und 20 kHz hören, wenn der Ton nicht zu leise ist (70 db). Töne unter 30 Hz werden nicht mit dem Ohr gehört, sondern der Körper fühlt die Vibrationen. Gute Subwoofer (Tiefton-Lautsprecher) können Töne bis herunter zu 15 Hz wiedergeben.

Die obere Hörschwelle verringert sich mit zunehmendem Alter. Mit 40 kann man noch 15 kHz hören, mit 60 Jahren verringert sich die höchste hörbare Frequenz auf 12 kHz. Das Gehirn ergänzt die nicht mehr hörbaren Schwingungen aus der Erinnerung.

PMPO

Der Maximalwert, oder auch PMPO (Peak Maximum Power Output) ist der Wert, den ein Verstärker oder Lautsprecher nur sehr kurzzeitig aushält. Dauert diese Belastung länger als wenige Sekunden, erzeugt der Lautsprecher ein feines Qualmwölkchen. Mess- und hörbare Verzerrungen treten schon bei einem Bruchteil der PMPO-Leistung auf. Dieser Wert ist also für die Praxis unbrauchbar. Sinnvolle Werte ergeben sich beim Messen von Sinuswellen. PMPO-Werte im Marketing zu verwenden, ist Dummenfang.



Fernsehen am PC


Das analoge Fernsehbild

Auflösung

Die technischen Daten für das Fernsehbild wurden in den 40er Jahren entsprechend den damaligen technischen Möglichkeiten festgelegt. Das europäische Fernsehen arbeitet nach der PAL-Norm 576i/25. In dieser Norm ist festgelegt, dass 25 Bilder pro Sekunde übertragen werden. Für die Übertragung steht eine Bandbreite von 5 MHz zur Verfügung. Zum Vergleich: Heutige Computermonitore verkraften 140 MHz und mehr.

5 MHz bedeuten vereinfacht, dass 5.000.000 Bildpunkte pro Sekunde übertragen werden können. Geteilt durch 25 Bilder/s ergibt das 200.000 Bildpunkte pro Einzelbild.

Als Auflösung der Fernsehbildröhre (Raster) werden 576 Bildzeilen zu je 768 Bildpunkten genannt. Das ergibt ein Seitenverhältnis von 4:3 und eine Anzahl von 442.368 Bildpunkten (768 x 576) pro Bild. Das ist deutlich mehr als die 200.000 Bildpunkte, die tatsächlich übertragen werden können.

Nun wurde aber 1934 experimentell festgestellt, dass es Darstellungsprobleme bei feinen waagerechten und senkrechten Linien gibt. Es treten Interferenzen mit dem Raster des Displays auf. Unter Berücksichtigung der Eigenschaften des Auges werden nur 330 x 576 Bildpunkte übertragen und bei der Darstellung gewissermaßen auf 576 x 768 Bildpunkte vergrößert. Das Produkt von 330 x 576 = Bildpunkten ergibt 190.080 Bildpunkte. Details siehe Kellfaktor.

An den Fernseher kann auch ein Videorekorder angeschlossen werden. Dann arbeitet der Fernseher in einer anderen Betriebsart. Je nach verfügbarer Bandbreite kann bzw. muss die Auflösung der Übertragung verändert werden. Ein VHS-Videorecorder schafft maximal 220 Bildzeilen, während S-VHS Videorecorder mit 400 Bildzeilen sogar eine bessere Qualität als Fernsehen erreichen. Mehr zu dieser komplizierten Thematik unter http://www.edv-tipp.de/dvd/004_aufloesung.htm und http://www.brumbi.de/body_videotechnik.html.

Halbbilder

25 Bilder pro Sekunde (beim Film sind es 24) reichen aus, um Bewegungen fließend darzustellen. Allerdings flimmert das Bild heftig. Daher wurde das Bild in zwei Halbbilder aufgeteilt. Das erste Halbbild enthält die Bildzeilen mit ungeraden Nummern, das zweite Halbbild die mit geraden Nummern. Diese Halbbilder werden nacheinander dargestellt, um eine Bildzeile versetzt. Dieser Versatz heißt Zeilensprung, engl. Interlacing.

Auf den ersten Blick erscheint das unsinnig. Worin soll der Unterschied bestehen, ob die Bildzeilen in der Reihenfolge 1-2-3-4-5-6 oder 1-3-5 und 2-4-6 geschrieben werden? Bei einem zeitlich unveränderten Bild macht das tatsächlich keinen Unterschied. Der Unterschied entsteht, weil die Kamera ebenfalls mit dem Interlacing-Verfahren arbeitet. Statt alle 40 ms ein ganzes Bild zu senden, wird 20 ms lang das „erste“ Halbbild aufgenommen und in den nächsten 20 ms das „zweite“ Halbbild. Wenn sich das Aufnahmeobjekt bewegt hat, ist das zweite Halbbild bereits anders! Dadurch werden Änderungen vor der Kamera 50mal pro Sekunde erfasst und übertragen. Das Flimmern verschwindet.

Der Tuner

Der Tuner ist das silbrig glänzende Metallgehäuse auf der Videokarte. Er filtert aus dem Wirrwar der vielen Fernsehsender den gewünschten Kanal heraus, arbeitet insoweit wie der Tuner im Radioempfänger. Das Signal wird demoduliert, d. h. von der Trägerfrequenz befreit. Aus dem Videosignal werden die beiden Tonkanäle herausgefiltert. Die verstärkten Tonsignale können vom Soundausgang der Fernsehkarte entweder direkt zu Lautsprechern oder besser zum Line-in-Eingang der Soundkarte geführt werden.

Das Fernsehsignal

Das farbige Fernsehbild wird aus den Primärfarben Rot, Grün und Blau zusammengesetzt. Es wird aber nicht in dieser Form übertragen. Als das Farbfernsehen eingeführt wurde, musste gesichert sein, dass die älteren Schwarz-Weiß-Fernseher unverändert weiter verwendet werden können. Deshalb erzeugen die Kameras - wie früher - ein Schwarz-Weiß-Signal (Y), welches in Farbkameras um zwei Farbdifferenzsignale ergänzt wird: Schwarzweiß minus Blau (U) und Schwarzweiß minus Rot (V). Der Grünanteil braucht nicht übertragen werden, da er aus den anderen errechnet werden kann. Diese drei Farbkanäle werden zu einem einzigen Signal zusammengefügt, welches FBAS oder Composite-Signal heißt. Dieses wird mit einer Trägerfrequenz moduliert und nach dem Hinzufügen der Tonkanäle ausgestrahlt.

Der Videobaustein

Er hat zwei Aufgaben zu erledigen: Er muss das Composite-Signal in ein RGB-Signal umwandeln, indem der Grünanteil ermittelt wird. Anschließend muss das analoge Bildsignal in ein digitales umgewandelt werden. Dabei entsteht ein virtuelles Abbild von 768 x 576 Bildpunkten.

Diese Bildinformationen müssen nun noch in den RAM der Grafikkarte übertragen werden. Dazu müssen 44 MByte/s zur Grafikkarte übertragen werden. Für den PCI-Kanal, der theoretisch bis zu 133 MByte/s übertragen kann, ist das eine erhebliche Last. Bei alten PCs ohne PCI-Bus musste die Fernsehkarte mit einer dafür geeigneten Grafikkarte per Flachbandkabel direkt verbunden werden, denn über den ISA-Bus konnten nur 10 MByte/s übertragen werden.

Eine Übertragungsrate von 44 MByte/s ist auch über Firewire (max. 50 MByte/s) und USB 2.0 (max. 60 MByte/s) realisierbar. Das ermöglicht es beispielsweise, Fernsehempfang über einen USB-Stick nachzurüsten.

Digitales Fernsehen

Im Ausbau befindet sich das digitale Fernsehen DVB-T. Durch moderne Digitalisierungs-, Kodierungs-, Kompressions- und Fehlerkorrekturen wird erreicht,

  • dass mit kleinen Zimmerantennen fast überall ein stabiler Empfang möglich ist (natürlich nur da, wo auch DVB-T zur Verfügung steht), weshalb es in der Werbung als „Überallfernsehen“ bezeichnet wird,
  • dass im Frequenzband eines herkömmlichen Analog-Fernsehsenders entweder vier bis sechs digitale Fernsehkanäle oder ein bis zwei hochauflösende Kanäle untergebracht werden können.

DVB-T-Empfänger werden als USB-Geräte oder interne Karten für den PCI-Slot angeboten. Die Anzahl verfügbarer Kanäle ist gegenwärtig in den meisten Regionen recht gering. Mancherorts sind nur ARD, ZDF, 3sat, Arte, Phönix, KiKa, Eins Festival und ZDF Infokanal zu empfangen. Für die Bundesliga am Strand reicht das aus.

Hochauflösendes Fernsehen

Für HDTV gibt es gegenwärtig folgende Varianten:

  • 720p (HD-Ready): Die Bildauflösung beträgt 1280 x 720 Pixel.
  • 1080i (HD) mit einer Auflösung von 1920 x 1080 Pixel, interlaced
  • 1080p (Full-HD) mit einer Auflösung 1920 x 1080 Pixel, progressiv

„progressiv“ bedeutet, dass 25 Bilder pro Sekunde übertragen werden. Das „interlaced“-Verfahren ist zweite Wahl, denn es wird nur die halbe Datenmenge übertragen, was für 25 halbe Bilder pro Sekunde reicht. Die Bildschärfe ist schlechter als bei 1080p und Bewegungen wirken weniger flüssig.

Welche Sender übertragen HDTV?

Es gibt Sender, die in HDTV ausstrahlen.

  • Arte sendet schon länger in HDTV
  • ARD und ZDF haben 2010 zu den olympischen Winterspielen (12.-28. Februar 2010) mit der HDTV-Ausstrahlung begonnen.
  • Sky, der Premiere-Nachfolger, hat sechs HDTV-Kanäle.
  • Die Bezahlsender Discovery HD und TF1 HD senden ebenfalls im HDTV-Format.
  • Auch Privatsender senden mittlerweile über Satellit in HDTV. Dazu gehören Pro7, Sat1, RTL und Kabel1. Allerdings sind diese Sender verschlüsselt und können nur mit der HD+ Smartcard und einem HDTV-tauglichem Receiver mit CI-Slot gesehen werden.
Wozu ist ein HDTV-Fernseher zu gebrauchen, solange die Fernsehsender kaum HDTV ausstrahlen? Womit kann die hohe Auflösung genutzt werden?
  • Multimedia-PCs bei Wiedergabe von HD-Fotos oder HD-Videos,
  • Blu-ray-Player mit entsprechenden Medien,
  • X-Box und Playstation 3
  • HDTV-taugliche Camcorder
  • Digitalkameras mit mehr als 2 Megapixeln, wenn sie einen HD-Ausgang haben,
  • Videos von einigen Online-Videotheken.
  • Einige neuere DVD-Player oder AV-Receiver benutzen eine Technik namens Upscaling. Ältere DVD mit geringer Auflösung werden mit zusätzlichen Pixeln ergänzt, um die HD-Auflösung zu erreichen.

Der Empfang von HDTV kann über ein Kabelnetz oder über Satellit erfolgen. Über das terrestrische Netz (herkömmliche Fernsehantennen) kann es nicht ausgestrahlt werden, die Bandbreite reicht dafür nicht. Das öffentlich-rechtliche HDTV wird zurzeit nur über Astra ausgestrahlt,

Lohnt sich die Anschaffung eines HD-Fernsehers, um das klassische (analoge) Fernsehen zu empfangen?

Nur, wenn der Fernseher sehr teuer ist. Wer überwiegend das klassische PAL-Format sieht, braucht kein HD-TV-Gerät. Das relativ grobkörnige PAL-Bild muss auf die fünfmal höhere Bildpunktzahl von Full-HD interpoliert (hochgerechnet) werden. Das Bild sieht meist schlechter aus als auf einem guten Röhren-Fernseher. Nur wenn ein hochwertiger Bildprozessor mit einem guten Algorithmus im Bildschirm steckt, sind Qualitätsverluste vermeidbar.

Ausnahme

Mit guten Algorithmen und mit genügend großer Rechenleistung ist eine so gute Interpolation eines analogen Fernsehbildes möglich, dass es auch auf einem hochauflösenden Bildschirm gut aussieht. Die preiswerteren Bildschirme der HD-Ready und HD-Kategorie verfügen nicht über einen so guten Bildprozessor (sonst wären sie nicht mehr preiswert). Hochwertige Grafikkarten haben für diesen Zweck genug Rechenleistung. Wenn Sie das Fernsehbild über DVB-C oder DVB-S mit dem Computer empfangen und eine Grafikkarte GeForce 8400 oder besser im Computer haben, kann das Bild auf einem hochauflösenden Monitor oder einem an die Grafikkarte angeschlossenen HD-Fernseher perfekt aussehen.

Lohnt sich die Anschaffung eines HD-Ready-Bildschirms?

Obwohl deutlich preiswerter als ein Full-HD-Fernseher, ist davon abzuraten. HD-Ready bedeutet, dass die Elektronik des Gerätes imstande ist, ein 1920 x 1080 Bild auf 1280 x 720 zu verschlechtern (herunterzurechnen). Gegenwärtig ist kein Sender bekannt, der die Ausstrahlung als 720p plant, allgemein wird 1080i favorisiert. Filme auf Blu-ray werden in der Full-HD-Auflösung angeboten.


DVB-T

Ein Gimp-icon-vergrössern-verkleinern.png DVB-T Empfänger ist in einigen Notebooks eingebaut oder man kann eine kleine Box an USB anstecken. DVB-T als „Überallfernsehen“ zu bezeichnen ist eine Werbelüge. In einigen Ballungsgebieten ist der Empfang der öffentlich-rechtlichen Sender mit einer Zimmerantenne oder auf der Wiese möglich. Die Betreiber von DVB-T geben an, dass 90 % der Haushalte DVB-T empfangen können, doch außerhalb von Großstädten braucht man eine Antenne mit Verstärker oder sogar eine Dachantenne[33]. Es gibt ländliche Gebiete und Kleinstädte, wo selbst mit einer Dachantenne kein Empfang möglich ist. Für die privaten Sender ist der Empfangsbereich noch kleiner, außerdem sind die Sender verschlüsselt. Wenn der Empfang zu schwach ist, ruckelt das Bild oder das Bild bleibt stehen.

Vier Millionen Haushalte nutzen DVB-T, darunter viele als Zweitgerät im Wohnwagen oder Wochenendhaus, hat eine Marktanalyse von Samsung ergeben. Wenn man sich nicht an der geringen Senderzahl stört, ist DVB-T eine sehr preiswerte Lösung.

DVB-T2

Logo für Deutschland

Im Mai 2016 hat der Probebetrieb des neuen Standards begonnen, Anfang 2017 soll der Regelbetrieb beginnen und 2019 soll das alte DVB-T abgeschaltet werden. DVB-T brauchte eine Kanalbreite von 14 Mbit/s für eine Auflösung von 704 × 576 Pixel. Das neue Videokompressionsverfahren MPEG4 (H.265) ist das gegenwärtig modernste der Welt und braucht nur noch 4 Mbit/s für die HD-Auflösung von 1920 × 1080 Pixeln. Dadurch können viel mehr Sender übertragen werden.

In Nachbarländern gibt es DVB-T2 seit Jahren, allerdings mit dem älteren Kompressionsverfahren H.264. Das bedeutet leider: Nicht jedes Gerät mit DVB-T2 im Datenblatt funktioniert in Deutschland, insbesonders alle 2015 und früher gekaufte Geräte. Die tv-plattform.de vergibt ein grünes Logo „DVB-T HD“ an Geräte, die in Deutschland funktionieren. Viele DVB-T2-Geräte werden auch DVB-T empfangen können.

Für den Fernseher kann man einen DVB-T2-Receiver ab etwa 40 Euro kaufen. Für den Computer gibt es DVB-T2-Empfänger als USB-Gerät in einer Größe von 5 × 2 × 1 cm mit einer 15-cm-Standantenne für weniger als 20 Euro. In einigen Notebooks ist ein DVB-T2 Empfänger eingebaut.

DVB-Stick (USB) für Computer mit zugehöriger Antenne


Gehäuse


Die Wahl eines geeigneten Gehäuses entscheidet mit über Lebensdauer, Zuverlässigkeit und den Geräuschpegel Ihres Computers. Das Gehäuse ist nicht nur ein Stück Blech. Sogar die Dicke des Bleches ist wichtig: Dünne Bleche neigen mehr zu Vibrationen.

Abmessungen

Standardgröße

Fast alle Gehäuse haben die gleiche Grundfläche: Sie sind 19 cm breit und 42 bis 45 cm tief. Bei der Planung des Stellplatzes müssen noch jeweils 6 cm hinter dem PC (für Kabel) und 13 cm vor dem PC (für die Schublade der CD/DVD Laufwerke) berücksichtigt werden. Die Höhe des Gehäuses schwankt sehr stark. Sogenannte Midi-Tower-Gehäuse haben vier Einbauplätze für DVD- und andere große Laufwerke, was eine typische Höhe von 42 cm ergibt.

Reduziert man die Zahl der Einbauplätze auf zwei, erhält man einen Mini-Tower mit einer Höhe von etwa 34 cm. Sie schränken damit aber nicht nur die Höhe, sondern auch die späteren Erweiterungsmöglichkeiten ein. Es kommen ständig neue Geräte und neues Zubehör auf den Markt, von denen manche einen großen Einbauplatz erfordern.

Blender3D FreeTip.gif

Empfehlung: Achten Sie darauf, dass über dem Brenner sowie über und unter der Festplatte jeweils ein Slot frei bleibt. Das erleichtert die Wärmeableitung. Außerdem ist ein Zusatzlüfter für die Festplatten dringend zu empfehlen.

Desktop-Gehäuse

Als Desktop-Gehäuse bezeichnet man liegende Gehäuse. Sie sind besonders praktisch, wenn man einen großen Röhrenbildschirm darauf stellen möchte. Weil aber die innen entstehende Wärme nicht nach oben aufsteigen kann, sind sie für besonders leistungsfähige PC wenig geeignet.

Slimline-Gehäuse

So nennt man ein Desktopgehäuse, dessen Höhe auf etwa 10 cm verringert ist. Diese Bauform ist nicht zu empfehlen:

  • Erweiterungskarten kann man nicht direkt auf die Hauptplatine stecken, da sie standardmäßig 12 cm hoch sind.
  • Um trotzdem handelsübliche Erweiterungskarten stecken zu können, wird eine Art Verteilerstecker verwendet, ein sogenannter „Bus-Adapter“. Dieser belastet aber die auf Höchstleistung getrimmte Schaltung und verzögert Steuersignale. Nicht jede Erweiterungskarte läuft unter diesen Bedingungen stabil, eventuell muss sogar der Datenverkehr (der Takt vom Gimp-icon-vergrössern-verkleinern.png Front Side Bus) gebremst werden.
  • Die generellen thermischen Probleme von Desktopgehäusen werden durch die geringe Bauhöhe weiter verschärft. Zusätzliche Lüfter können die thermischen Probleme mindern, erhöhen aber den Lärmpegel.

Miniaturgehäuse

Einige Hersteller bieten miniaturisierte Gehäuse mit verkleinerten Netzteilen an, die angeblich besonders geeignet für das Wohnzimmer sind. Davon ist aus zwei Gründen abzuraten:

  • In einem zu kleinen Gehäuse ist die Luftzirkulation behindert, weshalb zusätzliche Lüfter benötigt werden. Die Lüfter müssen einen latenten Wärmestau auflösen und besitzen eine höhere Drehzahl, was den PC merklich lauter werden lässt. Dadurch ist er letztlich wohnzimmeruntauglich.
  • Reparatur und Aufrüstung sind erschwert. Standard-Hauptplatinen und -Netzteile passen nicht. Die herstellerspezifischen Ersatzteile sind entweder nicht zu beschaffen oder ihre Beschaffung ist unwirtschaftlich.

Oft steht in solchen Gehäusen die Festplatte senkrecht auf der Stirnseite, auf den Kabelanschlüssen oder ist in einer anderen verbotenen Einbaulage eingeschraubt. Die Zuverlässigkeit und der Verschleiß der Festplatte erhöht sich, deren durchschnittliche Lebensdauer sinkt, Garantieverlust droht. Mehr dazu siehe die Ausführungen zur Einbaulage der Festplatte. Oft steckt die Festplatte in einem „Käfig“, der die Luftzirkulation behindert. Weil meist kein Platz vorhanden ist, einen Festplattenlüfter einzubauen, verringert sich die Lebensdauer der Festplatte noch mehr.

Ganz allgemein kann man sagen: Je kleiner das Gehäuse, desto wahrscheinlicher ist der Hitzetod. Ganz klar kann man das an den besonders kleinen Computern sehen: Den Spielkonsolen. Eine Umfrage unter 500.000 Besitzern ergab, dass 42% aller XBox360 und 8% aller PlayStation 3 schon eine Reparatur benötigten oder ersetzt werden mussten[34]. Bei der Wii sind es nur 1%. Von den reparierten Konsolen mussten 55% (XBox) bzw. 12% (PS3) mehrmals repariert werden. Ärgerlich, selbst wenn die Garantiezeit noch nicht abgelaufen ist.

Eine Umfrage des Spielemagazins „Game Informer“ ergab eine Ausfallrate der XBox von 54,2%[35].

Große Gehäuse

Manche PCs laufen rund um die Uhr und kühlen nie ab. Wenn eine hochwertige Grafikkarte und eine schnelle CPU viel Wärme erzeugen und häufig CDs und DVDs gebrannt werden, kann ein Hitzestau entstehen. Besonders viel Hitze entsteht in Netzwerkservern. Die Temperatur der Hauptplatine sollte durchschnittlich nicht über 30°C und auch kurzzeitig nicht über 40°C liegen. Die Festplatte sollte keinesfalls wärmer als 55°C werden. Welche CPU-Temperatur zulässig ist, hängt vom Prozessortyp ab und muss auf den Webseiten von Intel bzw. AMD ermittelt werden. Eine CPU-Temperatur unter 60°C ist für jede CPU unkritisch.

Wenn viel Wärme im Gehäuse entsteht, gibt es zwei Möglichkeiten:

  • Man wählt ein großes Gehäuse vom Typ „Big Tower“.
  • Man baut viele (fünf bis acht) Lüfter ein, die natürlich für einen hohen Geräuschpegel sorgen.

„Montagefreundliche“ Gehäuse

Es ist ja ganz nett, wenn man das Gehäuse schnell auf- und zumachen kann. Die Laufwerke werden auf Gleitschienen in das Gehäuse eingeschoben. Aber wie nützlich ist es denn wirklich, ein DVD-Laufwerk mit wenigen Handgriffen wechseln zu können? Wie oft in einem Computerleben werden Sie denn voraussichtlich das DVD-Laufwerk wechseln? Besser sind Gehäuse, in denen Sie Festplatte und Brenner mit dem Gehäuse verschrauben können. Die Wärmeableitung verbessert sich, weil das Gehäuse als Kühlblech wirkt.

In manchen Gehäusen brauchen bzw. können die Steckkarten nicht an der Rückwand des Gehäuses festgeschraubt werden, sondern sie werden nur festgeklemmt. Das erspart eine Minute bei der Montage, aber es erhöht die Gefahr von Wackelkontakten.

Formfaktor

Wo am Gehäuse die Anschlüsse (Tastatur, Maus, USB, Sound) und die Slots für Erweiterungskarten sind, wird durch den sogenannten Formfaktor festgelegt.

1996 wurde der Formfaktor „ATX“ (ATX bedeutet „Advanced Technology eXtended“) für den Pentium MMX und den Pentium II eingeführt.

2005 propagierte Intel einen neuen Formfaktor „BTX“. BTX bedeutet „Balanced Technology eXtended“. Diese „balancierte“ Technologie soll vor allem eine bessere Kühlung der Komponenten durch die Optimierung der Luftzirkulation im Gehäuse bewirken. Die Wärme produzierenden Komponenten (Prozessor, RAM, Chipsatz) werden auf der Hauptplatine in einer Reihe angeordnet und mit einem speziellen Kühlkanal abgedeckt, so dass ein einziger großer Lüfter zur Kühlung ausreicht. Der zusätzliche Kühlkanal macht BTX-Boards und -gehäuse etwas teurer.

Durch neue Technologien (Doppelkern-Prozessoren) entsteht aber trotz steigender Rechenleistung weniger Abwärme, deshalb wird die BTX-Technologie gegenwärtig nicht benötigt. Vorerst reicht die ATX-Technologie noch aus. Intel hat im Jahr 2007 aufgehört, BTX-Hauptplatinen zu entwickeln oder vorzustellen.

AMD versucht gegenwärtig, eine Bauform „DTX“ zu etablieren. PCs und Hauptplatinen sollen kleiner werden. Der Erfolg blieb bisher aus. Nach Intels gescheitertem BTX-Abenteuer halten sich die Händler zurück.

Wollen Sie mehr über Gehäuse wissen?




Netzteil


Einleitung

Ein Netzteil muss je nach System eine Gesamtleistung von 100 bis 700 Watt bereitstellen. Das ist etwa der Stromverbrauch eines kleinen Heizkörpers!

Das Netzteil erzeugt mehrere Betriebsspannungen:

  • 12 V für Motoren und andere leistungshungrige Elektronik
  • 5 V für sparsame Komponenten
  • 3,3 V für diverse Spannungen auf dem Mainboard
  • -12 V für manche ältere Peripherie (z. B. serielle Schnittstelle)
  • 5 V SB Ruhezustand

Keine der Spannungen darf mehr als 5% vom Sollwert abweichen, obwohl der Strombedarf des Computers schnell und stark schwankt. Je nachdem welches Programm Sie gerade benutzen und was das Programm gerade tut, ändert sich jede Mikrosekunde der Strombedarf. Um diese Spannungsschwankungen zu dämpfen, sind Netzteil, Hauptplatine und Steckkarten mit vielen Kondensatoren bestückt. Hochwertige Platinen sind (teilweise oder komplett) mit „Solid Caps“, Kondensatoren mit festem Elektrolyt, ausgerüstet. Sie altern unter dieser Belastung deutlich langsamer als normale Kondensatoren. Bei Netzteilen sind dagegen Modelle mit Solid Caps noch selten, da dort viel höhere Spannungen vorhanden sind.

Mehr als 99% dieser Leistung werden von den Komponenten im PC in Wärme verwandelt, der Rest in Schall und Elektrosmog. Prozessor, Grafikkarte, Festplatte und Chipsatz sind die größten Stromverbraucher, auch das Netzteil selbst hat einen beträchtlichen Eigenstrombedarf. Deshalb muss der PC durch Lüfter gekühlt werden.

Das Netzteil liefert fünf Spannungen - warum werden 28 Drähte benutzt, um die Hauptplatine mit Strom zu versorgen? Weil eine Stromstärke von dutzenden Ampere für einen einzelnen Draht zu hoch ist.

Ruhezustand

Wenn Windows den PC beim Herunterfahren ausschaltet oder wenn der Benutzer ein ATX-Netzteil mit dem Soft-Off-Schalter ausschaltet, steht die Hauptplatine immer noch unter einer Spannung von 5 Volt. Sie erkennen das daran, dass die Anzeigen der Tastatur und die LED in der Maus weiter leuchten.

Luft und Lärm

Üblicherweise befindet sich im Netzteil ein Lüfter, manchmal auch zwei. Das Netzteil saugt warme Luft aus dem Inneren des Computers, nutzt diese zur eigenen Kühlung und bläst sie hinten aus dem Computer heraus. Kaufen Sie ein Netzteil mit einem Lüfterdurchmesser von 120 mm! Je größer der Durchmesser des Lüfters, desto langsamer dreht er und desto leiser ist er.

Viele Lüfter sind temperaturgeregelt: Sie drehen langsamer, wenn weniger Wärme entsteht. Bei manchen Lüftern erfolgt die Temperaturanpassung durch Wechsel zwischen Stillstand und voller Drehzahl. Diesen häufig wechselnden Geräuschpegel empfinden manche Menschen als störend. Achten Sie beim Kauf des Computers darauf, ob das Netzteil eine stetige oder eine Intervallregelung hat.

Mittlerweile kann man auch lüfterlose Netzteile kaufen. Ihre Verwendung ist aus zwei Gründen problematisch:

  • Ein Netzteillüfter würde nicht nur das Netzteil kühlen, sondern auch die warme Gehäuseluft absaugen. Bei einem lüfterlosen Netzteil bleibt die Abwärme von CPU, Festplatte, Grafikkarte u.a. im Gehäuse gefangen.
  • Weil der Lüfter fehlt, wird die Wärme größtenteils über die Oberfläche des Netzteilgehäuses abgestrahlt. Sie bleibt im Inneren des Computers und heizt ihn noch weiter auf.

Deshalb muss zwingend mindestens ein Zusatzlüfter an der PC-Rückseite eingebaut werden. Leiser wird der PC also nicht, vom Risiko mal abgesehen, dass das Netzteil überhitzt und durchbrennt.

Die optimale Leistung

Handelsübliche Netzteile reichen von 300 bis 1000 Watt. Netzteile mit hoher Spitzenleistung sind teuer in der Anschaffung und für einen anderen Lastbereich ausgelegt. Die meisten Netzteile arbeiten zwischen 20 und 80% Last am effizientesten. Wählen Sie deshalb die Leistungsklasse nicht zu hoch, aber natürlich auch nicht zu niedrig. Wenn der Rechner unter absoluter Volllast 80% ausschöpft, dann ist das Netzteil perfekt dimensioniert. Netzteile in Büro- und Heimrechnern sind leider oft generell überdimensioniert, da keine kleinen Modelle unterhalb von 300 Watt verfügbar sind. Greifen sie nur dann zu leistungsstarken Netzteilen, wenn Sie nennenswerte Nachrüstungen planen. Achten Sie auf den Wirkungsgrad: Es gibt Stromfresser mit einem bescheidenen Wirkungsgrad von 50%. Markennetzteile erreichen bis zu 90% und schützen den PC meist besser vor Überspannungen im Stromnetz.

Wenn Sie einen Power-PC mit High-End-Grafikkarte haben, müssen nicht auf einen leisen PC verzichten. Es gibt Wasserkühlungen für den PC. Sie sind allerdings sehr teuer und der Einbau ist kompliziert, denn ein „Rohrbruch“ oder auch nur eine Undichtheit ruiniert die Elektronik.

Wichtig, da oft falsch verstanden: Nur weil ein Netzteil z.B. 1000 Watt liefern kann, tut es das nur, wenn auch 1000 Watt vom Rechner gebraucht werden. Benötigt er aber beispielsweise nur 500, so liefert es auch nicht mehr! Ein 1000W und ein 600W-Netzteil hätten bei gleicher Effizienz in diesem Szenario also gleichen Stromverbrauch. Das 1000W-Modell wäre nur in der Anschaffung bedeutend teurer gewesen. Andererseits kann es bei sehr niedriger Last sein, dass das stärkere Modell stark in der Effizienz abfällt, während das kleinere Modell noch oberhalb von 20% und damit recht sparsam arbeiten kann. Daher: Netzteil richtig dimensionieren!

Bereitschaftsspannung

Früher hatten Computer einen 230 Volt Schalter. Das wurde geändert. Der Einschalter wurde von einem klobigen, anfälligen Starkstromschalter zu einem kleinen Taster, der mit der Hauptplatine verbunden ist. Das Ein- und Ausschalten des Netzteils wird nun von der Hauptplatine gesteuert. Das eröffnet mehrere Möglichkeiten, den PC einzuschalten:

  • Drücken der Einschalttaste
  • Zeitgesteuert von der Computeruhr
  • Über die Tastatur
  • durch Bewegen der Maus
  • durch Einschaltbefehl über das Netzwerk oder vom Modem

Manche dieser Möglichkeiten müssen mit einem Jumper auf der Hauptplatine oder mit einem Eintrag im BIOS freigeschaltet werden. Auch das Ausschalten ist auf mehrere Arten möglich: Mit Befehl über das Netzwerk, mit der Einschalt-Taste, zeitgesteuert oder per Software. Es ist bequem, dass Windows nach dem Herunterfahren gleich noch den PC ausschaltet. So kann beispielsweise ein Administrator um Mitternacht alle Computer der Firma hochfahren, Updates durchführen und sie wieder herunterfahren, ohne die Mitarbeiter bei der Arbeit zu behindern.

Wie funktioniert das? Das Netzteil erzeugt ständig eine Bereitschaftsspannung von 5 Volt, mit der ein Teil der Hauptplatine und alle die Geräte mit Strom versorgt werden, die einen Einschaltbefehl geben könnten: Tastatur, Maus, Netzwerkkarte und Modem. Sie erkennen das daran, dass die Maus und die Anzeigen der Tastatur leuchten, auch wenn der PC heruntergefahren ist. Bei den USB-Anschlüssen gibt es Unterschiede. Manchmal werden einige der Anschlüsse mit Bereitschaftsspannung versorgt, um den Akku einer drahtlosen Maus aufzuladen oder um ein Handy mit dem Notebook-Akku aufladen zu können.

Für die Energierechnung ist das nicht so toll. Ein scheinbar ausgeschalteter PC braucht weiter Strom, auch die meisten Bildschirme und Drucker und manche Lautsprecher gehen in den Bereitschaftszustand und brauchen weiter Strom, wenn auch wenig. Ein durchschnittliches PC-System kann durchaus auf 20 Euro Energiekosten pro Jahr im „ausgeschalteten“ Zustand kommen. Wenn Sie diese Kosten sparen wollen, sollten Sie sich eine Steckdosenleiste mit Schalter zulegen. Damit können Sie PC, Monitor, Lautsprecher und weitere Geräte mit einem Handgriff vom Stromnetz trennen. Nebenbei schützen Sie Ihre Geräte: Was vom Stromnetz getrennt ist, kann nicht durch Überspannungen zerstört werden.

Es gibt aber Gerätearten, bei denen Sie bei einer Schaltung über eine Steckdosenleiste einige Dinge beachten sollten:

  • Ein DSL-Modem oder DSL-Router benötigt einige Minuten für den Aufbau der Verbindung ins Internet (die Synchronisation). Meist dauert es nur ein bis drei Minuten, in ungünstigen Gegenden können es auch 10 Minuten werden. Möglicherweise haben Sie nicht so viel Geduld. Probieren Sie es aus, ob dem DSL-Modem/Router der Strom gekappt werden darf.
  • Wenn bei einem Tintendrucker eine längere Druckpause eintritt, bewegt er den Druckkopf in die Parkposition, um die Düsen zu verschließen. Dadurch wird deren Austrocknen verhindert. Schaltet man den Drucker über seinen eigenen Schalter aus, parkt er schnell noch den Kopf. Nimmt man einem Drucker den Strom weg, der gerade eben noch gedruckt hat, kann er die Köpfe nicht parken und die Tinte trocknet schnell ein.
  • Selbst wenn nach dem letzten Druckauftrag Zeit vergangen ist: Wenn Sie dem Drucker den Strom wegnehmen, kann er sich nicht merken, wann das letzte Mal die Düsen gereinigt worden sind. Folglich werden nach jedem Einschalten die Düsen gründlich gereinigt. Dafür wird derart viel Tinte verbraucht, dass es meist erheblich billiger ist, den Drucker ständig im Standby-Betrieb zu belassen.

Überspannungsschutz

Das Netzteil kann beträchtliche Schwankungen der Versorgungsspannung verkraften. Länger andauernde Über- oder Unterspannungen von 30 Volt sind für die meisten Netzteile kein Problem. Stromausfälle bis etwa einer Viertelsekunde, wie sie bei Schaltvorgängen vorkommen, werden mit der in Kondensatoren gespeicherten Energie überbrückt. Sogar Überspannungsspitzen von mehreren hundert Volt werden abgefangen, wenn sie nur wenige Millisekunden dauern.

Jedes ordentliche Netzteil hat mehrere Schaltungen, um den Computer vor Überspannungen zu schützen.

  • Schutzschaltungen am Eingang
  • die Spannungsregelstufen können viele Schwankungen ausgleichen, einige erlauben den Betrieb zwischen 80 und 240 V Eingangsspannung.
  • Wenn das nicht reicht, ist eine Thyristorstufe der letzte Schutz. Sobald eine der Spannungen den Toleranzbereich verlässt, werden schlagartig alle Spannungen gleichzeitig kurzgeschlossen. Diese ist bei weitem nicht in jedem Netzteil vorhanden.
  • Eine Überspannung wird spätestens erkannt, wenn nach einer gewissen Zeit die geregelte Ausgangsspannung nicht aufbaut konnte.

Dadurch „überlebt“ der PC meistens den Ausfall des Netzteils.

Einen Blitzeinschlag in der Nähe hält allerdings kaum ein Netzteil aus. Ein zusätzlicher Schutz ist sinnvoll. Überspannungsschutzschaltungen gibt es integriert in eine Steckerleiste oder als separaten Zwischenstecker. Die einfachen Ausführungen (etwa 10 €) schützen nur vor Blitzschlägen und sind sinnlos, außer wenn Ihr Haus einzeln steht und über eine Freileitung versorgt wird. Die Ausführungen für 20 bis 40 € schützen zusätzlich vor kleineren Überspannungen, die aufgrund ihrer Häufigkeit gefährlich sind.

Bauformen und Typen

Die meisten Netzteile haben eine Standardgröße von etwa 15 x 15 x 10 cm, auch die Position der vier Befestigungsschrauben ist einheitlich. Einige Hersteller bieten miniaturisierte Gehäuse mit verkleinerten Netzteilen an, für die Ersatz kaum aufzutreiben ist.

Die Anforderungen an Netzteile entwickeln sich weiter. Die aktuelle Bauart heißt ATX, das bedeutet „Advanced Technology eXtended“. Ältere ATX-Netzteile und Hauptplatinen haben einen 20-poligen Steckverbinder, während neuere Netzteile einen 24-poligen Stecker haben. Manche dieser 24-poligen Stecker kann man in zwei Stecker zerlegen: 20-polig und vierpolig, so dass Sie auch die neueste Ausführung eines ATX-Netzteils an eine ältere Hauptplatine anstecken können.

Im Jahr 2004 kamen die Netzteile nach dem neuen BTX-Formfaktor („Balanced Technology eXtended“) auf den Markt. Allerdings hat sich der neue Formfaktor nicht durchgesetzt.





Kühlung


Warum eigentlich muss der PC gekühlt werden? Müssen die lauten Lüfter wirklich sein?

  • Halbleiter verändern ihre elektrischen Eigenschaften bei Temperaturänderungen sehr stark und hören auf, zu funktionieren.
  • Die Reibung und der Verschleiß in den Kugel- und Gleitlagern wächst.
  • Elektrolyt-Kondensatoren trocknen aus und dämpfen die Spannungsschwankungen nicht mehr.
  • Isolationen im Netzteil werden weich und können versagen.

Lüfter sind die am schnellsten verschleißenden Teile eines Computers.

Zwei Probleme

Mit der Kühlung müssen zwei unterschiedliche Probleme gelöst werden:

  1. Die Oberflächen einiger Komponenten werden sehr heiß, vor allem die Oberfläche des Prozessors. Die Wärme muss mit Kühlkörpern schnell abgeleitet werden.
  2. Große und kleine lokale Wärmequellen heizen die Luft im Computer schnell auf. Die warme Luft muss zügig aus dem Gehäuse heraus befördert werden.

Lüfterarten

Viele Lüfter sind temperaturgeregelt. Es gibt zwei Arten der Regelung: Die einen drehen langsamer, wenn weniger Wärme entsteht. Die anderen Lüfter schalten je nach Temperatur zwischen Stillstand und voller Drehzahl hin und her. Diesen plötzlichen Wechsel des Geräuschpegels empfinden manche Benutzer als störend.

Gehäuse-Zusatzlüfter und Netzteillüfter gibt es in mehreren Bauformen. Bei Lüftern von Grafikkarten und vor allem bei Lüftern auf Chipsätzen ist die Anzahl der Bauformen und Befestigungsarten fast unüberschaubar. Weitere Unterschiede gibt es in der Anzahl der Anschlussadern (zwei, drei oder vier) und in der Bauform der Stecker.

Blender3D FreeTip.gif

Tipp:

  • Wenn Sie einen Ersatzlüfter kaufen wollen, bauen Sie ihren alten Lüfter aus und nehmen Sie in als Muster zum Einkauf mit!
  • Die meisten heutigen CPUs regeln den Takt herunter, wenn sie zu heiß werden. Wenn Ihr PC nach einigen Minuten Aufwärmzeit drastisch langsamer wird, haben Sie vielleicht ein Temperaturproblem. Dimensionieren Sie den CPU-Lüfter großzügig! Ein Lüfter, der auch für einen wesentlich stärkeren als Ihren Prozessor geeignet ist, regelt auf eine langsamere Drehzahl herunter und wird dadurch leiser. Außerdem haben Sie an heißen Tagen eine Sicherheitsreserve.
  • Wenn man die Wahl hat zwischen Lüftern mit großem oder mit kleinem Durchmesser, sollte man den größeren wählen. Ein Lüfter mit doppeltem Durchmesser hat die vierfache Fläche und braucht daher eine wesentlich geringere Drehzahl, um die gleiche Luftmenge zu befördern. Das bedeutet längere Lebensdauer des Lüfters, weniger Motorengeräusch, und auch das Geräusch der Luftströmung verringert sich.
  • Lüfter werden sowohl mit Kugellagern („ball bearing“, abgekürzt BB) als auch mit Gleitlagern („Sleeve bearing“) hergestellt. Gleitlager in einem Computerlüfter bedeutet: Im Plastegehäuse ist eine Bohrung, darin dreht sich eine Metallachse. Verschleiß und Geräuschpegel sind hoch. Der Preisunterschied zur Kugellagerausführung ist gering, der Unterschied in der Lebensdauer gewaltig. Wählen Sie immer die Kugellager-Ausführung!
  • Auf billigen Grafikkarten und für Chipsatz-Kühler werden fast immer Lüfter verwendet, deren Achse nur auf einer Seite gelagert ist. Deshalb sind diese Grafikkarten-Lüfter recht kurzlebig. Wenn Sie einen verschlissenen Lüfter austauschen müssen, sollten Sie nach einem Lüfter mit beidseitigen Lagern suchen.

Luftströmungen

Die Luft tritt an der Unterseite des PC, zwischen Metallgehäuse und Vorderblende, in das Gehäuse ein. Meist gibt es im unteren Teil der Vorderseite, hinter der Plasteblende, noch weitere Öffnungen für den Lufteintritt. Die erwärmte Luft steigt nach oben und wird durch das Netzteil hindurch nach außen geblasen. Mit Zusatzlüftern im unteren Teil der Vorderwand und im oberen Teil der Rückwand kann die Luftströmung verstärkt werden. Mitunter gibt es eine zusätzliche Öffnung in der Seitenwand, um die Abluft des CPU-Kühlers auf dem kürzestem Weg aus dem Gehäuse hinauszubefördern.

In Internetforen wird leider oft geraten, das Gehäuse zu öffnen, wenn der PC zu heiß wird. Dadurch kehrt die warme Luft, die das Netzteil nach hinten ausbläst, auf kürzestem Wege wieder in das Gehäuse zurück. Statt durch das Gehäuse zu strömen, strömt die Luft nur um das Netzteil herum, gewissermaßen ein thermischer Kurzschluss. Folglich „steht“ die Luft in der Mitte des Gehäuses fast still. Das Gehäuse offen zu lassen ist also nur dann sinnvoll, wenn Sie mit einem Tischventilator für kräftige Luftbewegung sorgen.

Sorgen Sie also dafür, dass die Luft optimal strömt: Von vorn unten nach hinten oben. Ungenutzte Slotblenden sollten Sie zuschrauben oder zukleben. Ungenutzte Öffnungen für Zusatzlüfter an der Rückseite sollten Sie zukleben.

Man sollte einen PC nie in eine Ecke stellen! Weiter ist darauf zu achten, dass Lüftungsöffnungen nicht zugestellt oder zugehängt werden: 10 bis 40 cm Abstand sind empfehlenswert.

Computertische haben oft ein mehr oder weniger geschlossenes Fach für den PC, aus dem die Wärme schlecht entweichen kann. Wenn Sie den PC unbedingt in einem solchen Computertisch oder in einem Möbelstück unterbringen wollen, kontrollieren sie gut, ob er sich überhitzt!

Staub

Leider befindet sich die Luft-Hauptansaugöffnung an der Unterseite des PC. Wenn der PC auf einem Tisch steht, stört das nicht. Viele Benutzer stellen allerdings ihren PC auf den Fußboden, damit die Tischplatte frei bleibt. Dadurch befindet sich die Hauptansaugöffnung nur einen halben Zentimeter über dem Fußboden - nicht viel höher als die Düse des Staubsaugers. Zum Staubsauger gibt es aber zwei Unterschiede, mal abgesehen vom Preis:

  • Der Staubsauger ist nur einige Minuten pro Tag in Betrieb, der PC saugt viele Stunden täglich.
  • Der Staubsauger hat einen Filterbeutel, der regelmäßig gewechselt wird, der PC nicht.
Wie können Sie die Verschmutzung verringern?

Jeder Zentimeter Abstand vom Fußboden zählt. Fünfzehn Zentimeter Abstand vom Fußboden halbieren den Staubanfall. Vielleicht können Sie den PC unter der Schreibtischplatte aufhängen. Verstellbare Halterungen gibt es zu kaufen, das kostet nicht viel. Sie können auch einen niedrigen Hocker oder eine (stabile!) Kiste darunterstellen. Eine wackelige Standfläche für den PC muss aber vermieden werden. Im Sinne von „jeder Zentimeter zählt“ können Sie zumindest ein passend zugeschnittenes Brett darunterlegen. Bei einem Teppichboden wird der Luftstrom nicht mehr durch die Teppichfasern gebremst, und auf einem glatten Boden können sich die Fusseln nicht direkt unter dem PC ansammeln.

PC mit Wasserkühlung

Wasserkühlung

Wasserkühlungen haben eine hohe Kühlleistung bei geringer Geräuschentwicklung. Irgendwo am PC muss ein Radiator für die Ableitung der Wärme angebracht werden. So groß wie im Bild ist er nicht immer. Es gibt Bausätze für den Selbsteinbau. Es ist allerdings nicht einfach, die Schläuche dauerhaft dicht zu verlegen. Wenn man nicht äußerst präzise arbeitet, hat man irgendwann fließendes Wasser im PC, was ihn meistens in Schrott verwandelt.

Zusatzlüfter

Einfache Büro- und Home-PC kommen oft mit dem Lüfter im Netzteil aus. Leistungsfähigere PCs brauchen in der Regel ein bis drei Zusatzlüfter. Die Lüfter können im unteren Teil der Vorderfront oder im oberen Teil der Rückfront eingebaut werden. Zunehmend oft wird durch eine Öffnung in der Seitenwand über einen Trichter die Luft direkt auf den CPU-Kühler geleitet. Ein guter Platz für einen Zusatzlüfter ist an der Vorderseite, der Luft direkt auf die Festplatte bläst.

Handelsübliche Zusatzlüfter sind quadratisch und meist 80 x 80 mm groß, dazu passende Befestigungsbohrungen sind in den meisten Gehäusen vorhanden. Nichtbenutzte Lüfteröffnungen an der Gehäuserückseite sollten Sie zukleben, andernfalls wird ein Teil der von den Lüftern ausgestoßenen warmen Luft zurück in das Gehäuse gesaugt.

Die vorderen Lüfter saugen kalte Luft in das Gehäuse, die vom Netzteillüfter und weiteren Zusatzlüftern auf der Rückseite herausgeblasen wird. Kontrollieren Sie die Richtung, in die die Lüfter blasen. Warme Luft steigt nach oben. Es ist sinnlos, dagegen anzukämpfen.

Rundkabel? Besser nicht!

Die Laufwerke (Festplatte, DVD, Floppy) sind eventuell mit Flachbandkabeln angeschlossen. Gemeint sind damit nicht die schmalen SATA-Kabel, die praktisch nur noch anzutreffen sind, sondern Kabel mit einer Breite von bis zu 5 cm, die in aktuellen Rechnern nicht mehr verbaut werden.

Verlegen und befestigen Sie diese Kabel so, dass sie den Luftstrom möglichst wenig behindern. In Zeitschriften wurde mitunter empfohlen, sogenannte „Rundkabel“ zu verwenden. Solche Kabel werden hergestellt, indem das breite Flachbandkabel bis kurz vor die Stecker zusammengerollt oder -gefaltet und in einen Isolierschlauch gezwängt wird. Das ist ein unüberlegter, schlechter Ratschlag! Wieso?

Wenn zwei Leitungen dicht benachbart sind, erzeugt ein Stromfluss in der einen Leitung eine schwache „Kopie“ des Signals in den benachbarten Leitungen. Diesen Effekt nennt man „Übersprechen“. Die Bezeichnung kommt aus der alten, analogen Telefonie: Manchmal konnte man ein fremdes Gespräch leise mithören, das über einen benachbarten Draht geführt wurde. Beim Telefonieren störte das kaum. In einem Datenkabel darf Übersprechen nicht vorkommen.

Vor knapp zehn Jahren waren die Festplattenkabel noch 40-polig. Diese Leitungen erlaubten einen Datentransfer von maximal 33 Mb pro Sekunde. Höhere Übertragungsraten waren wegen der Gefahr des Übersprechens nicht möglich. Dann fiel den Ingenieuren ein Trick ein: Zwischen je zwei Datenleitungen wurde eine Masseleitung eingefügt, um das Übersprechen zu verringern. Die 40-poligen Kabel wurden durch 80-polige ersetzt, die Stecker sind 40-polig geblieben. Durch die zwischengeschalteten Masseleitungen verbessert sich die Abschirmung so weit, dass die Übertragungsgeschwindigkeit von und zur Festplatte von 33 auf 133 Mb/s angehoben werden konnte. Was passiert aber, wenn Sie die aufwändig durch Masseleitungen abgeschirmten Datenleitungen in Längsrichtung zusammenrollen und bündeln? Sie verringern die Abschirmung und erhöhen dadurch das Risiko von Störungen und Datenverlusten!

Gegen Rundkabel zum Floppy-Laufwerk ist wegen der geringen Datenübertragungsrate nichts einzuwenden.

Lüfterausfall

Der Ausfall eines Lüfters kann mehrere Probleme verursachen.

  1. Jede Erhöhung der Betriebstemperatur beschleunigt die Alterung des Computers.
  2. Durch Überhitzung können nach einiger Zeit Probleme beim Betrieb des Rechners auftreten. Das Betriebssystem kann abstürzen. Im schlimmsten Fall können Schäden an der Hardware die Folge sein, so könnte etwa das Netzteil durchbrennen. Während das Netzteil durchbrennt, erzeugt es vielleicht kurzzeitig zu hohe Spannungen, und weitere Schaltungen brennen durch. Wenn die Festplatte durchbrennt, verlieren Sie Ihre Daten.

Zum Glück kündigt sich ein bevorstehender Lüfterausfall fast immer durch einen höheren Geräuschpegel an. Wenn Sie dieses Warnzeichen ignorieren, wird der Lüfter irgendwann später erfreulich leise: Er bleibt stehen.

Wenn sich das Betriebsgeräusch Ihres PCs ändert, sollten Sie versuchen, die Ursache zu finden. Den Netzteillüfter sowie andere, von außen zugängliche Lüfter können Sie völlig gefahrlos überprüfen: Falten Sie ein Papierstück mehrmals zu einem Streifen. Schieben Sie das Streifchen von hinten durch das Schutzgitter ein Stückchen in das Netzteil hinein, bis Sie ein Geräusch hören (aber lassen Sie das Papier nicht vor Schreck los!). Wenn es kein Geräusch gibt, ist der Lüfter ausgefallen.

Die Drehzahl des Prozessorlüfters können Sie über das BIOS überwachen - lassen Sie sich vom Händler oder einem Freund zeigen, wie das geht (das ist bei jedem PC etwas anders). Notfalls müssen Sie das Gehäuse aufschrauben und nachsehen.

Blender3D FreeTip.gif

Achtung!

  • Bewegen Sie den PC niemals im eingeschalteten Zustand!
  • Entfernen Sie alle CDs und DVDs aus den Laufwerken, bevor Sie den PC auf die Seite legen!
  • Drücken Sie niemals auf die Achse eines Lüfters - Sie beschädigen damit dessen Lager!

Wenn das Geräusch nur sporadisch auftritt, können Sie den PC notfalls auch mal einige Stunden oder sehr wenige Tage auf der Seite liegend betreiben, um die Lüfter besser beobachten zu können. Besonders der Lüfter der Grafikkarte ist kaum zu sehen, solange der PC senkrecht steht.

Blender3D FreeTip.gif

Achtung! Der Wechsel der Lage der Festplatte erhöht den Verschleiß sehr stark!




Der flüsterleise PC


Lärm macht krank

Schwerhörigkeit durch Lärm macht 43% aller anerkannten Berufskrankheiten aus, das ist mit Abstand die häufigste Ursache. Siehe Bericht der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin „Sicherheit und Gesundheit bei der Arbeit 2007“[36] Rauschende Lüfter und klackernde, sirrende Festplatten verringern die Produktivität. Bei häuslichen PC sieht es meist nicht besser aus. Die Augen kann man schließen, die Ohren leider nicht.

Leider gilt für viele PC aus dem Kampfpreis-Segment: Schnell = Laut.

Der flüsterleise PC

Der Gesamtgeräuschpegel eines PC setzt sich aus vielen einzelnen Quellen zusammen. Einzelne Geräuschquellen zu verringern reicht nicht. Sie müssen alle Geräuschquellen im Auge behalten und dann entscheiden, bei welchen Komponenten die Lautstärke verringert werden muss.

Werden Sie sich klar darüber, was Ihre Prioritäten sind. Höchste Leistung oder niedrige Geräuschemissionen. Beides zusammen geht nicht. Hohe Rechen- und Grafikleistung ist mit viel Energieverbrauch verbunden. Jedes Watt, welches vom Netzteil in den PC hinein gepumpt wird, wird in Wärme umgewandelt und muss mit Lüftern heraus befördert werden.

Leise Komponenten verwenden

Leise Lüftermodelle

  • Lüfter mit größerem Durchmesser sind durchschnittlich leiser als die mit kleinerem. Ein 12-cm-Lüfter hat die reichlich doppelte Fläche wie ein 8-cm-Lüfter und benötigt deshalb eine wesentlich geringere Drehzahl.
  • Eine kleine Nabe vergrößert den Luftdurchsatz.
  • Im Windkanal durchgestylte Lüfter und aerodynamisch optimierte Lüfterblätter vermindern das Geräusch der durchströmenden Luft.
  • Es gibt Lüfter mit 12 cm Durchmesser, die mit nur 800 oder 500 Umdrehungen pro Minute laufen. Mit dieser Drehzahl sind sie praktisch nicht zu hören, und trotz der geringeren Drehzahl bewegen sie etwa ebenso viel Luft wie ein 8-cm-Lüfter bei 1500 U/min.

Lesen Sie Testberichte in Computerzeitschriften!

Gehäusegröße

In einem großen Gehäuse kann die Luft unbehindert aufsteigen. In Miniaturgehäusen staut sich stellenweise die Wärme, deshalb müssen die Lüfter schneller und damit lauter arbeiten.

Die Gehäuselüfter

Bei größerer Wärmeentwicklung im Gehäuse können Zusatzlüfter sinnvoll sein: Einer an der Rückwand unterhalb vom Netzteil, oder an der Vorderwand auf Höhe der Festplatte. Ersetzen Sie einen eventuell vorhandenen 8-cm-Lüfter durch einen leisen 12-cm-Lüfter. Allerdings nutzt das nur dann etwas, wenn das Gehäuseblech auf der gesamten Fläche genügend große Luftlöcher hat. Wahrscheinlich müssen Sie zusätzliche Löcher in die Rückwand bohren. Um Schäden durch Späne (Kurzschlüsse!) und Vibrationen zu vermeiden, sollten Sie vorher alle Bauteile ausbauen.

Grafikkarte

Hochleistungs-Grafikkarten kommen nicht ohne Kühlung aus. Beachten Sie beim Kauf: Manche Grafikkartenlüfter sind derart laut, dass Sie über die Lautstärke der anderen Komponenten gar nicht erst nachdenken brauchen. Manchmal kann man den Lüfter der Grafikkarte gegen einen leiseren austauschen, dabei verliert man allerdings die Garantie. Wenn Sie am PC bestimmt nicht spielen werden, sollten Sie nach einer Grafikkarte mit passiver Kühlung (ohne Lüfter) suchen. Wenn Sie die Kühlrippen sicherheitshalber mit einem leisen, langsam laufenden Lüfter anblasen, hält die Grafikkarte auch mal ein Spiel aus, ohne zu überhitzen.

Der Prozessor

Neuere Prozessorgenerationen brauchen durchschnittlich weniger Energie als ältere, um eine gleiche Rechenleistung zu erzielen.

Der Prozessorkühler

Wenn Sie eine CPU mit einer Verlustleistung unter 80 Watt haben, kaufen Sie einen Hochleistungskühler mit Heatpipe, der für CPUs mit 140 Watt Verlustleistung konzipiert ist. Die Kühlwirkung reicht vermutlich aus, wenn Sie den kräftigen, lauten Lüfter durch einen großen, langsameren Lüfter ersetzen. Sie sollten aber sicherheitshalber die CPU-Temperatur kontrollieren.

RAM

DDR-3 RAM sind stromsparender als DDR-2, weil sie mit niedrigerer Spannung arbeiten.

Die Festplatte

Festplatten mit 5400 U/min haben gegenüber solchen mit 7200 U/min zwei Vorteile:

  • Sie sind deutlich leiser
  • Sie erzeugen weniger Wärme

Allerdings sind sie meist auch langsamer. Aber es gibt Ausnahmen. Die Auswirkung der kleineren Drehzahl auf die Datenübertragungsrate kann der Hersteller kompensieren, indem er der Festplatte mehr Cache-Speicher spendiert und mehr Magnetscheiben im Gehäuse übereinander stapelt. Sechs Köpfe wie in der Samsung Eco Green können trotz geringerer Drehzahl mehr Daten pro Sekunde lesen als die üblichen Platten mit zwei oder vier Köpfen. Lesen Sie Testberichte in Computerzeitschriften!

Die radikale Lösung: Kaufen Sie eine SSD-Festplatte und lagen Sie die großen, selten benutzten Dateien auf eine externe Festplatte aus. Schalten sie die externe Festplatte nur bei Bedarf ein. Vorsicht! Irgendwann werden Sie unaufmerksam sein und die externe Festplatte ausschalten, ohne sie vorher abzumelden. Das kann zu Datenverlust führen. Deshalb sollten Sie großes Augenmerk auf eine zuverlässige Datensicherung legen, die vielleicht auf eine zweite externe Festplatte erfolgen kann. Noch besser ist die Anschaffung einer ständig eingeschalteten schnellen Home-Server-Festplatte, die über Netzwerk angeschlossen wird und an einem Ort abgestellt werden kann, wo das geringe Betriebsgeräusch nicht stört.

Das Netzteil

Gute Netzteile haben einen Wirkungsgrad von 85% oder etwas besser, besonders verschwenderische Modelle kommen auf einen Wirkungsgrad von nur 50%. Zu beachten ist hierbei, dass der angegegebene Watt-Wert nur die maximale Leistungsfähigkeit des Netzteils angibt, der die tatsächliche Leistungsaufnahme ist das, was der Computer tatsächlich gerade braucht. Ein Netzteil erreicht seinen optimalen Wirkungsgrad üblicherweise zwischen 20% bis 80% seiner Maximalleistung. Also das Netzteil nicht zu reichlich dimensionieren und vor allem auf den Wirkungsgrad im geplanten Lastbereich achten!

Glauben Sie keiner Reklame, in der ein Netzteil als leise angepriesen wird. Es scheint Mode geworden zu sein, fast jedes Netzteil als leise zu bezeichnen. „Leise“ ist kein präziser Begriff. Wenn es wirklich leise ist, gibt der Hersteller den Schallpegel in Dezibel an. Spitzennetzteile erreichen 20 dB. Werte unter 25 dB sind gut[37]. Zum Vergleich: 20 bis 30 dB sind die Lautstärke in einem sehr leisen Zimmer[38]. Sie werden nicht umhinkommen, Testberichte in Computerzeitschriften zu lesen.

Wenn es um das letzte Quentchen Lautstärke geht: Prüfen Sie, ob der Lüfter des Netzteils durch einen leiseren ersetzt werden kann. Lassen Sie diesen Umbau unbedingt von einem Fachmann durchführen!

Das optische Laufwerk

Wenn keine Scheibe drin liegt, macht es kein Geräusch. Wenn Sie ständig eine Scheibe eingelegt haben, z. B. eine Telefonauskunft-CD, müssen Sie auf die Geräuschentwicklung achten. Wenn Sie einen Film von DVD ansehen wollen, übertrifft dessen Lautstärke vermutlich die Geräuschentwicklung der meisten Laufwerke deutlich.

Nachträgliche Maßnahmen

Sie haben die Komponenten ausgewählt. Was können Sie jetzt noch tun?

Gehäuse

Wenn Sie den PC innen mit schallschluckenden Materialien bekleben, fällt das Gehäuseblech als „Wärmeabstrahler“ weg. Die Verschlechterung der Kühlung müssen Sie möglicherweise mit einem zusätzlichem Lüfter ausgleichen, was den Geräuschpegel erhöht. Ein Teufelskreis! Es ist ein brauchbarer Kompromiss, nur das eine Seitenblech zu bekleben, das der Hauptplatine gegenüberliegt. Dieses Blech wird im Betrieb am wenigsten erwärmt, die Kühlung verschlechtert sich kaum durch das Bekleben. Auch den Boden kann man bekleben. Der Schall wird dadurch nicht mehrmals im Gehäuse hin und her reflektiert.

Lüfterdrehzahl herunterregeln

Mit einem Adapter oder ein wenig Löten kann man einen Lüfter zwischen der 5 Volt und 12 Volt Leitung betreiben. Er bekommt dann 7 Volt und läuft sehr leise, die Kühlleistung verschlechtert sich allerdings stark. Prüfen Sie unbedingt, ob der Lüfter mit der verringerten Spannung zuverlässig anläuft!

Festplatten und Laufwerke elastisch lagern

Es gibt zahlreiche Vibrationsdämmer für Festplatten. Die Platte wird an Gummiblöcken befestigt, damit der Schall nicht auf das Gehäuse übertragen wird. Weil dabei die Wärmeableitung auf das Gehäuse unterbleibt, sollte die Festplatte eine „grüne“ sein oder anderweitig gekühlt werden. Vorsicht mit Eigenbauten: Die Festplatte darf im Betrieb nicht ins Schwingen geraten, sonst leidet die Lebensdauer.

Aufstellort ändern

Je weiter der PC von Ihren Ohren entfernt ist, desto weniger ist er zu hören. Vielleicht können Sie einen Platz finden, wo er nicht mehr zu sehen ist, dann kommt der Schall nur noch als Reflexion zu Ihnen. Den PC in einen Schrank oder ein anderes geschlossenes Behältnis zu stellen will wohl bedacht sein: es könnte zu einem Wärmestau kommen.

Dämpfen Sie die Geräuschübertragung auf den Fußboden. Kaufen Sie eine Geräuschdämpfungsmatte für Waschmaschinen und schneiden Sie einen oder zwei Streifen davon ab.

Wasserkühlung

Wasser hat eine wesentlich größere Wärmekapazität als Luft und kann viel mehr Wärme abtransportieren. Die Kühlkörper von CPU und Grafikkarte haben keine Kühlrippen, sondern zwei Schlauchanschlüsse. Nur wenige Grafikkarten sind für Wasserkühlung geeignet. Ein Kühler für AMD-CPUs sollte auf beiden Seiten an allen drei Befestigungsnasen verankert werden, damit er nicht abreißt, denn der Kühler ist schwer. An der Seite oder über dem PC muss ein Wärmeaustauscher angebaut werden, ähnlich wie der hinter dem Kühlschrank. Am höchsten Punkt des Kreislaufs wird ein Ausgleichsbehälter benötigt, weil sich Wasser bei Erwärmung ausdehnt. Eine Umwälzpumpe wird am besten auf dem Boden des Computers befestigt, möglichst auf einer vibrationsdämmenden Unterlage. Sie werden das Gehäuse bohren müssen, also vorher alle Bauteile ausbauen. Es gibt auch Pumpen, die in den CPU-Kühlkürper integriert sind.

Die Befestigung der Schläuche sollte mit extremer Sorgfalt erfolgen. Am besten sind Schlauchanschlüsse, welche den Schlauch mit einer Überwurfmutter fixieren. Bei einfacheren Ausführungen müssen Sie die Schläuche mit Kabelbindern befestigen. Verwenden Sie destilliertes Wasser. Bedenken Sie: Wasser im PC verwandelt ihn in Schrott! Lassen Sie deshalb die Wasserkühlung einige Stunden Probe laufen, bevor Sie den PC einschalten.

Vollständig geräuschlose Rechner

Es gelingt mittlerweile Rechner zu konstruieren die vollständig auf bewegliche Teile verzichten und deren Geräuschemissionen daher die Hörschwelle um viele Größenordnungen unterschreiten. Zur Zeit sind die Rechenleistungen dieser Geräte eher begrenzt. Ein Beisiel ist der FitPC2i der israelischen Firma Compulab, welcher mit den Betriebssystemen Linux oder Windows 7 erhältlich ist. Mittlerweile wurden jedoch auch Doppelkern-Modelle mit 3D beschleunigen NVidia Grafikkarten auf Basis von Ubuntu an Entwickler ausgeliefert.




Netzwerk


Netzwerkkarte

Eine Netzwerkkarte ist eine Baugruppe zur Verbindung eines Computers mit anderen Computern, ob benachbart oder im Internet.

Vor einem Vierteljahrhundert kostete eine Netzwerkkarte einige hundert DM. Heute ist die Netzwerkfunktionalität in den Chipsatz integriert. Separate Steckkarten werden heute nur noch in Sonderfällen verwendet, beispielsweise in Servern, oder wenn die integrierte Netzwerkkarte defekt ist.

Auf der abgebildeten Netzwerkkarte ist eine unbestückte Fassung für einen Boot-ROM zu sehen. PCs ohne Festplatte konnten sich mit einem solchen Start-ROM ihr Betriebssystem vom Zentralserver holen. Heute sind Festplatten so billig, dass sich das Verfahren höchstens noch in Firmen mit hunderten PCs lohnt.

Als Anschluss für das Netzwerkkabel dient eine viereckige Buchse mit acht Kontakten. Über der Buchse sind zwei LED angeordnet. Die grüne leuchtet, wenn die Karte mit einer Gegenstelle verbunden und die Gegenstelle eingeschalteten ist. Die zweite, meist rote LED zeigt an, ob Datenverkehr stattfindet.

Wollen Sie mehr über Netzwerkkarten wissen?




Netzwerkkabel


Netzwerkkabel
Netzwerkstecker

Ebenso wie für den Fernsehempfang müssen auch für Netzwerke abgeschirmte Kabel verwendet werden. Das liegt an der hohen Frequenz. Zum Vergleich:

  • UKW-Rundfunk im Bereich 87,5 bis 108 MHz
  • Kabelfernsehen 300 MHz bis 862 MHz
  • Netzwerk 100 oder 1000 MHz

Die meisten Netzwerke arbeiten heute mit einer Übertragungsrate von 100 MBit/s oder 1000 MBit/s (Gigabit-Netzwerk). Neuere Hauptplatinen haben fast ausnahmslos einen Gigabit-Netzwerkanschluss. Jede Netzwerkkarte erkennt, welche Höchstgeschwindigkeit die Gegenstelle beherrscht, und stellt sich automatisch darauf ein. Diese Signale störungsfrei übertragen zu können, erfordert Kabel, die noch hochwertiger sind als Fernsehkabel. Die aktuelle Norm für Netzwerkkabel ist „Cat 5e“ oder „Cat6“.

Für Netzwerkkabel werden 8-polige Stecker vom Typ RJ45 verwendet. Für ISDN-Anschlüsse werden leider die gleichen Stecker benutzt, allerdings mit anderer Kontaktbelegung. Also bitte aufpassen, falls Sie ISDN-Telefon haben! Vertauschen Sie nicht versehentlich die Anschlüsse oder Kabel! Die Qualität eines ISDN-Kabels reicht nicht für das Netzwerk, während ein Netzwerkkabel durchaus für ISDN-Verbindungen verwendet werden darf.

Für eine Netzwerkverbindung mit 100 MBit/s wird ein Aderpaar zum Senden und ein zweites Aderpaar für den Empfang benutzt. Gigabit-Ethernet benutzt alle vier Aderpaare. Um nicht mehrere Kabelsorten bevorraten zu müssen, werden stets alle vier Aderpaare verbunden, auch wenn nicht immer alle benutzt werden.

Die Adern sind paarweise verdrillt (umeinander gewickelt), um störende Einflüsse zu vermindern. Für höhere Ansprüche kann jedes Aderpaar mit Alufolie abgeschirmt werden. Die vier Aderpaare werden untereinander verdrillt, bekommen manchmal noch eine Gesamtabschirmung und werden vergossen.

Achtung! Netzwerkkabel dürfen nicht geknickt oder mit zu geringen Biegeradien verlegt werden. Ein Biegeradius von etwa fünf Zentimetern sollte nicht unterschritten werden, sonst kann es zu Störungen kommen. Derartige Störungen bleiben fast unbemerkt, weil die beteiligten Netzwerkkarten bei einer Störung die Übertragung so lange selbständig wiederholen, bis ein Datenpaket unverfälscht „durchkommt“. Je kleiner der Biegeradius, desto langsamer wird das Netzwerk, bis es schließlich zum Totalausfall kommt.

Wollen Sie mehr über Netzwerkkabel wissen?





Netzwerkverteiler


Wenn man zwei PCs miteinander verbinden will, kann man ein Kabel direkt von einem zum anderen PC ziehen. Bei einem 100-MBit-Netzwerk benötigt man allerdings ein Spezialkabel, ein sogenanntes Crossover-Kabel. In diesem Kabel sind Sende- und Empfangsleitung vertauscht, so dass die gesendeten Datenpakete des einen PC am Empfangsverstärker des anderen PC ankommen und umgekehrt. Wenn man Gigabit-Netzwerkkarten hat, kann man wahlweise ein gekreuztes oder ein ungekreuztes Kabel verwenden. Die Elektronik erkennt die Übertragungsrichtung und passt sich an.

Wenn jedoch mehr als zwei PC vernetzt werden sollen, braucht man einen Verteiler, einen „Hub“ oder „Switch“. Ein Hub hat eine etwas einfachere Elektronik und ist in der Leistung einem Switch unterlegen, deshalb werden Hubs kaum noch verkauft.

Ethernet Switch

Die rechte Abbildung zeigt einen „5 Port Ethernet Switch“. „Port“ bedeutet hier „Anschluss“. Es können bis zu fünf Kabel angesteckt werden, die zu PCs, anderen Switchen oder zu dem DSL-Modem führen. Nicht benötigte Anschlüsse bleiben frei. Alle Anschlüsse sind gleichberechtigt, man muss also nicht mit der Nummer Eins anfangen. Handelsübliche Switche haben 4, 5, 8, 16, 24 und 32 Ports.

An der Vorderseite befinden sich Kontrollleuchten für jeden Port. Eine der Leuchten zeigt an, ob ein Kabel eingesteckt ist, dessen anderes Ende mit einem betriebsbereiten Gerät verbunden ist. Manchmal ist eine zweite LED vorhanden, um anzuzeigen, ob die Übertragung mit 1000 oder 100 Mb/s stattfindet.

Ein Switch muss mit Strom versorgt werden. Größere Geräte haben ein eingebautes Netzteil, kleine werden über ein Steckernetzteil versorgt. Es gibt auch Switche, die über die angeschlossenen Netzwerkkabel versorgt werden, die aber preislich für den Privatanwender uninteressant sind.

Dlink wireless router.jpg

Der nebenstehende „Wireless Router“ hat vier Kabelanschlüsse an der Rückseite sowie als fünften Anschluss eine WLAN-Antenne. Switche, welche unterschiedliche Übertragungsmedien verbinden (hier: Kabel und Funk), werden als „Router“ bezeichnet.

Wenn Sie Ihre Wände nicht mit Metallfolie beklebt haben, können die Nachbarn im Umkreis von 20 bis 50 Metern mithören. Sie sollten deshalb beim Kauf darauf achten, das der Router ein modernes Verschlüsselungsverfahren beherrscht, und dieses auch benutzen. Das Verschlüsselungsverfahren WEP ist veraltet und ganz leicht zu „knacken“. WPA ist ein wenig sicherer. WPA-2 gilt aus heutiger Sicht als praktisch unknackbar, wenn das verwendete Passwort lang genug ist.

Zwei 16-Port-Switche (schwarz) im Serverraum. Die weißen Anschlüsse führen zu den PCs.

Wenn ein Switch nicht genug Anschlüsse hat, kauft man einen weiteren und verbindet sie untereinander. Auch im Heimbereich kann das sinnvoll sein. Wenn man beispielsweise im Arbeitszimmer und im Kinderzimmer jeweils mehrere Geräte anschließen will, gibt es zwei Möglichkeiten:

  • Man verlegt vom zentralen Switch im Arbeitszimmer ein Kabelbündel ins Kinderzimmer, wobei man für jeden PC ein Kabel braucht.
  • Man verlegt nur ein Kabel, kauft einen zweiten Switch für das Kinderzimmer und verlegt kurze Kabel innerhalb des Kinderzimmers.

Bei der Verbindung zweier Switche miteinander gibt es eine Besonderheit: Die Sende- und Empfangsleitungen im Kabel müssen vertauscht werden. Dafür gibt es zwei Möglichkeiten:

  • Die Verwendung eines „Cross“ Kabels, in dem die Aderpaare vertauscht sind
  • Manche Switche haben den Anschluss „1“ scheinbar doppelt. An diesem zusätzlichen Anschluss sind die Aderpaare intern vertauscht, so dass ein gewöhnliches Kabel verwendet werden kann. Achtung: Nur an einem der Switche die „gedrehte“ Buchse verwenden! Von den beiden Anschlüssen mit der „1“ nur einen verwenden!

Bei Gigabit-Switchen sind „gedrehte“ Kabel nicht mehr nötig. Sie erkennen die Kabelbelegung automatisch und passen sich an.



DSL-Router


Ein DSL-Router ist das Bindeglied zwischen dem Internet-Provider und einem oder mehreren angeschlossenen PCs. Er wird an den Splitter oder an ein DSL-Modem angesteckt.

Der DSL-Router speichert die Internet-Zugangsdaten und baut eine Verbindung ins Internet auf, sobald einer der angeschlossenen PCs dies wünscht. Der Router bekommt vom Server des Providers eine öffentliche IP-Adresse für die Dauer der Verbindung zugeteilt. Nach einer (einstellbaren) Zeit ohne Internetaktivität kann die Verbindung automatisch getrennt werden, so dass bei einem Zeittarif keine weiteren Kosten entstehen.

Der DSL-Router teilt jedem der angeschlossenen PCs eine interne IP-Adresse zu, die zur Kommunikation untereinander und mit dem DSL-Router dient. Wenn einer der PCs ein Datenpaket ins Internet schicken will, wechselt der DSL-Router die interne IP-Adresse gegen die öffentliche IP-Adresse aus. Kommt ein Datenpaket als Antwort zurück, tauscht der DSL-Router die öffentliche gegen die interne Adresse zurück und sendet das Datenpaket an den richtigen PC.

Ein Splitter der Telekom
DSL-Router
Wollen Sie mehr über DSL-Router wissen?





WLAN

Normen und Datenübertragungsraten

Die Normen und Verfahren für WLAN, das „Wireless LAN“, wurden vom IEEE erarbeitet, dem weltweiten Berufsverband von Ingenieuren der Elektrotechnik und Informatik.

Die Verfahren nach IEEE 802.11b und g arbeiten im Frequenzbereich 2,4 GHz. Diese Frequenz darf ohne Genehmigung von jedem und zu jeden Zweck benutzt werden. Hier tummeln sich Bluetooth, Schnurlostelefone, Babyphones, Mikrowellenherde u.a., so dass Störungen häufig sind. WLAN unterteilt den Frequenzbereich in 13 Kanäle. Die Kanäle 9 und 10 haben fast die gleiche Frequenz wie haushaltübliche Mikrowellenherde. Die WLAN-Geräte suchen automatisch einen Kanal aus, in dem die Störungen gering sind und wo der bestmögliche Empfang erreicht wird. Da sich die Kanäle teilweise überlappen, sind nur drei Kanäle überlappungsfrei. Wenn mehrere Funknetze in Reichweite sind, stören sie sich gegenseitig und der Datendurchsatz sinkt.

802.11h arbeitet im Bereich 5 GHz. Dort steht ein größerer Frequenzbereich zur Verfügung, in dem 19 nicht überlappende Kanäle untergebracht werden können.

Bei den angegebenen Datenübertragungsraten handelt es sich um theoretische Werte. Sogar unter optimalen Bedingungen beträgt die tatsächlich erreichbare Übertragungsrate etwa die Hälfte. Außerdem ist zu berücksichtigen, dass sich alle Geräte im Netz die Bandbreite teilen müssen.

Norm Übertragungsrate
(theoretisch)
IEEE 802.11 2 Mbit/s
IEEE 802.11b 11 Mbit/s
IEEE 802.11g 54 Mbit/s
IEEE 802.11h 54 Mbit/s
IEEE 802.11n 600 Mbit/s

Von Bedeutung für Deutschland sind die in der Tabelle aufgeführten Standards. Bei den angegebenen Datenübertragungsraten handelt es sich um theoretische Werte. Sogar unter optimalen Bedingungen beträgt die tatsächlich erreichbare Übertragungsrate nur wenig mehr als die Hälfte. Außerdem ist zu berücksichtigen, dass sich alle Geräte im Netz die Bandbreite teilen müssen.

Betriebsmodi

Betriebsmodus Ad-hoc

Es gibt keinen zentralen Knoten, alle Stationen sind gleichberechtigt. Jedes Gerät kann eine direkte Verbindung mit jedem anderen Gerät herstellen.

Mesh Network

Mit zusätzlicher Software kann ein Ad-hoc-Netz, in dem sich jedes Gerät nur um seinen eigenen Kommunikationsbedarf kümmert, zu einem Mesh-Netzwerk aufgewertet werden. Endgeräte werden zum Router und leiten Datenpakete weiter. Dadurch können Geräte kommunizieren, die zu weit voneinander entfernt sind, um eine direkte Verbindung herzustellen. Es gibt bereits erste Standards, Hard- und Software.

Mit Mesh-Netzen können Bürgernetze aufgebaut werden, ohne dass eine teure Infrastruktur benötigt wird.

Infrastruktur-Modus

Ein zentrales Gerät, meist der DSL-Router, übernimmt die Koordinierung aller Netzteilnehmer. Dazu sendet er üblicherweise zehnmal pro Sekunde ein „Beacon“ (engl. „Leuchtfeuer“) aus, welche die unterstützten Übertragungsraten, die Art der Verschlüsselung und die SSID enthalten. Die SSID (Service Set Identifier) ist der Netzwerkname. Die SSID ist frei wählbar und ermöglicht es, mehrere WLAN am gleichen Ort zu betreiben. Wenn ein Client mehrere Netze „sieht“, muss der Benutzer auswählen, mit welchem Netzwerk er verbunden werden soll.

Reichweite

Im Freien, bei direkter Sichtverbindung sind 50 bis 100 Meter möglich, unter besten Bedingungen 300 Meter. In Gebäuden ist die Reichweite drastisch geringer. Das Funksignal wird durch Wände und glatte Oberflächen reflektiert. Betonwände und -decken sind ein großes Problem. Wenn sich zwei Betonwände zwischen den Geräten befinden, gelingt eine sichere Verbindung kaum. Dicke Ziegelwände, vor allem wenn sie nicht knochentrocken sind, sowie Leichtbauwände (wenn die Tragekonstruktion aus Metall ist) dämpfen das Signal stark. Man kann nie mit Sicherheit vorhersehen, ob eine WLAN-Verbindung zustande kommen wird. Wenn der Empfang schwächer wird, verringern die Geräte Schritt für Schritt die Übertragungsrate. Wenn selbst mit 1 Mbit/s keine stabile Verbindung möglich ist, bekommen Sie die Meldung „Keine Drahtlosnetzwerke gefunden“.

Wenn Sie einen stationären PC mit WLAN nachrüsten wollen, ist der Einbau einer PCI-WLAN-Karte nicht zu empfehlen. Deren Antenne befindet sich im Spalt zwischen Wand und metallischem Gehäuse, wo der Empfang miserabel ist. Eine externe Antenne könnte den Empfang verbessern. Meist ist es aber preiswerter, einen USB-WLAN-Stick zu kaufen und ihn in eine der USB-Buchsen an der Vorderseite des Gehäuses zu stecken.

Wie kann man die Reichweite erhöhen?

  • Probieren Sie verschiedene Standorte für PC und Router. Manchmal helfen schon Verschiebungen um ein Dutzend Zentimeter. Vielleicht kann der Router im Türrahmen aufgehängt werden?
  • Manche Netzwerkkarten haben eine abnehmbare Antenne, die man durch eine leistungsfähigere ersetzen kann. Es gibt auch Antennen mit eingebautem Verstärker.
  • In der gehobenen Preisklasse gibt es Router mit erhöhter Sendeleistung.
  • Mit geeigneten Parabolantennen kann die Reichweite verzehnfacht werden.
  • Auf „halber Strecke“ kann man einen „Access Point“ als Zwischenverstärker platzieren. Deren Konfigurierung ist allerdings kompliziert.

Sicherheit

In ein ungesichertes Netz kann sich jeder Nachbar oder ein Krimineller auf der Straße einklinken. Vielleicht stört es Sie nicht, wenn andere in Ihrem PC stöbern können, weil Sie nichts persönliches auf dem PC haben? Jemand könnte auf Ihre Kosten Bezahldienste abonnieren, beispielsweise um Musik herunterzuladen. Ein missgünstiger Nachbar könnte unter Ihrem Namen ein Segelboot ­ersteigern, was Sie nicht brauchen, aber trotzdem bezahlen müssen (das ist schon vorgekommen). Es gibt Fälle, wo ahnungslose WLAN-Nutzer von Klagen wegen Urheberrechtsverletzungen oder Kinderpornografie überrascht wurden. Deshalb ist WLAN-Verschlüsselung Pflicht.

Der Bundesgerichtshof hat im Mai 2010 geurteilt, dass für nicht genügend gesicherte WLAN-Netze kostenpflichtige Abmahnungen fällig werden können.

WLAN-Verschlüsselung

WEP (Wired Equivalent Privacy) war der erste Verschlüsselungsstandard für WLAN. Es stellte sich heraus, dass das Verfahren Schwachstellen hat und mit heutiger Hard- und Software in wenigen Minuten entschlüsselt werden kann.

WPA (Wi-Fi-Protected Access) wurde 2003 als verbesserte Verschlüsselung eingeführt. Im Jahr 2004 wurde WPA zu WPA-2 weiterentwickelt. 2008 wurden Methoden gefunden, um die WPA-Verschlüsselung zu brechen. WPA-2 gilt gegenwärtig als sicher, wenn ein ausreichend langes und kompliziertes Passwort gewählt wird. Für geringe Sicherheitsansprüche genügen acht Zeichen, vorausgesetzt Sie benutzen einen Mix aus Groß- und Kleinbuchstaben, Ziffern und Sonderzeichen. Normale PCs würden Monate brauchen, um ein solches Passwort zu entschlüsseln – vorausgesetzt, Ihr Passwort ist in keinem Wörterbuch der Welt zu finden. Die Hochleistungscomputer von Geheimdiensten oder konkurrierenden Firmen können ein Passwort aus acht Zeichen in Minuten oder wenigen Stunden knacken. Jedes weitere Zeichen erhöht die Sicherheit um mehr als das Zehnfache. Ein Passwort aus 32 Zeichen gilt als sicher genug.

Alle Geräte im Netz müssen das gleiche Verschlüsselungsverfahren benutzen. Ältere Geräte unterstützen eventuell WPA und WPA-2 nicht. In diesem Fall haben Sie zwei Möglichkeiten: Für das gesamte Netzwerk eine unsichere Verschlüsselung wählen oder die alten Geräte entsorgen. Manche Router können mittels Update auf WPA-2 umgestellt werden. Dabei kommt es allerdings manchmal zu Leistungseinbrüchen, wenn der Router die für WPA-2 benötigte Rechenleistung nicht aufbringen kann bzw. nicht für alle angeschlossene PCs gleichzeitig. Windows XP unterstützt WPA-2 erst ab Servicepack 3.

Vorsichtsmaßnahmen

  • Ändern Sie die vom Hersteller voreingestellte SSID Ihres Routers. Aus der SSID sollte man weder Eigentümer noch Standort des Geräts erkennen können.
  • Ändern Sie das vom Hersteller vorgegebene Router-Passwort.
  • Konfigurieren Sie Ihren Router nur über Kabelverbindung und deaktivieren Sie die Möglichkeit, den Router über das Internet zu konfigurieren.
  • Ein „DHCP“ genanntes Verfahren teilt jedem PC. der darum bittet, eine IP-Adresse (Internet-Adresse) zu, auch den PCs ungewollter Besucher. Es ist sicherer, jedem PC eine feste IP-Adresse zu geben und den DHCP-Mechanismus ausschalten.
  • Wie Sie bereits wissen, hat jedes Netzwerkgerät eine weltweit einmalige MAC-Adresse. Bei manchen Routern kann man eine „Access Control List“ mit den MAC-Nummern derjenigen Geräte aufstellen, die Zugang erhalten dürfen. WLAN-Geräte, die nicht in der Liste stehen, werden vom Router ignoriert.
  • Bei vielen Routern lässt sich die Aussendung der SSID deaktivieren. Dadurch wird Ihr Router für die Nachbarschaft unsichtbar. Das scheint die Sicherheit zu erhöhen, tatsächlich entsteht dadurch eine Sicherheitslücke. Microsoft rät deshalb von der Deaktivierung der SSID ab.

Ist Ihr Netzwerk sicher?

Selbst wenn Sie alle beschriebenen Sicherheitsmaßnahmen einsetzen, verbleibt ein kleines Restrisiko. Datenpakete sausen durch die Luft, wo sie mit geeigneten Geräten aufgefangen werden können. Mit ausreichend großer Rechenleistung kann WPA und WEP entschlüsselt werden. Das als sicher geltende WPA-2 Verfahren könnte Fehler enthalten und irgendwann „geknackt“ werden. Schließlich galt auch WEP als sicher - bis es geknackt wurde.

Wie schnell ist Ihr WLAN?

Wie viele Netze sehen Sie, wenn Sie sich die „verfügbaren Drahtlosnetzwerke“ anzeigen lassen? In Städten ist ein halbes Dutzend und mehr nicht ungewöhnlich. Sie teilen sich die Bandbreite mit allen sichtbaren und unsichtbaren Nachbarn. Zum Glück sind meist nicht alle gleichzeitig aktiv. Im Internet gibt es Testprogramme (fragen Sie eine Suchmaschine nach „Speedmeter“), um die Geschwindigkeit zu testen. Möglicherweise können Sie die volle Geschwindigkeit Ihres DSL-Anschlusses nicht ausnutzen, weil die WLAN-Verbindung zeitweise zu langsam ist. Vielleicht sollten Sie den Aufwand auf sich nehmen, ein Netzwerkkabel zu verlegen.

Gesundheitsgefährdung

Solange die Verbindung gut ist, senden WLAN-Geräte mit geringer Sendeleistung. Je schlechter der Empfang, desto mehr „drehen sie auf“[39]. Die zehn Beacons pro Sekunde werden immer mit maximaler Energie gesendet. Die Regulierungsbehörde für Telekommunikation und Post RegTP erlaubt in der Verfügung 89/2003 für WLAN-Komponenten, die im 2,4-GHz-Frequenzbereich senden, eine maximale Strahlungsleistung von 0,1 Watt. Nach heutigen Erkenntnissen ist das nicht gefährlich für die Gesundheit, denn es liegt unter der zulässigen Grenze. Erst ab 0,5 Watt scheinen Kopfschmerzen verstärkt aufzutreten. Es gibt Initiativen, z. B. in Großbritannien und Österreich, die Nutzung von WLAN in Schulen zu begrenzen[40]. Sie sollten sicherheitshalber den WLAN-Router nicht über dem Kinderbett aufhängen. Platzieren Sie den WLAN-Router, wenn möglich, einige Meter entfernt von Ihrem Arbeitsplatz.

Handys und DECT-Telefone strahlen stärker als WLAN, aber nur während der Dauer des Telefonats. Die meisten WLAN-Router strahlen 24 Stunden pro Tag. Es ist eine kleine Mühe, den WLAN Router bzw. den WLAN-Sendeteil des Routers bei Nichtgebrauch abzuschalten. Viele Router haben dafür einen Schalter. WLAN von Notebooks lässt sich meist mit einer Taste abschalten (was nebenbei die Akkulaufzeit verlängert).

Die Wissenschaft hat erst vor kurzem begonnen, sich mit der Strahlungsgefährdung durch Handys zu beschäftigen. Zumindest teilweise handelt es sich um Auftragsforschung, die von Mobilfunkunternehmen bezahlt wird. Das Langzeitexperiment, einen großen Teil der Bevölkerung ununterbrochen zu bestrahlen, hat vor etwa zehn Jahren begonnen. In 30 Jahren werden wir mehr wissen.





Power-LAN


PowerLAN, auch dLan oder Powerline Communication (PLC) genannt, benutzt die 230V Stromversorgungsleitungen für die Datenübertragung. Zusätzlich zum 50 Hz Starkstrom überträgt die Leitung eine Datenfrequenz im Megahertzbereich. Beim Empfänger wird das Datensignal mit einem Frequenzfilter abgegriffen.

In manchen Gebieten ist DSL über Telefonleitung nicht verfügbar. PLC sollte ursprünglich als Alternative dienen. Einige Stadtwerke bieten einen Internetzugang über Stromleitungen an. Während bei DSL bei jedem Kunden eine eigene Leitung ins Haus führt, müssen sich alle Internet-Kunden der Stadtwerke die Leitung teilen. Was an Datenrate übrig bleibt, ist lächerlich.

Inhouse-Powerline ist eine Vernetzung innerhalb der Wohnung. Man steckt einfach Adapter in jede Schukosteckdose, wo ein Netzwerkgerät angeschlossen werden soll.

Da die Stromleitungen nicht abgeschirmt sind, fangen sie wie eine Empfangsantenne eine Menge Störstrahlung (z.B. Rundfunk) auf. Deshalb muss das Datensignal mit großer Amplitude (mit viel „Power“) eingespeist werden, damit es stärker als die Störquellen ist. Außerdem wird ein Großteil des Signals in Glühlampen und anderen Verbrauchern in Wärme verwandelt. Leider wirken die nicht abgeschirmten Leitungen auch als Sendeantenne. Mit Richtantennen können Ihre Daten in bis zu 100 Meter Entfernung empfangen werden. Der „Elektrosmog“ ist größer als von WLAN und erreicht jedes Zimmer, in dem sich eine Steckdose oder eine Lampe befindet. Außerdem kann die Abstrahlung Ihrer Leitungen zu Störungen im Frequenzbereich von etwa 3 bis 20 MHz führen. Das betrifft den Funkverkehr von Feuerwehr, Polizei, Sicherheitsbehörden, Taxi- und Amateurfunk, Kurzwellenrundfunk, den Seefunkdienst, Wetterfunk, Flugfunk und militärische Funkdienste. Wie stark diese Störungen sind und ob sie jemand bemerkt, hängt von Lage und Bau Ihres Hauses ab und lässt sich nicht vorhersagen. Auch wenn es nur selten vorkommt: Wenn sich einer dieser Funkdienste (oder auch nur der Funkamateur im Nebenhaus) gestört fühlt, kann er sich in Deutschland an die Bundesnetzagentur wenden. Die schickt einen Funkmesswagen, legt Ihr Equipment still und schickt Ihnen eine Rechnung für den Einsatz der Funkmesstruppe.

In einem Artikel[41] bei Heise.de wird ausgeführt:

  • RWE und andere Stromkonzerne haben Powerline-Access inzwischen aufgegeben
  • Polizei und Rettungsdienste haben teilweise keinen Funkempfang mehr
  • Das japanische Parlament hat Powerline mit 109 zu 2 Stimmen verboten.

Funkamateure laufen Sturm gegen die Störungen des Kurzwellenempfangs.

Die meisten Haushalte werden mit 3-Phasen-Strom (Drehstrom) versorgt. Üblicherweise sind die Schukodosen auf die drei Phasen verteilt. Damit die hochfrequenten Datensignale von einer Phase zur anderen wechseln können, brauchen Sie einen Phasenkoppler, der die Phasen (nur für das Trägerfrequenzsignal) miteinander verbindet. Möglicherweise ist es billiger, vom Elektriker einige Steckdosen umklemmen zu lassen, damit alle für die Vernetzung benötigten Dosen an einer Phase hängen.

Das Hochfrequenzsignal wird durch Spulen, wie sie z. B. in jedem Stromzähler stecken, stark gedämpft. Vielleicht kommen ein paar Signalreste bis zur Haussicherung. Bis in die Wohnung Ihres Nachbarn kommt das Signal nicht, denn dorthin müsste das Signal einen weiteren Zähler überwinden. Die direkte Abstrahlung erreicht jedoch die Nachbarschaft. Vielleicht ist es ratsam, über eine Verschlüsselung wie bei WLAN nachzudenken.

Die Bemühungen des IEEE um einen Standard für PowerLAN sind gescheitert. Weltweit konkurrieren drei zueinander inkompatible Konzepte; das von DS2, das von Panasonic und HomePlug von Intellon. Wenn Sie sich für einen Hersteller entschieden haben, müssen Sie bei dessen Modellreihe bleiben.

Eine Schlagbohrmaschine und einen langen Steinbohrer auszuleihen und Kabel zu verlegen dürfte die bessere (und wohl auch billigere) Möglichkeit sein.




Bluetooth


style="text-align:right"

Geräte-
klasse[42]
Sende-
leistung
Reichweite
im Freien
3 1 mW 1 m
2 2,5 mW 10 m
1 100 mW 100 m

Dieses Funkverfahren arbeitet im genehmigungsfreien Frequenzbereich von 2,4 GHz. Im Vergleich zu WLAN (maximal 300mW[42]) wird mit einer wesentlich geringeren Leistung gearbeitet. Eine Reichweite von einem oder zehn Metern ist für Handy, Headset, MP3-Player, Maus, Tastatur und andere Kleingeräte oft ausreichend und belastet den Akku sehr wenig. Wegen der kleinen Reichweite entstehen nur kleine Netze. Solche Mininetze bezeichnet man als „Piconet“.

Viele Notebooks haben eine Bluetooth-Schnittstelle integriert. PCs lassen sich mit einer Steckkarte oder einem USB-Stick nachrüsten. Windows XP ab Servicepack 2 und spätere Betriebssysteme unterstützen Bluetooth ohne Treiberinstallation.

Die theoretische Übertragungsrate beträgt 706,25 kbit/s beim Empfang bei gleichzeitigen 57,6 kbit/s beim Senden. Das reicht beispielsweise für gleichzeitige Stereoübertragung zu drei Kopfhörern.

Sobald Bluetooth-Geräte eingeschaltet werden, suchen sie nach anderen Geräten. Sie identifizieren sich innerhalb von zwei Sekunden über eine unverwechselbare 48 Bit lange MAC-Adresse. Ein der Geräte wird automatisch zum Master bestimmt, der die Kommunikation steuert, die anderen sind die „Slave“s. Wenn ein Master ausfällt, wird automatisch ein anderer gewählt.

Ein Bluetooth-Netzwerk kann bis zu 255 Teilnehmer umfassen, von denen acht Geräte gleichzeitig aktiv sein können und die restlichen 247 währenddessen geparkt werden. Die nicht aktiven Geräte bleiben synchronisiert und lauschen in Abständen von bis zu 2,56 Sekunden auf Nachrichten. Um den Akku zu schonen, gibt es mehrere Energiesparmodi. Ein Slave kann z. B. dem Master mitteilen, dass er die nächsten 0,5 Sekunden (das ist eine kleine Ewigkeit für einen Computer) „schlafen“ wird. Der Master wird dann erst nach einer halben Sekunde nachfragen, ob der Slave weiterschlafen will.

Bluetooth hat drei Sicherheitsmodi: Völlig unverschlüsselt und zwei weitere, die mit Verschlüsselung und Authentifizierung arbeiten können. Wenn Sie über Kopfhörer Radio hören oder telefonieren, ist eine Verschlüsselung bestimmt verzichtbar. Eine Datenübertragung dürfte wohl immer verschlüsselt sein. Wenn Sie einen leicht zu knackenden PIN-Code verwenden, könnte es sein, dass böswillige Angreifer hohe Kosten durch Anruf kostenpflichtiger Hotlines und SMS-Dienste verursachen, das Telefonbuch und private SMS lesen.

Eine interessante Verwendung ist der Einsatz von Bluetooth-Geräten als Haustürschlüssel oder für eine Zugangskontrolle. Herzschrittmacher können überwacht werden. Die Spielzeugindustrie lässt Puppen und Spielzeugtiere untereinander kommunizieren. Die Elektrosmog-Belastung kann bei geringer Sendeleistung vernachlässigt werden.

Wollen Sie mehr über Bluetooth wissen?





Notebooks


Ein Notebook

Ein Gewicht von 10 bis 15 kg bei einem Preis weit über 10.000 DM war 1983 der Stand der Technik. 1986 war ein Laptop mit Diskettenlaufwerk, ohne Festplatte, mit einem Gewicht von 5 kg für 4000 DM ein Hit. Heutige Geräte sind auf etwa die Größe eines (sehr dicken) Schreibblocks geschrumpft und werden deshalb als Notebooks bezeichnet. Wird das Gerät noch kleiner, nennt man es Subnotebook. Wenn auch noch das DVD-Laufwerk entfällt, wird es zum Netbook. Die Bezeichnung „Notebook“ im folgenden Text bezieht sich auf alle diese Bauformen.

Notebooks sind beliebt: Sie benötigen wenig Platz auf dem Tisch und lassen sich gut transportieren. Für einige wenige Stunden kann man sie mit Akku betreiben. Zahlreiche Außendienstler, Dienstreisende, Studenten und andere können auf ein Notebook nicht verzichten. Nach einer Umfrage ist ein Notebook für jeden achten Berufstätigen unverzichtbar geworden.

Braucht man ein Notebook nur dafür, um Briefe zu schreiben und im Internet zu surfen, ist jedes aktuelle Gerät ausreichend leistungsfähig. Hat man darüber hinaus gehende Ansprüche, sollte man das Angebot genauer prüfen. Als Gegenpol zur Werbung hier einige Gedanken, welche Nachteile man sich beim Kauf eines Notebooks möglicherweise einhandelt.


Ergonomie

Testen Sie die Tastatur! Manchmal sind die Tasten für breite Finger zu schmal. Dreifach belegte Tasten und ein ungewohnter Druckpunkt machen das Tippen umständlich. „Normale“ Tastaturen sind an der Vorderkante knapp drei Zentimeter hoch. Bei Notebooks liegt die Tastatur deutlich höher. Weil der Handballen beim Schreiben tiefer liegt als die Tasten, ist längeres Schreiben anstrengend, und Vielschreibern droht eine Sehnenscheidenentzündung. Eine Handballenauflage kann das Schreiben angenehmer machen. Wenn Sie Ihr Notebook zu Hause betreiben, könnten Sie eine normal große externe Tastatur anschließen.

Das Touchpad ist eine geniale Erfindung. Wenn Sie mit dem Notebook unterwegs sind und keinen Tisch finden, ist ein Touchpad unentbehrlich. In jeder anderen Arbeitsumgebung ist eine externe Maus anzuraten. Die Arbeit geht damit wesentlich schneller voran. Es gibt kleine, stromsparende Notebook-Mäuse, meist mit einem selbstaufrollenden Anschlußkabel. Wenn Sie Wert auf eine lange Akkulaufzeit legen, sind Funkmäuse nicht ratsam, weil sie eine Mehrlast für den Akku sind. Wenn man beim zügigen Schreiben öfter versehentlich das Touchpad berührt, kann es ratsam sein, es abzuschalten.

Mit Zusatztastatur, -maus und -bildschirm erreichen Sie die Bedienungs-Ergonomie eines stationären Computers. Lästig sind allerdings die vielen Kabel, die an- und ausgestöpselt werden müssen. Man kann das Stecken reduzieren, indem man Tastatur, Maus und Drucker an einen USB-Hub anschließt. Optimal, wenn auch teuer, ist eine Docking-Station. Netzwerk, Drucker, Bildschirm, Lautsprecher, Tastatur und Maus bleiben ständig an der Dockingstation angeschlossen und die Dockingstation wird mit einem einzigen Spezialstecker mit dem Notebook verbunden.

Sonnenschein

Das brillianteste Bild im abgedunkelten Zimmer (und im Verkaufsraum) haben hochglänzende Displays. Bei hellem Licht oder gar draußen im Sonnerschein ist das Bild kaum zu erkennen, dafür können Sie sich selbst wunderbar bei der Arbeit zusehen. Displays mit matter Oberfläche haben bei hellerem Licht das bessere Bild, aber sie sind im Handel schwer zu finden, am ehesten noch im hochpreisigen Business-Segment. Fragen Sie dennoch danach – ein seriöser Händler wird ihnen zumindest einen alten Ladenhüter zum Vergleich präsentieren können, anhand dessen er Ihnen die Unterschied zwischen matter und spiegelnder Oberfläche aufzeigt.

Eine relativ neue Entwicklung sind „transflexive Displays“, die teils auch als „transreflexive Displays“ bezeichnet werden. Damit ist das Arbeiten sogar im prallen Sonnenschein möglich, und sie können im Schaufenster aufgestellt werden.




Komponenten

Notebook-Festplatten

„Normale“ Festplatten vertragen keine Erschütterungen. Deshalb werden für Notebooks spezielle Festplatten gefertigt. Sie haben eine Grundfläche von 2,5" Breite (etwa 65 mm) mal 100 mm Tiefe. Die Bauhöhe beträgt 0,5" (12,7 mm) oder 0,375" (9,5 mm) oder 0,25" (6,35 mm). Mittlerweile gibt es schon Festplatten mit 1,8" (46 mm) Breite.

Der kleinere Durchmesser und eine langsamere Drehzahl (4200 bis maximal 5400 Umdrehungen pro Minute) macht sie deutlich weniger empfindlich gegen Erschütterungen. Das Risiko von Oberflächenschäden sinkt, selbst wenn die Köpfe die Oberfläche kurzzeitig berühren. Andererseits sind die Notebook-Festplatten durch die geringe Drehzahl erheblich langsamer als vergleichbare „normale“ Festplatten.

Manche neuere Notebook-Festplatten haben einen „Fall-Sensor“: Wenn Ihnen das Notebook vom Tisch fällt, registriert das der Sensor. Noch vor dem Aufschlag wird die Rotation gestoppt und die Köpfe geparkt. Selbst wenn das Notebook zersplittert, überleben Ihre Daten den Sturz mit hoher Wahrscheinlichkeit.

Die Festplatte verbraucht 10% bis 15% vom gesamten Strombedarf des Notebooks, auch im Leerlauf sinkt der Strombedarf kaum. Die Energie wird in Wärme verwandelt, was ein großes Problem ist. Das Plastegehäuse leitet die Wärme nicht ab, und eine Luftströmung gibt es in den kompakten Geräten nicht. Unter den hochwertigen Notebooks gibt es sehr wenige Konstruktionen, welche einen Teil der Prozessorkühlluft über die Festplatte strömen lassen. Die überwältigende Mehrzahl der Notebookgehäuse sind, unter thermischen Gesichtspunkten, Fehlkonstruktionen. Legen Sie doch mal Ihr Notebook nach einer längeren Betriebszeit auf den Rücken (vorher natürlich ausschalten). Wo Sie die meiste Wärme fühlen, befindet sich die Festplatte. Es ist kein Wunder, dass defekte Festplatten der häufigste Defekt sind (von Fallschäden mal abgesehen).

Was können Sie tun, damit Ihre Festplatte deutlich länger als die Garantiezeit lebt? Benutzen Sie die Stromsparfunktionen und lassen Sie die Festplatte nach fünf bis maximal zehn Minuten Untätigkeit automatisch parken, auch wenn der Strom aus der Steckdose kommt. Versetzen Sie das Notebook in den Standby-Modus, wenn Sie eine Pause machen. Bei den meisten Geräten genügt dafür ein einziger Tastendruck oder das Zuklappen des Deckels (falls die Scharniere das mehrere Jahre durchhalten).

Hochwertige Notebooks haben zunehmend „Solid-State-Festplatten“, englisch "SSD" (Solid State Disk). SSDs kommen ohne bewegliche Teile aus, denn sie sind mit großen Mengen Flash-Speichern gefüllt, wie sie auch in den USB-Memory-Sticks verwendet werden. SSD-Festplatten sind sehr teuer und haben bescheidene Speicherkapazitäten, nur einige Dutzend Gbyte. Ihr Energiebedarf (und die Wärmeentwicklung) sind minimal. Problematisch ist die begrenzte Lebensdauer: Wie auch bei den USB-Memory-Sticks sind gegenwärtig maximal 100.000 Speichervorgänge möglich, an der Verbesserung wird zielstrebig geforscht.

Wegen einer Besonderheit des Schreibverfahrens muss auf einer SSD oft „aufgeräumt“ werden. Windows Vista und Nachfolger können die SSD in einer Arbeitspause mit einem speziellen „TRIM“-Befehl aufräumen. Windows XP kennt diesen Befehl nicht und kann deshalb die Arbeitspausen nicht nutzen. Erst wenn ein Schreibvorgang erfolgen soll, wird zeitaufwändig aufgeräumt. Das bedeutet: Bei einem typischen Verhältnis zwischen Schreib- und Lesevorgängen bringt eine SSD unter Windows XP keinen nennenswerten Geschwindigkeitsvorteil.

Notebooks mit zwei Festplatten

Einige hochwertige Notebooks sind mit zwei Festplatten ausgestattet. Das bringt bemerkenswerte Vorteile:

  • Wenn Sie die Auslagerungsdatei auf die zweite Festplatte verlegen, wird Windows merklich schneller. Sie müssen sich darum selbst kümmern, die üblichen vorinstallierten Systeme benutzen die zweite Festplatte nicht.
  • Sie können die zweite Festplatte für die Datensicherung verwenden. Das sollte allerdings nicht Ihre einzige Sicherung sein, denn Notebooks werden manchmal gestohlen.
  • Sie können die erste Festplatte (die mit dem Betriebssystem) durch eine kleine SSD-Festplatte ersetzen. Mit den vielen kleinen Dateien des Betriebssystems kann die SSD ihre Vorteile voll ausspielen. Mit den Daten, vor allem den großen MP3- und Multimediadateien, kommt die Magnetplatte besser zurecht. Die Geschwindigkeit steigt fühlbar, etwa auf das Doppelte.
Mehr dazu können Sie im Artikel über die Geschwindigkeit von SSD-Platten lesen.


Externes Diskettenlaufwerk mit USB-Anschluss

Diskettenlaufwerk

Es bietet nur eine kleine Speicherkapazität, beansprucht aber viel Platz und viel Strom. Daher wird es in aktuelle Notebooks nicht mehr eingebaut. Es wird auch kaum noch gebraucht. Wenn man ein Netzwerk betreibt, kann man bei Bedarf über das Netzwerk auf das Laufwerk eines anderen PC zugreifen. Für die Datenspeicherung verwendet man heute einen DVD-Brenner. Für Sonderfälle kann man für etwa 40 Euro ein externes Laufwerk erwerben, das an den USB-Anschluss angesteckt werden kann.

Optisches Laufwerk

DVDs und CDs lesen kann jedes handelsübliche Notebook. Hohe Brenngeschwindigkeiten sind selten und auch kaum nötig. In einigen Notebooks sind Kombi-Laufwerke eingebaut, die DVD schreiben und lesen, aber Blu-ray nur lesen können.

Man sollte nicht mehrere Scheiben kurz aufeinander brennen, weil die Wärmeableitung in dem kleinen Gehäuse schwierig ist. Weil das Brennen enorme Energiemengen braucht, sollte man im Batteriebetrieb darauf verzichten.


Notebook-Schnittstellen

Die Möglichkeit, einen PC (Personal Computer) um neue Möglichkeiten zu erweitern, machen viel von dessen Reiz aus. Die großen PCs haben innen mehrere Steckplätze für Erweiterungskarten, Notebooks nicht. Deshalb wurden Möglichkeiten geschaffen, Erweiterungskarten von außen in ein Notebook einzustecken bzw. anzuschließen.

PCMCIA bzw. PC-Card

Dicke von PCMCIA-Karten
Typ I 3,3 mm
Typ II 5 mm
Typ III 10,5 mm

Die PCMCIA (Abkürzung für Personal Computer Memory Card International Association) hat Notebook-Erweiterungskarten entworfen und im Jahr 1990 die Maße, die Stecker und die Ansteuerung dieser Peripheriekarten standardisiert. Mit PCMCIA werden sowohl die Organisation als auch die von dieser Organisation standardisierten Steckkarten bezeichnet. Die Schnittstelle ist dem ISA-Bus ähnlich und entsprechend langsam. Eine PCMCIA-Karte hat die Grundfläche einer Kreditkarte. Die Dicke ist unterschiedlich. Typ I wird für Speicherkarten verwendet, Typ 2 für Modems, ISDN-Modems, Netzwerkkarten, SCSI-Schnittstellen, WLAN-Adapter, Bluetooth-Adapter und anderes, Typ III für Mini-Festplatten. In einen Typ-III-Steckplatz kann man bei Bedarf zwei Karten vom Typ I oder II hineinstecken, in einen Typ-II-Steckplatz zwei vom Typ I. Die Karten dürfen bei laufendem Betrieb eingesteckt oder entnommen werden, ohne sie abzumelden. Auch PCs lassen sich mit einem PCMCIA-Steckplatz nachrüsten.

CardBus

Ein USB-CardBus-Adapter

Die Cardbus-Schnittstelle ist ebenfalls von der PCMCIA standardisiert worden. Sie ist PCI-ähnlich, die Übertragung erfolgt mit 32 Bit parallel. Während die PCMCIA-Schnittstelle nur 16 MB/s übertragen kann, kommt Cardbus auf 133 MByte/s. Die Steckplätze sind abwärtskompatibel: Man kann eine PCMCIA-Karte in einen Cardbus-Slot stecken, aber nicht umgekehrt.

ExpressCard

ExpressCards und eine CardBus-Karte

Der neueste Standard, ebenfalls von der PCMCIA, ist der ExpressCard. Aus Anwendersicht leistet die ExpressCard ziemlich genau das Gleiche, wie der CardBus, hat aber geringere Ausmaße, ist schneller (500 MBit/s) und einfacher in der Anwendung. Großes Manko: Es gibt bisher nur sehr wenig ExpressCards auf dem Markt, und die Steckplätze sind nicht kompatibel mit PCMCIA und CardBus. Wahrscheinlich wird ExpressCard keine große Verbreitung erreichen, denn USB ist meist einfacher in der Benutzung.

USB

Laut Standard muss jede USB-Schnittstelle 500 mA Strom liefern können. In einem stationären PC ist das nur selten ein Problem. Notebooks jedoch, besonders die preiswerten, können diese 500 mA oft nicht aufbringen, und schon gar nicht an allen USB-Anschlüssen gleichzeitig. Andererseits benötigen zahlreiche interessante Zusatzgeräte die vollen 500 mA. Das bedeutet, dass stromhungrige WLAN- und UMTS-Karten, Scanner oder externe Festplatten nicht an jedem Notebook funktionieren. Gute Notebooks haben eine Überlastsicherung, billige brennen schlimmstenfalls nach einigen Minuten durch. Mitunter kann man dieses Zubehör zwar anstecken und die Treiber installieren, aber sobald das Zubehör die volle Leistung benötigt, bleibt das Notebook stehen oder schaltet ab. In diesem Fall bleibt nur Rückgabe oder das Zwischenschalten eines aktiven USB-Hubs, der den benötigten Strom aus einem eigenen Netzteil erhält.

PS/2

Ein oder zwei Anschlüsse sind nützlich, um externe Tastatur und Maus anzustecken. Beides gibt es auch mit USB-Steckern, aber bleiben dann noch genug USB-Anschlüsse frei für externe Festplatte, Diskettenlaufwerk, Scanner, Drucker, Netzwerk und Internet?

Parallele Schnittstelle

Der 25-polige Stecker wird fast nur noch für ältere Drucker benötigt. Für einen so großen Stecker ist in heutigen Notebooks kein Platz mehr. Wenn ein alter Drucker angeschlossen werden soll, kauft man einen USB-Parallel-Adapter.

Serielle Schnittstelle

Es gibt Telefonanlagen, für deren Programmierung ein serieller Anschluss benötigt wird. Auch Mess- und Steuergeräte benötigen manchmal einen. Notebooks mit seriellem Anschluss sind selten, aber es gibt sie.


Stromversorgung von Notebooks

Das Netzteil ist in einem stationären PC sein größtes und schwerstes Einzelteil. Auch in einem Notebook trägt es in nicht geringem Maße zum Gesamtgewicht und -volumen bei. Deshalb werden Notebooks fast ausnahmslos von externen Netzteilen versorgt. Das Notebook wird dadurch kleiner, und man muss das Gewicht des Netzteils nicht mitschleppen, wenn man nicht lange unterwegs ist.

Ein handelsüblicher Computer benötigt 12 Volt, vor allem für die Motoren, und 5 Volt für die Elektronik. Netzteile stationärer Computer liefern außerdem -5 V, -12 V und 3,3 V. Haben Sie mal gesehen, wie viele Drähte vom Netzteil zu den PC-Komponenten führen und wie dick sie sind? Ein derart dickes Kabel vom externen Netzteil zum Notebook wäre nicht praktikabel. Notebook-Anschlusskabel sind dünn und flexibel. Allerdings tritt auf dem langen Anschlusskabel ein beträchtlicher Spannungsabfall auf. Deshalb liefern Notebook-Netzteile nur eine Rohspannung von 17 bis 22 Volt. Im Inneren des Notebooks findet die Feinregelung statt: Einerseits werden 12,0 Volt für die Motoren erzeugt, andererseits wird der Ladestrom für die Akkus geregelt.

Für die Versorgung mit 12 und 5 Volt und weiteren Spannungen gibt es zwei Strategien:

  1. Das Netzteil erzeugt mehrere Rohspannungen, im Notebook erfolgt nur die Feinregelung. Diese Netzteile haben einen mehrpoligen Stecker und ein dickeres Kabel.
  2. In einem mehrpoligen Stecker sind mehrere Kontakte parallelgeschaltet. Das Netzteil erzeugt nur eine einzige Spannung.
  3. Innerhalb des Notebooks werden aus einer einzigen Rohspannung alle weiteren Spannungen erzeugt. Der Stecker ist zweipolig und robust, das Kabel ist dünner. Das Netzteil wird deutlich leichter und billiger, das Notebook wird nur wenig teurer und fast nicht schwerer. Allerdings entsteht mehr Wärme im Notebook.

Im Laufe der Jahre ist eine allmähliche Tendenz zur dritten Lösung zu beobachten, welche eindeutig kundenfreundlicher ist:

  • Bei Verlust oder Defekt des Netzteils gibt es preiswerten Ersatz. Fragen Sie im Notebook-Shop nach Universalnetzteilen, die sind preiswerter als Originalnetzteile.
  • Wenn Sie Ihr Notebook ständig zwischen Arbeitsstelle und Wohnung hin und her schleppen, kann sich die Anschaffung eines Zweitnetzteils lohnen.
  • Kensington und andere Hersteller haben Konverter im Angebot, die eine einstellbare Spannung aus dem 12 Volt Autoakku erzeugen. Einer der vielen mitgelieferten Adapterstecker passt bestimmt an Ihr Notebook. Auch gibt es Spannungswandler von 12 Volt bzw. 24 Volt auf 230 Volt.

Wenn Sie ein Netzteil mit mehreren Rohspannungen haben, werden Sie im Defekt- oder Verlustfall wohl ein teures Netzteil direkt vom Hersteller beziehen oder in einem Spezialgeschäft kaufen müssen.

Energy Star

Das US-amerikanische Umwelt-Bundesamt hat 1992 das Umwelt-Label „Energy Star“ geschaffen, um stromsparende Geräte auszuzeichnen. Die Regierung der USA hat allen Behörden untersagt, PCs oder Zubehör ohne „Energy Star“ anzuschaffen. Viele große Konzerne haben sich angeschlossen. Notebooks mit Onboard-Grafik dürfen maximal 14 Watt verbrauchen, um den Energy Star zu tragen. Wenn ein Grafikchip und separater Grafikspeicher vorhanden ist, sind 22 Watt erlaubt. Ein Hersteller, der diese Werte nicht einhält, verliert einen Großteil seiner potentiellen Kunden.

Es gibt einen weiteren Grund, warum die Hersteller die 22-Watt-Grenze einhalten: Die Akku-Kapazität. Welche Kapazität hat Ihr Akku? Multiplizieren Sie die Spannung mit den Amperestunden (V x Ah), beide Werte sind auf dem Akku aufgedruckt. Vermutlich erhalten Sie eine Kapazität zwischen 50 und 70 Wattstunden. Teilen Sie diesen Wert durch die Stundenzahl, die Ihr Akku durchhält und ziehen Sie etwa 20% Verluste ab, so erhalten Sie die Leistungsaufnahme in Watt. Ihr Netzteil liefert viermal so viel Watt? Es muss ja gleichzeitig den Betriebsstrom liefern und den Akku möglichst schnell aufladen.

Warum bauen die Hersteller keine größeren Akkus ein? Große Akkus machen das Notebook sehr viel schwerer und teurer, womit es für die breite Masse der Käufer uninteressant wird.

Stromsparende Komponenten

Halbleiterbauelemente haben sehr stark schwankende Betriebsparameter. Bei gleicher Taktfrequenz ist der Stromverbrauch (und damit auch die Wärmeentwicklung) sehr verschieden. Beim Hersteller werden die Prozessoren vermessen und nach Wärmeentwicklung sortiert. Die energiesparendsten Prozessoren sind selten und werden in teuren Spitzengeräten verwendet, die damit auch längere Akkulaufzeiten erreichen. Übrigens ist nicht allein der Stromverbrauch der CPU wichtig – auch der Chipsatz, die Grafikkarte und die WLAN-Antenne brauchen viel Strom.

Wenn man die preiswerteren, mehr Strom fressenden Chips verwendet, wird das Notebook deutlich billiger. Durch die größere Hitzeentwicklung reicht aber die passive Kühlung nicht aus – man braucht einen Lüfter auf der CPU (der nicht wenig Strom braucht). Damit nun der Akku nicht so schnell leer ist, wird die Taktfrequenz des Prozessors im Akkubetrieb oft reduziert. Es gibt Geräte, die im Akkubetrieb den Prozessortakt immer halbieren.

Stromsparender Betrieb

Bei der Festplatte, der CPU und der Peripherie sind Energieeinsparungen möglich:

  • Entfernen Sie alle nicht benötigten Geräte.
  • Das betrifft auch USB-Sticks. Sparsame Fabrikate verbrauchen 1 Watt (200 mA). Größere, schnelle Sticks brauchen mehr. Zum Vergleich: 40 bis 70 Watt braucht ein Notebook bei mittlerer Belastung.
  • Lassen Sie keine CD/DVD im Laufwerk liegen, wenn Sie diese zurzeit nicht benötigen. Solange eine Scheibe eingelegt ist, läuft der Spindelmotor und verbraucht eine Menge Strom.
  • Stellen Sie die Grundhelligkeit im Akkubetrieb dunkler. Lassen Sie bereits in einer kurzen Arbeitspause die Helligkeit des Bildschirms noch weiter absinken.
  • Lassen Sie die Festplatte nach einer Arbeitspause von drei bis fünf Minuten parken. Noch kürzere Zeiten bringen keinen Vorteil: Der Strombedarf der Festplatte ist beim Anlaufen viel größer als im Dauerbetrieb, außerdem führt das häufigere Parken der Köpfe zu erhöhtem Verschleiß.
  • Manche Anwendungen (z. B. Word) speichern in kurzen Abständen den aktuellen Zustand. Dabei läuft jedesmal die Festplatte an. Muss das sein? Ist ein größerer Zeitabstand möglich?
  • Die meisten Notebooks setzen den Prozessortakt im Akkubetrieb herab. Bei einigen wenigen Notebooks kann man einstellen, wie weit.
  • Defragmentieren Sie die Festplatte häufiger (natürlich im Netzbetrieb), das reduziert die Anzahl der Kopfbewegungen.

Lebensdauer von Akkus

Notebook-Akkus sind Spezialanfertigungen,
Ersatzakkus kosten meist 100 bis 150 Euro.
Sie gelten als Verschleißteile, die Garantie
ist meist auf 6 Monate eingeschränkt.

Die Lebensdauer von Akkus hängt vor allem von deren Betriebstemperatur ab. Die optimale Ladetemperatur der Akkus liegt zwischen 10 und 30 Grad Celsius. Das bedeutet, dass die Akkus nur bei ausgeschaltetem Notebook geladen werden dürften, was nicht sehr realistisch ist.

Wenn die Entladung bei 20 bis 40 Grad erfolgt, hat der Akku die maximale Kapazität. Bei höheren oder niedrigeren Temperaturen gibt er weniger Strom ab. Leider wird der Akku immer bei erhöhter Temperatur betrieben. Dafür gibt es zwei Ursachen:

  1. CPU, Grafikkarte, Festplatte und weitere Komponenten erzeugen jede Menge Wärme und erhöhen die Innentemperatur des Geräts.
  2. Jeder Akku hat einen Innenwiderstand. Wenn Strom durch den Akku fließt, erzeugt der Innenwiderstand Wärme. Je höher der Strom, desto höher die Eigenerwärmung. Bei Handys und PDAs kann die Eigenerwärmung vernachlässigt werden, denn der Entladestrom und damit die Wärmeentwicklung verteilen sich auf einige Tage. Bei Notebooks ist der Entladestrom vielfach größer.
Allgemeine Enpfehlungen
  • Bei einem nagelneuen Notebook sollte die allererste Aufladung etwa 12 Stunden dauern und nicht unterbrochen werden, damit der Akku seine volle Kapazität „erwirbt“.
  • Ein Akku muss regelmäßig benutzt werden, ein andauernder Ladezustand tut ihm nicht gut. Wenn Sie das Notebook hauptsächlich mit Netzanschluss benutzen, sollten Sie daran denken, hin und wieder mal den Akku zu benutzen.
  • Wenn Sie das Gerät über viele Tage oder Wochen ausnahmslos stationär benutzen, legen Sie den (geladenen!) Akku in den Kühlschrank (in einer hermetisch verschlossenen Plastetüte). Damit entfernen Sie eine große Wärmequelle aus dem Gerät. Die Festplatte wird geschont und das Lüftergeräusch verringert sich.
  • Kaufen Sie keinen Akku auf Vorrat, wenn Sie ihn nicht tatsächlich benötigen, zum Beispiel vor einer längeren Reise. Ungenutzt wird er unbrauchbar. Durch Selbstentladung verliert ein Akku monatlich bei Zimmertemperatur 10% bis 15% seiner Ladung, im Kühlschrank weniger.
  • Wenn Sie einen Reserve-Akku besitzen, benutzen Sie ihn! Tauschen Sie beide Akkus regelmäßig aus, zum Beispiel monatlich.
  • Wenn Sie ein gebrauchtes Notebook kaufen, sollten Sie nicht mit einem brauchbaren Akku rechnen. Viele Leute verkaufen Ihr Notebook genau deswegen, weil die Akkulaufzeit nicht mehr für die tägliche Arbeit reicht. Testen Sie die Akkulaufzeit, bevor Sie sich über den Kaufpreis einigen!

Lithium-Akkus

Es gibt mehrere Technologien, die auf Lithium basieren: LiIo (Lithium-Ionen), LiPo (Lithium-Polymer), LiCoIon, LiFePO4 und andere. Es ist schwer, allgemeingültige Regeln für jeden Typ aufzustellen. Sofern in der Bedienungsanleitung etwas dazu steht, haben diese Angaben stets Vorrang!

Akkus auf Lithium-Basis sind brandgefährlich. Hat Ihnen der Lehrer im Chemieunterricht vorgeführt, wie heftig Natrium mit Wasser reagiert? Die Reaktion von Lithium mit Wasser ist noch viel heftiger. Selbst kleinste Risse im Akku sind höchst gefährlich, denn Lithium reagiert sogar mit der Feuchtigkeit der Luft. Hin und wieder gibt es Rückrufaktionen der Hersteller, wenn die Gefahr besteht, dass ein überhitzter Akku einen Brand verursacht. Als Anwender sollte man darauf achten, dass das Notebook von allen Seiten gut mit Luft versorgt ist. Eine weiche, flauschige Tischdecke unter dem Gerät ist ungünstig. Hohe Standfüße oder ein Notebook-Ständer sind nützlich. Man kann auch ein Lineal, eine Leiste oder notfalls ein Buch unter den hinteren Teil des Notebooks legen, um die Belüftung der Unterseite zu verbessern. Es gibt auch Notebook-Cooler-Pads, auf denen das Gerät abgestellt werden kann.

Ni-Cd-Akkus

Wenn Sie ein älteres Notebook haben, ist eventuell ein Nickel-Cadmium-Akku eingebaut. Diese Akkus haben Besonderheiten:

  • Ihre Lebensdauer hängt von der Anzahl der Ladezyklen ab. 500 Ladezyklen sind realistisch.
  • Sie haben einen „Memory-Effekt“: Wird der Akku nur wenig beansprucht, „vergisst“ er einen Teil seiner Kapazität.

Vermeiden Sie deshalb Mini-Ladezyklen! Stecken Sie das Notebook möglichst erst dann ans Stromnetz, wenn der Akku weitgehend entladen ist. Trennen Sie ihn erst vom Stromnetz, wenn der Akku vollständig geladen ist. Sonst verliert er Kapazität und Lebensdauer.

Ein Akku ist ein Verbrauchsartikel und beginnt nach einigen hundert Ladezyklen einen Teil seiner Kapazität zu verlieren. Keine Wundermittel können diesen Prozess umkehren. Sie können lediglich den Alterungsprozess bremsen durch regelmäßiges vollständiges Entladen und anschließendes vollständiges Wiederaufladen! Einzige Ausnahme: Wenn Sie einen total ungepflegten, heruntergewirtschafteten Akku drei- bis fünfmal entladen und wieder aufladen, erhöht sich dessen Kapazität möglicherweise um 20% bis 30%.

Wie entlädt man einen Akku? Arbeiten Sie damit, bis der Ladezustand auf 10% gefallen ist. Wenn Sie nicht dabeibleiben wollen, gehen Sie folgendermaßen vor:

  • Trennen Sie das Notebook vom Stromnetz.
  • Arbeiten Sie damit, solange Sie Zeit haben oder bis die Akku-Warnmeldung kommt.
  • Beenden Sie schnell alle Anwendungen.
  • Warten Sie, bis das Gerät von selbst abschaltet. Wegen der geringen Stromaufnahme im Leerlauf kann das mehrere Stunden dauern. Eine schädliche Tiefentladung wird von der Elektronik verhindert.


Ein Netbook
Ein Netbook im Vergleich mit einem Notebook

Netbooks

Netbooks haben im Vergleich zu Notebooks folgende Besonderheiten:

  • Auf das DVD-Laufwerk wird verzichtet. Programme zu installieren oder eine Datensicherung sind deshalb schwierig. Entweder Sie kaufen ein externes DVD-Laufwerk oder Sie brauchen eine Netzwerkverbindung zu einem PC mit DVD (und die Kenntnisse, wie man das Netzwerk einrichtet). Sie können jedoch einen USB-Speicherstick benutzen, um Daten mit externen Systemen auszutauschen. Für viele Linux-Distributionen wird alle installierbare Software standardmäßig vom Internet heruntergeladen, so dass ein DVD-Laufwerk in diesen Fällen überflüssig ist.
  • Das Display ist vergleichsweise klein. Beim Surfen muss man viel scrollen. Zu Hause kann man aber einen großen Bildschirm anzuschließen.
  • Die CPU ist leistungsschwach. Für eine Textverarbeitung oder ein anspruchsloses Buchhaltungsprogramm reicht es. Aktuelle 3D-Spiele sind meist nicht möglich, da die Grafikkarten die notwendigen Funktionen nicht besitzen. Wer sich darauf einlassen kann, findet jedoch auch sehr viele Spiele mit geringeren Ansprüchen an die Systemleistung.
  • Die genannten Sparmaßnahmen reduzieren den Energiebedarf, so dass Akkulaufzeiten von sechs bis neun Stunden erreicht werden.
  • Die eingebauten Lautsprecher klingen etwas blechern (was bei dem kleinen Gehäuse kaum anders geht). Stereoklinkenbuchsen zum Anschluss von Lautsprechern sind üblicherweise vorhanden. Durch die USB-Buchse und geeignete Adapter ist verlustfreie digitale Kommunikation mit beliebig hochwertigen Audiosystemen möglich.

Bei Preisen von 300 bis 400 Euro sind Netbooks gut geeignet für Notizen in einer Vorlesung oder während der Bahnfahrt, auch sind Internet-Recherchen und E-Mail kein Problem. Mit Abmessungen eines mittelgroßen Buches (etwa 18 x 25 cm) passen sie in eine Handtasche. Kombiniert mit einem externen Bildschirm (idealerweise hat das Netbook einen HDMI-Ausgang) und u.U. einer externen Tastatur wird zu Hause aus dem Winzling fast ein vollwertiger Rechner für Internet und anspruchslose Bürosoftware.

Netbooks werden gelegentlich in Kombination mit einem UMTS-Vertrag angeboten. Sie sollten sich gut überlegen, ob Sie wirklich einen unkündbaren Zweijahresvertrag abschließen wollen. Berechnen Sie Ihre Kosten für zwei Jahre und vergleichen Sie! Das Koppelgeschäft bringt dem Verkäufer eine fette Provision, ist aber für Sie vermutlich unvorteilhaft.


Notebooks in der Sommerhitze

Notebooks werden schon bei normalen Umgebungstemperaturen recht warm. Das liegt vor allem an ihrer kompakten Bauweise. Darüber hinaus werden Notebooks nicht allzu gut gekühlt, denn zusätzliche Lüfter würden nicht nur den Geräuschpegel erhöhen, sondern die Akkulaufzeit verringern. Im Sommer verschärfen sich die Temperaturprobleme.

  • Sonnige Parkplätze sind Notebook-Killer. Im geschlossenen Fahrzeug kann sich die Luft bis auf 60 Grad erhitzen, sagt der ADAC. Plasteoberflächen bringen es in praller Sonne auf 70 °C. Ein Hinweis: Im Kofferraum ist es meist kühler, und potentielle Diebe sehen das Gerät nicht.
  • Das Notebook kann sich verziehen, die Oberfläche des Gehäuses kann ausbleichen, die Elektronik kann durchbrennen. Die Schublade des DVD-Laufwerks könnte klemmen. Die Versicherungen ersetzen getoastete Notebooks nicht, sondern sie berufen sich auf fahrlässige Handhabung. Wie die Versicherung das beweisen kann? Nun, beispielsweise registriert die SMART-Elektronik der Festplatte die höchste jemals aufgetretene Temperatur.
  • CDs und DVDs können sich verziehen, sogar die Beschichtung kann sich lösen. Auch Speicherkarten können sich verziehen.
  • Der Akku altert dramatisch schneller als sonst.
  • Nehmen Sie Ihr Notebook mit ins Bett? Wenn Sie es auf die Bettdecke legen, werden die Lüftungsschlitze verdeckt.
  • Falls sich Ihr Notebook wegen Überhitzung abschaltet (einige Geräte haben diesen Sensor), lassen sie es abkühlen, bevor Sie es erneut einschalten!


Notebooks in der Winterkälte

Akkus

Alle Arten von Akkus verlieren bei Kälte erheblich an Kapazität. In Notebooks (und Handys) werden meist NiMH-Akkus verwendet, deren empfohlene Betriebstemperatur oft zwischen +5°C bis 30°C liegt. Unter dem Gefrierpunkt sollte man NiMH-Akkus nicht mehr verwenden[43]. Bei Frost können die Isolationsschichten zerfrieren, wodurch Elektrolyt in die Zellen läuft. Im günstigsten Fall bleibt der Akku funktionsfähig, es wird nur die Kapazität dauerhaft reduziert.

Selbst wenn der Akku bei Minusgraden noch Strom liefert - aufladen sollten Sie ihn keinesfalls bei Frost. Wenn Sie Pech haben, platzt der Akku durch Gasbildung.

Es gibt auch Bauformen von NiMH-Akkus, die starken Frost aushalten. Aufgrund des Preises werden sie in Notebooks und Handys nicht verwendet. Hier sind ausschließlich Lithium Ionen Akkus verbaut.

Kondenswasser

Nicht nur in den Eurotunnel-Zügen fällt die Elektronik aus, wenn sie von der Kälte in die Wärme kommt. Genau wie auf der Brille bildet sich Kondenswasser. Das führt zu Kriechströmen und Kurzschlüssen. Wenn Sie Pech haben, brennt die Elektronik durch. Dazu braucht es nicht mal Minusgrade - eine Temperaturdifferenz von etwa 15°C genügt, damit sich Kondenswasser bildet. Abhilfe: Das Gerät in der Notebooktasche lassen oder in eine Plastetüte stecken und einige Stunden aufwärmen lassen. Oder sofort (innerhalb einer Minute) nach Betreten eines warmen Raumes einschalten, damit es sich von innen erwärmt, bevor sich Kondenswasser bilden kann. Man sollte ein Notebook übrigens niemals auf die Heizung legen, um es zu erwärmen, da auf diesem Wege weitere Schäden entstehen können.[44] Daher sind die anderen genannten Maßnahmen zu bevorzugen. Übrigens: Wenn man ein warmes Notebook in die Kälte bringt, bildet sich kein Kondenswasser.

Display

„LCD“ steht für Liquid Cristal Display, es enthält also flüssige Kristalle. Die sind bei niedrigen Temperaturen weniger flüssig, reagieren also langsamer. Das fällt besonders bei bewegten Bildern auf. Je nach Hersteller werden andere Substanzen verwendet, daher gibt es zur Frostbeständigkeit keinen allgemeingültigen Wert. Sie müssen schon in der Betriebsanleitung nachsehen. Beachten Sie den Unterschied zwischen Betriebs- und Lagertemperatur. Geräte für „draußen“ und für's Auto haben aufwändigere Displays, die einiges an Frost aushalten. Für handelsübliche TFT-Bildschirme wird meist eine Betriebstemperatur über 0°C gefordert. Bei Handys, DVD-Playern, Notebooks und anderen Indoor-Geräten ist es meist ebenso. Wenn das eiskalte Gerät allmählich aufgewärmt wird (Achtung! Kondenswasser! In eine Plastetüte stecken!), dürfte es meist wieder funktionieren.

Festplatte

SSD-Festplatten sind offenbar durch Frost deutlich stärker gefährdet als Magnetfestplatten. Datenrettungsunternehmen beobachteten einen überproportionalen Anteil von Problemen mit SSD-Platten[45].

Empfehlungen

Bewahren Sie das Gerät in einer (möglichst gepolsterten) Tasche auf. Einige Stunden im kalten Auto übersteht das Gerät eingewickelt in eine dicke Decke. Benutzen Sie im Sommer eine Auto-Kühlbox? Die hat eine gute Wärmeisolation und kann das Gerät längere Zeit warmhalten. Wenn längere Lagerung im Auto unvermeidbar ist, sollten Sie wenigstens den Akku ins Warme mitnehmen oder zu Hause lassen. Sie können das Notebook auch ohne Akku im Auto betreiben. Es gibt Konverter, welche 230 Volt aus dem Autoakku erzeugen, so dass Sie das Notebook auch ohne dessen Akku betreiben können.



Ersatzteile

Notebooks sind sehr empfindlich. Je nach Auftraggeber der Untersuchung und den Kriterien der statistischen Auswertung benötigen 10% bis 25% aller Notebooks eine Garantiereparatur[46]. Dazu kommen noch Sturzschäden oder Cola auf der Tastatur, wofür kein Anspruch auf eine Garantieleistung besteht.

Während der Garantiezeit brauchen Sie kaum Sorgen zu haben. Wie hoch steigt wohl die Ausfallrate im dritten und nachfolgenden Jahren, wenn die Garantie abgelaufen ist? Ersatzteile sind dann schwieriger erhältlich bzw. kaum noch zu bekommen.

Generell sind Reparaturen teuer. Die Anbieter tauschen auch bei kleinen Defekten lieber teure Teile aus, statt sie zu reparieren. Der statistisch häufigste Schaden ist ein Defekt der Hauptplatine. Stiftung Warentest hat ermittelt, dass ein Austausch zwischen 250 bis 400 Euro kostet[47]. Am zweithäufigsten geht der Bildschirm kaputt, ein neues Display kostet etwa 200 Euro. Den dritte Platz in der Häufigkeit belegen Festplattenausfälle. Wobei man eine neue Festplatte für weniger als hundert Euro erhalten kann, aber wie schlimm würde Sie der Verlust Ihrer Daten treffen?

Eine defekte Festplatte zu ersetzen ist unproblematisch. Darüber hinaus gibt es in einem Notebook kaum standardisierte Teile. Disketten- und DVD-Laufwerke gibt es in zahlreichen Bauformen und Abmessungen. Ersatz für eine defekte Tastatur zu bekommen ist nervenaufreibend und fast immer unmöglich. Wenn das Notebook ständig wegen Überhitzung abstürzt, weil der CPU-Lüfter verschlissen ist, wird Ersatz kaum aufzutreiben sein.

Reparaturdauer

Der Wechsel der Modellreihen geht schnell vor sich. Das Nachfolgemodell ist mitunter nicht kompatibel zum Vorgänger. Unter diesen Bedingungen wäre es wirtschaftlich ruinös, wenn ein Verkäufer von Notebooks sich einen Ersatzteilvorrat zulegen würde. Folglich müssen defekte Notebooks immer zur Reparatur an den Hersteller oder eine zentrale Vertragswerkstatt eingeschickt werden.

Um die Versandkosten zu senken, werden in vielen Elektronikgroßmärkten die defekten Geräte (nicht nur Notebooks) gesammelt, bis eine genügende Anzahl zusammen ist. Die anschließende Reparatur dauert mitunter ein paar Wochen. Anschließend sammelt die Werkstatt die reparierten Geräte, bis sich der Rückversand lohnt.

Stiftung Warentest ermittelte eine durchschnittliche Reparaturdauer von 5 Tagen bei Apple und HP bis vier Wochen bei Samsung und Medion[48]. Dell schickte innerhalb einer Woche einen Servicetechniker ins Haus. Das kostete 175 Euro + Ersatzteile.

Bei einigen hochwertigen Notebooks kann man gegen Aufpreis eine Versicherung abschließen und bekommt während der Reparaturzeit ein Ersatzgerät. Die Daten vom defekten Gerät auf das Ersatzgerät zu kopieren (und später wieder zurück), gehört üblicherweise nicht zu den Versicherungsleistungen.

Blender3D FreeTip.gif
Tipp: Beachten Sie bitte, dass bei vielen Herstellern (nicht nur von Notebooks) im Kleingedruckten steht: Bei zur Reparatur abgegebenen Geräten wird grundsätzlich die Festplatte gelöscht!.

Wie rettet man die Daten, wenn das Notebook nicht mehr funktioniert? Nehmen Sie die Festplatte raus! Es gibt Adapter, mit denen man die ausgebaute Notebook-Festplatte an den USB- oder IDE-Anschluss eines stationären PC anschließen kann. Suchen Sie an der Unterseite nach einer etwa 9 × 13 cm großen Abdeckung oder an einer Seite nach einem 9 × 2 cm großen Einschub. Mehr als zwei bis vier Schrauben brauchen Sie nicht zu lösen. Achten Sie darauf, dass das Notebook während des Aus- und Einbaus der Festplatte stromlos ist (Akku herausnehmen).

Besonders robuste Geräte

Stöße uns Stürze sind eine häufige Schadensursache. Die Notebooktasche ist von der Schulter gerutscht oder an einen Türrahmen angeschlagen, ein Stolpern über das Kabel hat das Notebook auf den Fußboden befördert oder Sie sind im Sessel eingeschlafen und das Gerät ist heruntergefallen ... Es gibt Geräte, die so etwas locker überstehen. Eine der härtesten Prüfungen für Notebooks ist der „U.S. Militär Falltest-Standard“ (MIL-STD-810F)[49]. Für das Militär bestimmte Notebooks müssen bei Temperaturen von -20°C bis 55°C arbeiten können, 15 Minuten Regen überstehen, Vibrationen und harte Stöße aushalten. Unter anderem müssen sie im ausgeschalteten Zustand und mit geschlossenem Display 26 Stürze aus einer Höhe von bis zu 90 cm auf eine 2 Zoll dicke Sperrholzplatte überstehen.

Googeln Sie nach „MIL-STD-810F Notebook“, wenn Sie ein robustes Gerät suchen. Rechnen Sie mit Preisen von ein- bis fünftausend Euro. Es gibt auch Geräte, die etwas weniger robust und nicht ganz so teuer sind. Ein Notebook, welches tagtäglich unterwegs benutzt wird, sollte ein Gehäuse aus Aluminium oder Magnesium haben. Toshiba hat eine vergleichsweise geringe Ausfallrate und kann es sich ­deshalb leisten, einige Business-Modelle mit sogenannter „Doppelgarantie“ zu verkaufen: Sollte das Gerät ­ausfallen, bekommen Sie es natürlich repariert. Zusätzlich bekommen Sie als Entschädigung für die erlittenen Unannehmlichkeiten den vollen Kaufpreis erstattet[50].

Reparaturen vermeiden

Zu den häufigsten Schäden zählen Schäden am Display (Kuli beim schwungvollen Zuklappen eingeklemmt), defekte Tastaturen (Krümel, Cola, Bier) und Stürze. Bei allzu schwungvollem Auf-/Zuklappen des Notebooks können auf dem Bildschirm Pixelfehler auftreten. Die Scharniere des Deckels bzw. die zum Bildschirm hindurchführenden Kabel gehen so oft kaputt, dass man fast von einer „Sollbruchstelle“ sprechen kann. Wenn Sie das Gerät zu Hause benutzen, sollten Sie darauf verzichten, nach jeder Benutzung den Deckel zuzuklappen, um die Deckelscharniere zu schonen.

Behandeln Sie ihr Notebook nicht zu grob. Legen Sie sich eine hochwertige Tasche zu. Wenn man mehrere Gepäckstücke herumtragen muss, steigt die Gefahr, eins davon zu vergessen. Empfehlenswert sind Notebook-Taschen, die genug Platz für Akten und Kleinkram bieten. Es gibt auch gut gepolsterte Notebook-Rucksäcke.

Legen Sie ein Notebook keinesfalls ungesichert auf den Beifahrersitz, egal ob eingeschaltet oder nicht, denn bei einer scharfen Bremsung fliegt es unaufhaltsam in den Fußraum. Wenn es gar noch aufgeklappt ist (und nicht dem USA-Militärstandard entspricht) ...

Falls Sie Flüssigkeit auf die Tastatur geschüttet haben, schalten Sie das Notebook sofort aus (auf die Einschalttaste drücken, bis das Gerät aus ist). Bewegen Sie das Gerät ruckfrei zur Tischkante und nehmen Sie den Akku heraus, wenn das ohne Anheben des Notebooks möglich ist! Bei manchen Notebooks liegt die Tastatur in einer kleinen „Wanne“, die ein wenig Flüssigkeit auffängt. Wenn Sie das Gerät kippen würden, läuft die Flüssigkeit auf die Hauptplatine. Heben Sie das Notebook nicht hoch (etwa eine Woche lang), bis die Flüssigkeit getrocknet ist! Danach erst können Sie sich um die Reinigung und eventuell um eine neue Tastatur kümmern.

Erweiterungen und Aufrüstung

Eine Speicheraufrüstung ist fast immer möglich und meistens empfehlenswert. Die RAM-Module sind mitunter herstellerspezifisch und deshalb teuer. Bestellen Sie den zusätzlichen RAM in einem Fachgeschäft und lassen Sie ihn auch dort einsetzen. Dann trägt der Händler das Risiko, wenn der RAM-Baustein nicht funktioniert oder Ihr Notebook Schaden nimmt.

Wenn Sie die Festplatte austauschen wollen, beachten Sie die vielen Bauformen. Bestimmen Sie die Höhe Ihrer alten Festplatte genau. Ermitteln Sie die Leistungsaufnahme der ursprünglich eingebauten Festplatte. Bauen Sie nur solch eine Festplatte ein, die ebenso viel oder weniger Strom benötigt. Festplatten, die einen höheren Strom als 500 mA benötigen, werden möglicherweise nicht starten. Insbesondere bei älteren Notebooks sind sparsame 500 mA Leistungsaufnahme keine Seltenheit. Solche Festplatten zu bekommen ist heute relativ schwierig geworden. Meistens erhalten Sie Festplatten, die 700 mA benötigen oder gar 1 A. Andererseits können Sie die Akku-Laufzeit erhöhen, indem sie eine sparsamere Festplatte verwenden.

Wenn es etwas teurer sein darf: Wenn Sie sich eine SSD-Festplatte zulegen, verlängern Sie deutlich die Akkulaufzeit. Außerdem gewinnen sie deutlich an Geschwindigkeit.

Das Umkopieren der Festplatte erfolgt am Besten mit einem Image-Programm. Das klappt aber nicht immer: Wenn sich Teile vom BIOS oder undokumentierte Partitionen auf der Festplatte befinden, kann der Austausch problematisch sein.

Die CPU kann man nur selten auswechseln: In der Regel ist sie eingelötet. Selbst wenn nicht: Die Hauptplatine ist meist nicht für wesentlich schnellere CPUs vorbereitet. Auch die Grafikkarte ist in 95% aller Fälle fest verlötet und kann nicht ausgetauscht werden.



Kriterien für den Kauf

  • Wenn Sie beruflich von Kunde zu Kunde eilen, sollten Sie auf ein robustes Gerät Wert legen. Die Mehrkosten werden durch die wesentlich höhere Lebenserwartung kompensiert.
  • Für manche Geräte können Sie in den ersten Tagen nach dem Kauf eine Garantieverlängerung erwerben. In Anbetracht der erschreckend hohen Ausfallwahrscheinlichkeit ist das empfehlenswert, besonders wenn Ihr Notebook intensiv benutzt wird.
  • Es gibt Geräte, die mit einem vergrößerten Zusatzakku ausgerüstet sind. Für einen langen Arbeitstag kann das sinnvoll sein.
  • Können Sie es sich leisten, sechs Wochen auf eine Reparatur zu warten? Für manche Geräte, vor allem im Businessbereich, können Sie die Bereitstellung eines Ersatzgerätes für die Dauer der Reparatur vereinbaren. Einige Hersteller (z. B. Toshiba) garantieren für einige Serien weltweit eine kurze Reparaturdauer.
  • Wenn Sie den Computer nur gelegentlich brauchen und Ihre Geschwindigkeitsansprüche nicht groß sind, ist vielleicht ein Netbook das Richtige. Sie kosten nur etwa 300 Euro und die Leistung ist zum ­gelegentlichen Lesen und Schreiben privater Emails oder Webseiten mehr als ausreichend.
  • Im Chipsatz integrierte Grafiklösungen sind Rohrkrepierer, wenn Sie mit dem Notebook spielen wollen. 3D-Spiele funktionieren in der Regel nicht, und ruckelfreie Videos sind ein Problem. Ein separater Grafikchip mit eigenem Speicher ist Pflicht.
  • Wenn Sie öfter im Freien oder in Fensternähe arbeiten, ist von einem glänzenden Display abzuraten.
  • Weil 2,5“ Festplatten nur die halbe Datenübertragungsrate wie 3,5“ Festplatten haben und auch die Positionierzeit deutlich größer ist, ist ein großer Arbeitsspeicher wichtiger als eine hohe Taktfrequenz der CPU. 4 GByte sollten es schon sein, mit der Möglichkeit, auf 8 GByte aufzustocken.
  • Auch für Notebook-Festplatten gilt: Je kleiner der von der Software belegte Teil der Festplatte ist, desto geringer die Zugriffszeiten. Festplatte partionieren und nicht mit Software zumüllen!
  • Es gibt Modelle mit zwei Festplatten. Tauschen Sie eine davon durch eine schnelle SSD-Platte aus! Das darauf installierte Betriebssystem ist sehr schnell. Größere Datenmengen finden auf der zweiten mechanischen Festplatte Platz.

Tauglichkeit für Spiele

Jeder Spieler weiß, dass man für moderne Spiele einen leistungsfähigen Prozessor, eine gute Grafikkarte und ein kräftiges Netzteil braucht – und etliche Zusatzlüfter, um die Wärme aus dem Gehäuse heraus zu bekommen. Leistungsfähige Grafikkarten verbrauchen 200 bis 400 Watt, eine gute CPU 100 bis 140 Watt. Spieler statten ihre PCs meist mit Netzteilen von mehr als 500 W aus. Kein tragbarer Akku kann 500 Watt für mehr als ein Dutzend Minuten liefern. Sie müssten schon einen Autoakku im Wägelchen hinter dem Notebook herziehen, der könnte 200 Watt für zwei Stunden liefern. Selbst wenn der Strom aus der Steckdose kommt – welche Lüfter sollen denn in der Lage sein, 500 Watt Wärmeleistung aus einem so kleinen Gehäuse herauszublasen? Eine dauerhaft zu hohe Temperatur im Notebook fördert dessen frühzeitiges Ende.

Es gibt ältere Spiele, die selbst auf einem PC mit 500 MHz schnell genug laufen. Das bekannte Solitär läuft (unter Windows 3.1) sogar auf einem PC mit 25 MHz. Aber Actionspiele auf einem Laptop erfordern Kompromisse, und mitunter scheitert ein Spiel an Hardwareproblemen. Die ­Hersteller haben das Problem erkannt. Inzwischen gibt es Notebooks, die für Spieler etwas besser geeignet sind als Durchschnitts-Notebooks.

Mindestens zwei Bedingungen muss ein Spieler-Notebook erfüllen:

  1. Die Grafikelektronik braucht einen eigenen Grafikspeicher, andernfalls muss die CPU viele Millionen mal pro Sekunde Zwangspausen einlegen, weil die Grafikelektronik beim Speicherzugriff stets Vorrang bekommt (siehe „Shared Memory“ im Kapitel über Grafikkarten).
  2. Das Notebook braucht einen separaten Grafikchip. Eine in den Chipsatz integrierte Grafikelektronik hat zu wenig Leistung für aktuelle Spiele, darüber hinaus werden die Treiber von manchen Spielen nicht akzeptiert (siehe „Onboard-Grafikkarte“ im Kapitel über Grafikkarten).

Es gibt Notebooks mit einer Grafik-Hybridlösung: Zusätzlich zum stromsparenden Onboard-Grafikchip ist eine leistungsfähigere Grafikkarte eingebaut. Bei einfachen Arbeiten wird der Onboard-Chip benutzt, die Grafikkarte einschließlich deren Lüfter ist abgeschaltet oder im Energiesparmodus. Bei Bedarf wird die leistungsfähige Grafikkarte hochgefahren und übernimmt die Grafikleistung allein oder teilt sich die Arbeit mit dem Onboard-Chip. Wahrscheinlich kommen die meisten Spiele damit klar.

Brauche ich ein Notebook?

Notebooks werden auch von Leuten gekauft, die es zu Hause auf den Tisch legen und niemals vom Platz bewegen. Als Argument hört man meist, es wäre so schön klein. Nun, jeder darf sein Geld nach Belieben verschwenden. Miniaturisierung ist nun mal teuer und aufwändig, deshalb ist ein Notebook stets deutlich teurer als ein stationäres Gerät gleicher Leistung. Sie sparen sie etwa 40% des Kaufpreises, wenn Sie statt eines Notebooks einen stationären PC gleicher Leistung kaufen (wobei PCs mit derart geringer Leistung kaum zu finden sind, allenfalls im An- und Verkauf). Ein Flachbildschirm und eine Tastatur beanspruchen nicht mehr Platz auf dem Tisch als ein Notebook, und die „große Kiste“ kann sicherlich unter dem Tisch einen Platz finden.

Berücksichtigen Sie bitte außerdem:

  • Notebooks lassen sich nur schlecht aufrüsten (am leichtesten: Festplatte und RAM). Stationäre PCs lassen sich leichter aufrüsten, wodurch sich ihre Nutzungsdauer deutlich verlängern lässt.
  • Notebooks haben eine erschreckend hohe Ausfallrate. Die Festplatte hat eine geringe Lebensdauer, und im Sommer schaltet das Gerät möglicherweise wegen Überhitzung ab. Hinzu kommen mechanische Probleme mit den Deckelscharnieren und Kabelbrüche im Scharnier. Ein defektes Notebook lässt sich nur selten reparieren. Nach Ablauf der Garantie ist eine Reparatur fast immer wirtschaftlich unsinnig. Im Gegensatz dazu sind Reparaturen an stationären PCs vergleichsweise preiswert und sinnvoll.
  • Das relativ kleine Notebook-Display ist nicht augenfreundlich.
  • Die Position des Notebook-Bildschirms ist immer an die Position der Tastatur gebunden, während bei PC-Tastaturen eine gesunde Variabilität möglich ist.

Wenn Sie einen stationären PC kaufen und als Zubehör einen größeren TFT-Bildschirm erwerben, können Sie diesen Bildschirm auch mit ihrem nächsten und übernächsten PC nutzen. Mit dem Notebook-Display geht das nicht.


Jedenfalls sollten Sie sich fragen, ob Sie viel Geld für ein leistungsschwaches Gerät ausgeben wollen, welches ergonomisch mangelhaft ist, eine enorm hohe Ausfallrate hat, kaum repariert und nicht aufgerüstet werden kann – nur weil es schick ist?


Tintendrucker


Druckverfahren

Grundprinzip

Wie heißt es richtig: Tintendrucker oder Tintenstrahldrucker?

Die ersten Drucker in den 60er Jahren waren tatsächlich Tintenstrahldrucker. Aus einer Düse kommt ein kontinuierlichen Tintenstrahl. Hinter der Düse wird der Strahl in Tröpfchen zerhackt und die Tröpfchen werden elektrisch aufgeladen. Mit Ablenkelektroden wird jedes einzelne Tröpfchen auf die gewünschte Stelle geschossen (so ähnlich wie der Elektronenstrahl im Röhrenfernseher). Nicht benötigte Tropfen werden in einen Auffangtrichter gelenkt und in den Tintenbehälter ­zurückgeführt. Der Vorzug dieser Technik ist die hohe Treffgenauigkeit auch bei variablem Abstand, z. B. beim Beschriften gekrümmter Flächen. Derartige CIJ-Drucker (Continuous Ink Jet) werden auch heute noch für spezielle Industrieanwendungen eingesetzt, z. B. für das Bedrucken von Waren mit Strichcode und Haltbarkeitsdatum.

Für den Büro- und Heimbereich gibt es DOD-Drucker (Drop on Demand, dt. „Tropfen auf Anforderung“). Sie heißen „Tintendrucker“. Während die CIJ-Drucker nur eine Düse haben (bzw. für jede Grundfarbe eine), haben die DOD-Drucker zahlreiche, übereinanderliegende Düsen. Ein Druckkopf bewegt sich waagerecht über das Blatt und schießt mit einer Geschwindigkeit von 10 bis 40 m/s (144 km/h) mikroskopische Tintentropfen auf das Papier. Wenn die Zeile vollständig ist, wird das Papier weitertransportiert. Es gibt zwei Methoden, die Tintentropfen auf das Papier zu schießen:

  • Beim „Bubble-Jet-Verfahren“ wird eine kleine Tintenmenge explosionsartig verdampft. Der entstehende Dampf schleudert einen Tropfen aus der Düse heraus.
  • Der piezoelektrische Effekt wird genutzt. Durch Anlegen einer Spannung verformt sich eine Düsenkammer und schleudert den Tropfen heraus.

Die ersten Tintendrucker haben Tropfen von 200 Picoliter verschossen (Durchmesser etwa 0,07 mm). Eine möglichst hohe Auflösung ermöglicht saubere Konturen und bessere Farbübergänge, deshalb erzeugen moderne Drucker Mikrotröpfchen von 1 Picolitern (Durchmesser etwa 0,001 mm). Moderne Drucker können Tropfen variabler Größe erzeugen. Mit großen Tropfen geht das Drucken großer einfarbiger Flächen deutlich schneller, die kleinsten Tropfen werden für feine Strukturen oder Gesichter verwendet. Moderne Geräte haben 48 bis 512 Düsen pro Farbe und verschießen aus jeder Düse bis zu 30000 Tröpfchen pro Sekunde.

Die ersten Tintendrucker verwendeten nur schwarze Farbe. Heute drucken fast alle Drucker in Farbe. Aus drei Farben (cyan, magenta, yellow) lässt sich jeder Farbton mischen. Eine vierte Patrone enthält die schwarze Tinte. Weil Schwarz am meisten gebraucht wird, hat die schwarze Patrone oft größere Abmessungen. In manchen hochwertigen Fotodruckern gibt es eine oder mehrere zusätzliche Farben: Hell-Cyan, Hell-magenta und Hell-Gelb, um Gesichter und andere helle Töne naturgetreuer drucken zu können.

Extrem billige Drucker verzichten auf die schwarze Patrone und mischen Schwarz aus den drei Grundfarben zusammen. Allerdings ergibt das ein etwas bräunliches Schwarz und es erhöht die Kosten beim Schwarzdruck auf das Dreifache.

Anforderungen an die Tinte

Die Druckertinte muss zahlreiche sich widersprechende Anforderungen erfüllen.

  1. Wenn Wasser verdampft, bleibt Kalkstein zurück - sehr lästig und schwer zu entfernen. Was meinen Sie wohl, wie viele Rückstände zurückbleiben, wenn schwarze Tinte statt klarem Wasser verdampft wird? Die nachströmende Tinte muss diese Rückstände blitzschnell auflösen, damit die Düse nicht verkalkt. Aktuelle Druckermodelle verschießen bis zu 30.000 Tintentropfen pro Sekunde. Dadurch bleibt nicht viel Zeit zum Auflösen der Rückstände.
  2. Die Geschwindigkeit chemischer Prozesse hängt sehr stark von der Temperatur ab. Der Drucker muss bei wenigen Plusgraden ebenso funktionieren wie im Hochsommer, auch wenn der Druckkopf durch längeres Drucker zusätzlich aufgeheizt ist.
  3. Das nächste Problem ist die Eindringtiefe. Wenn der Tintentropfen auf das Papier trifft, muss er ein wenig in das Papier eindringen – aber nicht zu tief: Tinte, die in größere Tiefe vordringt, ist vergeudet, und außerdem sieht dann das Papier auf der Rückseite nicht mehr weiß aus. Papier mit geringer Saugfähigkeit bringt die besten Ergebnisse, aber auch bei preiswerterem Papier muss der Drucker eine akzeptable Qualität abliefern können.
  4. Eine weitere Schwierigkeit ist die richtige Durchmischung der Tropfen. Die Tintentropfen folgen in einer bestimmten Reihenfolge: Die kräftige Farbe zuunterst, also zuerst blau, dann folgt magenta, und gelb kommt obenauf. Einerseits müssen die drei Farbtröpfchen lange genug flüssig bleiben, um sich zu vermischen. Andererseits müssen sie schon angetrocknet sein, wenn der benachbarte Pixel gedruckt wird, damit scharfe Kanten nicht verwischen.
  5. Die Trockendauer der Tinte ist ebenfalls wichtig. Bei einer Druckleistung von 20 Seiten pro Minute braucht der Drucker drei Sekunden pro Seite. Wenn die Seiten nicht voll sind, folgen sie noch schneller aufeinander. Die Tinte muss schnell genug trocknen, damit das gerade gedruckte Blatt nicht die Tinte auf dem vorhergehenden Blatt verwischt, wenn es in die Ablage fällt. Außerdem möchte man das Blatt sofort nach dem Druck anfassen können.
  6. Die Tinte sollte in den Düsen nicht zu schnell eintrocknen, wenn der Drucker einige Tage nicht benutzt wird.
  7. Allzu dünnflüssige Tinten sind nachteilig. Der Hersteller muss den Feuchtigkeitsgehalt der Tinte soweit wie möglich reduzieren, sonst wellt sich bei großflächigen Bildmotiven das Papier. Macht er andererseits die Tinte zu trocken, verstopfen die Düsen. Billigtinten sind durchschnittlich „flüssiger“, um Verstopfungen zu vermeiden. Dadurch verschmutzt der zur Reinigung der Düsen verwendete „Filz“ viel schneller, und die Tinte beginnt den Drucker zu verschmutzen.
  8. Bereits 0,001% Verunreinigungen können die Düsen des Druckkopfes verstopfen.

Bei so vielen widersprüchlichen Anforderungen ist die Tinte für jeden Druckertyp eine aufwendig entwickelte Spezialmischung. In der Firma HP arbeiten bis zu 100 Chemiker an der Entwicklung neuer Tinten[51].

Die meisten Drucker verwenden Farbstofftinten, bei denen die Farbstoffe in Wasser gelöst sind. Mit diesen Tinten erhält man leuchtende Farben, doch die Ausdrucke sind licht- und wasserempfindlich. Pigmenttinten sind gegen Wasser und Licht unempfindlich, doch die Qualität ist meist weniger gut.

Papier

Auf normalem Kopiererpapier verlaufen die Tröpfchen entlang der Papierfasern. Auf Spezialpapieren mit saugfähiger Oberfläche (High Glossy Foto Paper) trocknet Farbstofftinte schneller und verläuft nicht. Achtung! Für Pigmenttinte braucht man Fotopapier mit mikroporöser Oberfläche, um beste Qualität zu erreichen. Pigmenttinte auf High Glossy Foto Paper trocknet nicht und verwischt[52]. Einige Drucker haben für Farbstoff- und Pigmenttinte je eine Patrone, um auf unterschiedlichen Papieren drucken zu können.

Druckkosten

Wie wird der Verbrauch ermittelt?

Für die Ermittlung des Verbrauchs von schwarzer Tinte wird ein typischer Geschäftsbrief gedruckt, der standardisierte „Dr.-Grauert-Brief“. Bei Tintendruckern fallen dafür zwei bis fünf Cent pro Seite an. Für Farbdrucke wird der Verbrauch nach der Norm ISO/IEC24711 ermittelt. Es werden fünf standardisierte Testseiten gedruckt, bis die erste Patrone leer ist. Teilt man die „Reichweite“ (die Seitenzahl, bis die Patrone leer ist) durch den Preis der Patrone, erhält man die Kosten pro Seite und kann Druckermodelle vergleichen.

Allerdings können Ihre Druckkosten völlig anders sein. Die verwendeten Testseiten sind nicht vollflächig bedruckt und teils schwarz, teils farbig. Eine Textseite mit Logo und ein paar farbigen Verzierungen verbraucht deutlich weniger Farbe als die Norm. Ein vollflächiges Motiv kommt Sie sehr teuer. Ein Foto von 10 x 15 cm kostet zwischen 10 bis 40 Cent, für gutes Fotopapier muss man weitere 10 Cent pro Blatt aufwenden. Im Fotolabor, bei Aldi oder im Internet gibt es Fotos schon für neun Cent. Wenn Sie oft in Farbe drucken, sollten Sie das Druckvolumen für die nächsten drei Jahre abschätzen und kalkulieren, ob Sie vielleicht hunderte bis tausend Euro sparen können, indem Sie in die Anschaffung eines hochwertigen Druckers investieren.

Schalten Sie den Drucker nicht aus!

„Warum sind meine Farbpatronen leer, ich habe doch nur Schwarz gedruckt?“ Das ist eine oft gestellte Frage.

Wenn der Drucker nicht benutzt wird, beginnt die Tinte in den Düsen ganz langsam einzutrocknen. Weil die Druckerelektronik nach dem Einschalten nicht „wissen“ kann, wie lange der Drucker ausgeschaltet gewesen ist und wie weit die Tinte inzwischen eingetrocknet ist, werden nach jedem Einschalten die Düsen gereinigt. Bei der Reinigung wird so viel Tinte verbraucht wie für den Druck einiger Seiten. Die verheerendsten Kosten erzielen Sie, wenn Sie nur selten drucken und den Drucker nach jeder Seite ausschalten, um Strom zu sparen. Deshalb: Schalten Sie einen Tintendrucker nur dann aus, wenn Sie mehrere Tage oder Wochen nicht drucken werden! Manche Drucker haben deshalb gar keinen Ausschalter.

Wichtig: Tinte in einem lange nicht benutzten Drucker trocknet ein. Je nach Bauart wird der teure Permanentdruckkopf oder „nur“ die Patrone unbrauchbar. Daher sollte man jeden Monat eine kleine Seite unter Verwendung aller Farben drucken. Der Druck der Windows-Testseite sollte genügen, um das Eintrocknen zu verhindern.

Der Stromverbrauch

Tintendrucker brauchen während des Druckens viel weniger Strom als Laserdrucker. Zudem ist der Drucker nur einen kleinen Teil des Tages mit Drucken beschäftigt. Drucker der Mittel- und Oberklasse haben eine Schlummerfunktion: In den Druckpausen wird die Elektronik abgeschaltet.

Ältere sowie preiswerte Drucker brauchen auch im Standby viel Strom. Ein Verbrauch von 20 Watt kostet im Laufe eines Jahres etwa 30 Euro. Das ist vermutlich immer noch weniger als ein Satz Tintenpatronen, so dass es auch bei solchen Druckern lohnen kann, sie eingeschaltet zu lassen. Gute Drucker brauchen nur ein bis zwei Watt, was maximal drei Euro Energiekosten im Jahr verursacht. Einen solchen Drucker sollte man nie ausschalten!

Wie kommen die großen Unterschiede zustande? Jedes Netzteil hat auch im Leerlauf noch einen Eigenbedarf, der meist bei 10% bis 25% seiner Nennleistung liegt. Energieeffiziente Drucker haben deshalb zwei Netzteile. Ein kleines Stand-By-Netzteil liefert gerade genug Strom, um feststellen zu können, ob der Anwender eine Taste drückt oder ob Daten vom PC eintreffen. Nur dann wird das große Netzteil zugeschaltet, um den Rest der Elektronik und die Motoren mit Strom zu versorgen.

Hinsichtlich der Energieeffizienz sind Drucker mit Steckernetzteilen am ungünstigsten. Selbst wenn der Drucker im Ruhezustand ist, laufen viele dieser Netzteile mit voller Power, und sie werden richtig heiß dabei.

Warum haben billige Drucker so hohe Folgekosten?

Bessere Drucker haben einen hochwertigen „Permanent-Druckkopf“. Diese High-Tech-Druckköpfe beherrschen tintensparende Technologien, wie beispielsweise „Mikrotröpfchen“. Ein Permanent-Druckkopf ist das Herzstück des Druckers und als Ersatzteil derart teuer, dass sich der Austausch eines defekten Permanentkopfes in der Regel nicht lohnt. Die Tinte befindet sich in vergleichsweise einfachen, austauschbaren Behältern und ist deshalb relativ preiswert.

Billige Drucker haben meist keinen fest eingebauten Druckkopf, sondern der Druckkopf ist Teil der austauschbaren Tintenpatrone. Das macht die Tintenpatrone teurer und das Grundgerät billiger. Mitunter kostet das komplette Gerät nur 20 Euro mehr als ein Satz Tintenpatronen. Wirtschaftlich sinnvoll ist ein Billigdrucker nur bei einem Druckaufkommen von wenigen hundert Seiten pro Jahr.

Bei preiswerten Druckern stecken die drei Grundfarben oft in einer gemeinsamen Kombifarbpatrone. Wenn Sie die Patrone wechseln müssen, weil die erste der Farben verbraucht ist, bleibt die Resttinte der beiden anderen Farben ungenutzt. Das ist besonders ärgerlich, wenn eine Farbe deutlich häufiger als die anderen benutzt wird. Viele hochwertige Drucker haben für jede Grundfarbe einen separaten Tintenbehälter. Dadurch kann jede Farbe bis zum letzten Tropfen ausgenutzt werden. Schwarze Patronen gibt es oft mit doppelter Kapazität, was die Druckkosten noch weiter senkt.

Fremdtinte

Es scheint, dass nur Parfüm noch teurer ist als Druckertinte, pro Milliliter gerechnet. Einige namhafte Hersteller produzieren sogenannte „kompatible“ Tintenpatronen, die deutlich billiger als die Originalpatronen sind. Druckqualität, Wischfestigkeit und Lichtechtheit reichen zwar nicht an die Originaltinte heran, doch für den Alltagsgebrauch reicht die Qualität aus. Beachten Sie aber, dass bei Verwendung von Fremdtinte die Garantie erlöscht - das steht in jedem Druckerhandbuch. Wenn Sie Originaltinte wollen, sollten Sie das beim Kauf bzw. bei der Bestellung ausdrücklich angeben.

Manche Druckköpfe sind mit einem Elektronikchip ausgestattet, um den Tintenverbrauch zu registrieren. Ein Nachbau würde Patente der Hersteller verletzen. Dann bleibt das Nachfüllen als einzige Möglichkeit. Leere Patronen und Druckköpfe kann man in einer „Tintentankstelle“ nachfüllen lassen. Mitunter wird mit dünnflüssigen „Universal-Tinten“ aufgefüllt, was die Gefahr von Verschmutzung und Beschädigung des Druckers erhöht. Zudem sind die Tintenpatronen bezüglich ihrer Lebensdauer nicht für eine mehrmalige Verwendung konzipiert.

Rundschreiben eines Druckerherstellers an Fachhändler

Sehr geehrter Servicepartner,

Es werden zunehmend „kompatible“ Verbrauchsmaterialien angeboten und eingesetzt.

Bei unseren Tintenstrahl-Geräten führt das sehr häufig zur Zerstörung des Druckkopfes (Fehler Nr. ...). Die Ursache liegt in einer chemischen Reaktion zwischen der Fremdtinte und dem Druckkopf.

Wir weisen nochmals ausdrücklich darauf hin, dass wir den Einsatz von kompatiblen Verbrauchsmaterialien ... weder empfehlen noch freigegeben haben.

Dennoch stellen wir vermehrt fest, dass Gewährleistungs-/ Garantieansprüche gestellt werden, obwohl nachweislich nicht von uns zugelassenes Verbrauchsmaterial verwandt worden ist.

Der Gesetzgeber schließt bei Einsatz von nicht empfohlenen / freigegebenen Verbrauchsmaterialien Gewährleistungsansprüche gegen den Gerätehersteller aus, da ein Mangel im Sinne des § 434 BGB nicht vorliegt. In diesen Fällen liegt gemäß § 439 Abs. 2 BGB auch kein Grund für einen Aufwendungsersatz vor.

Auch in unseren Garantiebestimmungen wird der Einsatz von nicht zugelassenen Verbrauchsmaterialien ... ausgeschlossen.

Bitte, bedenken Sie auch, dass der Kunde ab dem 7. Monat nach Kaufdatum den Beweis führen muss, dass der Mangel bereits bei Übergabe vorhanden war.

Sollten Sie Geräte zu uns einsenden in welchen kein Mangel im Sinne des § 434 vorliegt, müssen wir Sie deshalb ... für den uns entstehenden Prüfungsaufwand mit € 30,00 belasten.


Wenn eine Patrone nicht funktioniert, muss der Händler sie nach dem Sachmängelrecht austauschen. Die Verantwortung für eventuelle Folgeschäden an Ihrem Drucker übernehmen die Verkäufer der kompatiblen Tinten und Nachfülltinten in keinem Fall. Eine defekte, angefangene Patrone muss der Verkäufer ebenfalls austauschen, eine Geldrückgabe muss er aber nicht anbieten. Oftmals lohnt sich bei den niedrigen Preisen eine Rückgabe oder Rücksendung nicht, deshalb werfen viele Leute defekte Patronen einfach weg.

Im professionellen Umfeld wird nicht nachgefüllt. Der Arbeitszeitaufwand ist zu hoch, und eine gleichmäßige Farbqualität ist nicht zu erreichen. Originaltinten bekommen bei herstellerneutralen Tests fast immer eine deutlich bessere Bewertung, was Qualität und lange Haltbarkeit betrifft. Für viele Dokumente (Finanzen u. a.) ist eine Lesbarkeit von mindestens zehn Jahren wichtig. Wenn der Finanzbeamte die Dokumente nicht mehr lesen kann, wird er die Steuer schätzen.

Es gibt mehrere Möglichkeiten, Kosten zu senken:

  • Wie alt ist Ihr Drucker? Neuere Modelle verschießen Mikrotröpfchen und sparen damit teils erheblich an Tinte.
  • Wenn Sie nicht nur gelegentlich in Farbe drucken, sollten Sie einen Drucker kaufen, der für jede Farbe eine separate Patrone besitzt.
  • Manche Drucker ermöglichen es, wahlweise kleine Patronen oder Großraumpatronen einzusetzen. Eine XL-Patrone kostet größenordnungsmäßig das Doppelte und hält viermal so lange wie eine normale.

Ratschlag für Ihre Entscheidung

Einige der billigsten Drucker sind kaum teurer als ein Satz Tintenpatronen. Allerdings handelt es sich bei den beigelegten Patronen mitunter um nur teilweise gefüllte „Economy-Patronen“, die nur für wenige Ausdrucke reichen. So kann der Drucker günstiger angeboten werden. Wer nur selten eine Seite druckt, ist mit einem billigen Drucker möglicherweise gut bedient. Billige Drucker werden allerdings über den Tintenpreis subventioniert und verursachen sehr hohe Folgekosten, wenn das Druckaufkommen steigt.

Weil bei Nachfülltinte immer ein gewisses Risiko besteht, den Drucker zu ruinieren, sollte man stets die mögliche Ersparnis mit den Anschaffungskosten des Druckers vergleichen. Ruiniert man einen billigen Drucker, ist der Verlust gering. Man kauft eben den nächsten billigen Drucker, obwohl dieses Wegwerf-Verfahren leider äußerst umweltschädlich und längerfristig betrachtet auch unwirtschaftlich ist.

Wer sich einen teureren, technologisch hochwertigen Drucker oder ein Kombigerät (Drucker, Scanner, Fax) mit einem Anschaffungspreis von 150 € leisten kann, hat wesentlich niedrigere Druckkosten, selbst bei Verwendung von Originaltinte.

Wer viel druckt (etwa ab 200 Seiten pro Monat), sollte einen Laserdrucker als zweiten Drucker kaufen und den Tintendrucker nur noch für anspruchsvolle Farbdrucke verwenden.

Preiswerte Laser-Farbdrucker gibt es übrigens bereits in der Preislage unter 100 Euro. Berücksichtigen Sie aber, dass Farblaserdrucker für den Druck von hochwertigen Fotos kaum geeignet sind.



Laserdrucker


Laserdrucker

Druckverfahren

1938 wurde das Verfahren der Erfindung der Elektrofotografie erfunden. Daraus entstand 1950 der Kopierer und 1971 der Laserdrucker. Das Herzstück des Druckers ist eine Bildtrommel mit einer lichtempfindlichen Halbleiter-Beschichtung. Diese Beschichtung wird zunächst durch die sogenannte Corona gleichmäßig mit Hochspannung aufgeladen. Der Druckauftrag wird in ein Rasterbild umgerechnet. Dieses Rasterbild wird von einem Laserstrahl oder einer Zeile aus Leuchtdioden (LED-Zeile, bei günstigen Geräten) auf die aufgeladene Bildtrommel projiziert. An den Stellen, die mit Licht bestrahlt werden, verliert die Beschichtung ihre Ladung. Die unbelichteten Stellen bleiben geladen. Nun wird der Toner auf die Trommel aufgebracht. An den aufgeladenen Stellen bleibt er kleben: Je stärker die Restladung, desto mehr Toner bleibt kleben.

Nun wird die Bildtrommel auf das Papier abgerollt und dadurch der Toner auf das Papier übertragen. Das Blatt wandert anschließend durch die „Fixiereinheit“, wo der Toner durch eine erhitzte Andruckrolle bei knapp 200 °C fest mit dem Blatt verschmolzen wird. Bei einigen wenigen Geräten wird der Toner mit Blitzlicht fixiert, wodurch das Papier weniger austrocknet.

Der Laserdrucker gehört im Gegensatz zu den Tintendruckern zu den sogenannten Seitendruckern: Er druckt keine halbfertigen Seiten, sondern er wartet, bis die komplette Seite vorliegt. Da die Belichtung und der Druck in einem Durchlauf erfolgen, muss zum Druck zuerst die komplette zu druckende Seite auf den Drucker übertragen werden. Dort wird durch einen Raster Image Processor (RIP) ein Rasterbild erzeugt, mit dem die Trommel belichtet wird.

Wie werden die Grautöne erzeugt?

Bei den einfachen Druckern verliert die belichtete Stelle ihre Ladung vollständig. Der Drucker kann also nur Schwarz oder Weiß drucken. Grauabstufungen werden durch Rasterung analog zu Tintenstrahldruckern erreicht. Dabei wird jeder Bildpunkt durch ein Raster aus 8 mal 8 Mikropunkten ersetzt. Um beispielsweise ein 50%iges Grau zu erzeugen, wird die Hälfte der Punkte geschwärzt, der Rest bleibt weiß. Unter dem Mikroskop sieht das wie ein Schachbrett aus. Ohne Mikroskop kann das Auge derart feine Punkte nicht einzeln erkennen und verschmilzt sie zu einem Gesamteindruck. Durch unterschiedlich hohen Anteil schwarzer Punkte sind 256 Graustufen möglich. Wenn der Drucker z. B. 32 rote und 16 gelbe Punkte in das 8 x 8 Raster gleichmäßig verteilt und 16 Punkte weiß lässt, sieht das Auge einen hellen roten Punkt mit einem Gelbstich..

Durch die Rasterung verringert sich die Auflösung des Ausdrucks. Bei einem Drucker, der zu 2400 dpi (dot per inch, deutsch: (Mikro-)Punkte pro Zoll) fähig ist, verringern sich die sichtbaren Punkte um ein Achtel auf 300 dpi. Wo Grautöne nicht benötigt werden (z. B. Text in schwarzer Farbe) können durch Kantenglättung schärfere Konturen erzielt werden.

Hochwertige Laserdrucker, sogenannte Vollfarbdrucker, kommen ohne Rasterung aus. Die Ladung auf der Trommel wird in bis zu 256 Stufen variiert. Erreicht wird diese Abstufung entweder durch unterschiedliche Verweildauer des Lasers an einer Stelle oder durch das unterschiedlich oft erfolgende Überstreichen der entsprechenden Stelle. Weil jeder Bildpunkt unterschiedlich hell sein kann, spricht man von einem „Halbtonverfahren“. Verwirrend, nicht wahr? Voll'farbdrucker arbeitet mit Halbtonsystem! Ein Vollfarbsystem kann man in der Druckqualität nicht mit einem gewöhnlichen Laserdrucker vergleichen, es ist aber auch mindestens zehnmal teurer.


Wegen der hohen Qualität des Druckergebnisses von Farblaserdruckern wurde schon früh an Maßnahmen zur Vermeidung und Verfolgung von Dokumenten- und Banknotenfälschungen gedacht. So bringen viele aktuelle Geräte auf jedem Ausdruck ein unsichtbares „Wasserzeichen“ an, den „Machine Identification Code“, um eine Rückverfolgung von Ausdrucken bis zum einzelnen Laserdrucker zu ermöglichen.

Handelsübliche Laserdrucker drucken etwa 15 bis 25 Seiten pro Minute, Geräte der Spitzenklasse drucken bis zu etwa 200 Seiten pro Minute und bei Endlospapier bis etwa 1000 Seiten pro Minute.

Softwaretreiber

Das Umwandeln von Grautönen bzw. Farbabstufungen in ein Mikromuster erfordert einen aufwändigen Rechenprozess, der von einem Raster Image Processor geleistet wird. Hierbei gibt es drei Ansätze, diesen Vorgang umzusetzen:

  • Bei Geräten der Mittelklasse erfolgt das „Rippen“ im Drucker selbst – an ihn werden also keine Rasterdaten, sondern Dokumente in Seitenbeschreibungssprachen wie PCL, Postscript oder PDF geschickt. Die Aufbereitung übernimmt der Drucker selbst. Das Rasterbild einer einzigen farbigen DIN-A4-Seite benötigt rund 60 MB Speicher. Hat der Drucker nicht genug RAM, gibt er eine Fehlermeldung aus und druckt nur ein Teil der Seite. Um das Dokument doch noch drucken zu können, kann man die Auflösung von 600 dpi auf 300 dpi oder 150 dpi verringern (und eine Speichererweiterung bestellen, um bald wieder zur ­besseren Auflösung zurückkehren zu können).
  • Bei teuren Großgeräten wird ein eigenständiger, vom Drucker getrennter RIP-Server verwendet. Es ist erstaunlich, welche Qualität des Ausdrucks damit erreicht wird. Allerdings kann solch ein Server über 10 000 € kosten. Er ist mit einer Hochgeschwindigkeitsverbindung direkt an die Belichtereinheit angeschlossen und verfügt über entsprechend viel Speicher und CPU-Leistung.
  • Preisgünstige Drucker nutzen meist das Betriebssystem des Computers für die Erzeugung des Rasterbildes. Solche Geräte werden als GDI-Drucker (Graphics Device Interface) bezeichnet und sind aufgrund des fehlenden Bild-Prozessors erheblich günstiger als Geräte mit eingebautem RIP. Der Nachteil der GDI-Methode besteht darin, dass die Drucker nur mit einem speziellen Gerätetreiber funktionieren, welcher vom Druckerhersteller geliefert wird. Viele dieser Drucker funktionieren daher nur mit den gerade populären Betriebssystemen, weil der Hersteller für Nischenlösungen keine Treiber bereitstellt. Beim Umstieg auf ein neues Betriebssystem gibt es für ältere Drucker möglicherweise keine Treiberunterstützung mehr.

Qualität, Vor- und Nachteile gegenüber anderen Druckverfahren

Laserdrucker sind in der Qualität bei reinem Textausdruck (bei Farblaserdruckern auch bei farbigem Text) sowie bei Geschäftsgrafiken unerreicht. Nur wenige Tintenstrahldrucker erreichen eine ähnliche Kantenschärfe und auf Spezialpapier eine vergleichbare Schwärzentiefe. Die wesentlichen Vorteile eines Laserdruckers sind die Unempfindlichkeit gegenüber verschiedenen Papiersorten, und es gibt prinzipbedingt kein „Ausbluten“ feiner Konturen, wie dies bei Tintenstrahldruckern oftmals zu beobachten ist.

Weitere Vorteile des Laserdruckers sind:

  1. Die Druckkosten sind meist erheblich niedriger, und die Lebenserwartung der Geräte ist viel höher als bei Tintenstrahldruckern.
  2. Wartungsfreiheit: Ein Laserdrucker kann lange Standzeiten überbrücken ohne dass eine Wartung nötig wäre. Zum Vergleich: bei einem Tintenstrahldrucker vertrocknen die Düsen, bei Nadeldruckern vertrocknen die Farbbänder.
  3. Resistenz der Ausdrucke: Die Druckerfarbe ist nicht nur resistent gegen UV-Bestrahlung, sie hält auch der Feuchtigkeit sehr gut stand. Wer viel für Unterwegs und für den Außeneinsatz druckt, sollte dafür einen Laserdrucker nehmen.
  4. Der Toner ist beständig gegen Sonneneinstrahlung, was bei Tintenstrahldrucken nur mit Spezialtinte erreicht werden kann.

Prinzipiell sind heutige Laserdrucker noch nicht die erste Wahl für das Ausdrucken von Fotos. Außerdem bleibt die Farbqualität aufgrund von Temperatur- und Feuchtigkeitsveränderungen nicht konstant. Laserdrucker arbeiten oft mit nicht-linearen Intensitätskurven, so dass dunkle Farbtöne zulaufen und helle Töne überstrahlt werden (das Dunkle wird noch dunkler, das Helle wird heller und Zwischentöne fehlen).

Handelsübliche Laserdrucker sind in Farbraum und Kontrast einem guten Tintendrucker auf Spezialpapier unterlegen. Meistens fehlt den Bildern die Tiefenwirkung und die Farbechtheit, des weiteren ist bei günstigen Geräten eventuell eine leichte Rasterung sichtbar. Zwar sind die Ergebnisse eines Laserdruckers wischfest, jedoch kann es zu Abblättern an Knickstellen kommen.

Wer mehr Zeit hat und nicht auf sofortige Ergebnisse angewiesen ist, sollte die Fotos bei einem professionellen Fotolabor bestellen. Dies ist in der Regel deutlich günstiger und bringt ­schönere Ergebnisse. Wer viel Geld hat, kauft ein Vollfarbsystem für zehntausend Euro und druckt erstklassige Fotos zu einem unschlagbaren Preis (z. B. acht Cent für eine farbige A3-Seite, was einem Cent pro Foto entspricht).

Bei Druckern unter 200 € Anschaffungspreis sind Tintendrucker pro Seite deutlich teurer als Laserdrucker. Bei neueren professionellen Tintendruckern, mit einem Anschaffungspreis von 300 bis 1000 €, gilt das nicht mehr. Durch Einzeltanks mit großem Volumen für jede Farbe erreichen Tintendrucker fast die Druckkosten von Laserdruckern.

Gesundheitsgefährdung

Ozon

Während die Bildtrommel mit Hochspannung aufgeladen wird, entsteht Ozon: Je höher die Spannung, desto mehr Ozon. Eventuell vorhandene Ozonfilter sollten regelmäßig gewechselt werden. Häufig benutzte Geräte sollten in gut belüfteten Räumen stehen. Eine eigene Abluftführung ist von Vorteil. Das Deutsche Forschungszentrum für Gesundheit und Umwelt rät zu guter Belüftung der Räume und zur Aufstellung möglichst weit weg von den Mitarbeitern. Die Gebläseöffnung sollte vom Nutzer wegzeigen. Die Verwendung von Geräten mit dem Prüfsiegel „Blauer Engel“ sei zu empfehlen. Der „Blaue Engel“ kennzeichnet seit 1978 ökologisch vorteilhafte Produkte. Er wird von einer Jury aus Vertretern von Umweltbundesamt, Bundesumweltministerium, Gewerkschaften, Verbraucherverbänden, Wissenschaft, Medien u. a. vergeben und ist das älteste Umweltlogo der Welt. Für Behörden und viele Großkunden ist der Blaue Engel bei Druckern ein Muss.

Bei Geräten mit niedrigen Druckgeschwindigkeiten werden die Ladungen nicht mehr mit Coronadrähten, sondern mit gezackten Metallstreifen oder Kontaktrollern auf die Walze übertragen. Die benötigten Spannungen sind kleiner, so dass die Luftionisation geringer ist und damit auch weniger Ozonemissionen auftreten. Wenn es gelingt, mit den Emissionen knapp unter dem Grenzwert zu bleiben, werden diese Geräte von den Herstellern als „ozonfrei“ angepriesen. „Ozonarm“ wäre ehrlicher. Als Anfang 2013 die Kriterien für den Blauen Engel verschärft wurden, stellte die Bundesanstalt für Materialforschung und -prüfung fest, dass drei Viertel von den Ende 2012 im Handel erhältlichen Laserdruckern die neuen Grenzwerte nicht einhielten.

Wenn Sie zwei „ozonfreie“ Geräte in einem nicht allzu großen Büro betreiben, ist es so gut wie sicher, dass die Summe der Emissionen den Grenzwert überschreitet. Wobei Grenzwerte ohnehin industriefreundlich festgelegt werden, nicht nur in Deutschland.

Toner

Laserdrucker arbeiten ebenso wie Kopierer mit sogenannten Trockentonern, die meist Ruß als schwarzes Farbpigment und bei bestimmten Sorten auch Schwermetalle wie Blei und Cadmium enthalten, mitunter also gesundheitsschädlich sein können. Die Umweltmediziner vom Freiburger Universitätsklinikum haben nachgewiesen, dass die Emissionen mancher Laserdrucker die DNA von Lungenzellen schädigen. In Studien an Copyshop-Angestellten in Indien konnte man DNA-Schäden in Zellen der Mundschleimhaut nachweisen.

Laserdrucker sind prinzipiell nie ganz „sauber“: Ein Teil des Toners wird durch das Ventilationssystem, welches zur Kühlung der internen Komponenten unersetzlich ist, aus dem Drucker geschleudert. Es gibt Feinstaubfilter zu kaufen, die außen am Drucker angebracht werden können. Bei privater Nutzung eines Druckers ist die austretende Tonermenge nach aktuellem Wissensstand unbedenklich. Wer viel druckt, sollte aber über eine Lüftung nachdenken.

Die Tonerstaubkörner sind um Größenordnungen kleiner als der normale Hausstaub. Wenn Sie Toner verschüttet haben, greifen Sie keinesfalls zum Staubsauger! Die mikroskopischen Tonerteilchen bleiben in normalen Filtern nicht hängen und werden vom Staubsauger großräumig in der Umgebung verteilt! Es gibt Spezialstaubsauger mit Feinstfilter. Wenn man so einen nicht hat, kann man den Toner mit feuchten Reinigungstüchern aufnehmen.

Bei unsachgemäßer Handhabung oder Schäden am Gerät können größere Tonermengen freigesetzt werden und auf die Schleimhäute, insbesondere die der Atemwege, oder auf die Haut wirken. Toner verändert bereits bei Körpertemperatur seinen Zustand und kann mit den Schleimhäuten verkleben. Abhusten geht dann nicht[53].

Bei privater Nutzung eines Druckers ist die austretende Tonermenge nach aktuellem Wissensstand unbedenklich. [54] Wer viel druckt, sollte aber über eine Lüftung nachdenken. Wenn Sie einen Papierstau beheben, werden Sie vielleicht Blätter mit losem Tonerstaub herausziehen. Werfen Sie die nicht gleich in den Papierkorb, sondern packen Sie die Blätter vorher behutsam staubdicht ein.

Servicetechniker sind den Schadstoffen besonders ausgesetzt, sie sollten unbedingt Atemschutz und Einweghandschuhe verwenden. Auch Privatleute sollten dies bedenken, wenn sie selbst mit Toner hantieren.

Wichtig: Tonerstaub darf generell nicht in die Umwelt gelangen. Leere Patronen sind Sondermüll! Leere Patronen werden von vielen Herstellern und manchen Händlern zurückgenommen. Wenn Sie nicht auf das eigenhändige Nachfüllen von leeren Tonerkassetten verzichten wollen, sollten Sie unbedingt Atemschutz und Einweghandschuhe verwenden.

Verschmutzungen

Wenn Toner auf die Kleidung gelangt, diesen ausschütteln und herausklopfen (im Freien, Windrichtung beachten) und mit viel kaltem Wasser spülen, eventuell Spülmittel zusetzen. Achtung: Toner wird im Drucker durch Hitze fixiert. Den gleichen Effekt hat warmes Wasser: Es fixiert den Fleck für immer!

Fremdtoner

Auch für Laserdrucker gibt es „kompatiblen“ Toner. Was für Tinte gilt, ist im Prinzip auch für Toner richtig: Die Herstellergarantie erlischt. Wegen unterschiedlicher Druckverfahren sind die Toner aus unterschiedlichen Grundstoffen hergestellt. Kyocera-Toner im HP-Drucker (oder umgekehrt) benötigt maximal drei Minuten, um den Drucker in Schrott zu verwandeln. Auch in der Körnung gibt es Unterschiede. „Normaler“ Toner in einem Drucker, der „Microtoner“ benötigt, kann verheerend wirken. Da es keine Norm gibt, wie groß die Tonerteilchen im Microtoner sein müssen, kann der für den einen Drucker hergestellte Microtoner für einen anderen Drucker zu grob oder zu fein sein. Wenn man trotzdem Fremdtoner verwenden will, sollte man nach Tests in Fachzeitschriften suchen und einen der getesteten Toner kaufen.

Eine Statistik vom Epson-Service stellt fest, dass die meisten zur Reparatur eingesandten Laserdrucker nicht defekt, sondern durch Fremdtoner verschmutzt sind. Die Reinigung ist sehr aufwendig (der Drucker muss komplett zerlegt werden). Beim Epson-Service darf der Kunde wählen zwischen Reinigung, Rücksendung (ungereinigt, Kosten für Überprüfung und Versand entstehen) oder fachgerechter Entsorgung (kostenlos). [55]

Justizministerium verschrottet 4033 Laserdrucker

Nachdem drei Mitarbeiter des Amtsgerichts Burgwedel an Krebs erkrankt waren, untersuchte das Bremer Umweltinstitut die Drucker. Der Feinstaub-Grenzwert war bei den meisten Druckern überschritten. Ein Zusammenhang zwischen dem Feinstaub und den Krebserkrankungen konnte nicht bewiesen werden. „Zum Schutz und zur Beruhigung der Mitarbeiter“ hat das Niedersächsische Justizministerium die Drucker in allen Gerichten ausgetauscht[56].

Kompaktgeräte und modulare Geräte

Es gibt zwei grundsätzliche Strategien für den Wechsel des Verbrauchsmaterials: Modulare und Kompaktgeräte.

Bei Kompaktgeräten werden Toner, Bildtrommel und Verschleißteile zu einer handlichen Baugruppe zusammengefasst. Wenn der Toner verbraucht ist, wird der „halbe Drucker“ gewechselt. Natürlich ist dieses ­„Austauschpaket“ erheblich teurer als es der Austausch nur einer Tonerpatrone wäre. Das „Restgerät“ enthält keine Verschleißteile und ist preiswert. Genau genommen wird der Anschaffungspreis über die Verbrauchsmaterialien subventioniert, wie wir das auch von den Tintendruckern kennen.

Modulare Geräte bestehen aus hochwertigen, langlebigen Baugruppen und gehören dadurch zu der teureren Kategorie. Die Bildtrommel ist langlebig. Erst nach sechs- bis zehnmaligem Tonerwechsel (also etwa nach 50 000 Seiten oder mehr) muss erstmals die Bildtrommel gewechselt werden. Das Auswechseln ist möglicherweise nicht einfach, und billig ist die Bildtrommel auch nicht. Trotzdem erreicht man mit diesem Druckertyp die mit Abstand geringsten Kosten pro Seite und die höheren Seitenzahlen pro Minute.

Kalkulieren Sie unbedingt Ihre Kosten mit dem Druckkostenrechner! Letztlich ist es eine Rechenaufgabe. So wie man beim Autokauf anhand der jährlich geplanten Kilometerzahl berechnet, ob sich ein teurerer Dieselmotor lohnt oder nicht, sollte man auch vor dem Kauf eines Druckers ­nachrechnen. In Abhängigkeit vom Druckaufkommen kann eine Firma durch Anschaffung eines teureren Modells viele Tausend Euro Folgekosten sparen!

Nur bei sehr geringem Druckaufkommen ist die Anschaffung eines preiswerten Druckers möglicherweise sinnvoll.

Betriebskosten

Die Tonerdichte bestimmt die Menge an Toner, die beim Druck auf eine Seite aufgetragen wird. Eine Reduzierung um 5 % bis 20 % fällt im Ausdruck kaum auf. Konzeptdrucke sind auch bei 50 % Tonerdichte noch gut lesbar.

Die Bildtrommel ist meist mit Selen beschichtet. Selen ist wenig widerstandsfähig und je nach Druckermodell nach 50.000 bis 200.000 Seiten abgenutzt. Erst nach sechs- bis zehnmaligem Tonerwechsel (also etwa nach 50 000 Seiten oder mehr) muss erstmals die Bildtrommel gewechselt werden. Vielleicht ist das Auswechseln nicht einfach, und billig ist die Bildtrommel auch nicht. Trotzdem erreicht man mit diesem Druckertyp die mit Abstand geringsten Kosten pro Seite und die höheren Seitenzahlen pro Minute.

Nach Aussagen von Wartungstechnikern „stirbt“ allerdings ein erheblicher Teil von Bildtrommeln deutlich früher durch Büroklammern und andere kleine Gegenstände, die im Papierstapel enthalten sind. Das passiert besonders denjenigen Benutzern, welche einseitig bedrucktes Papier sammeln, um die Rückseiten für Konzeptausdrucke weiter zu verwenden. Im Bürostress passiert es immer wieder, dass die Blätter noch geklammert sind oder Aufkleber oder Korrekturstiftschichten oder andere Verschmutzungen haben. Jeder solche Fall kann zu einem Papierstau führen oder die Trommel ruinieren. Wenn man bedenkt, dass eine neue Trommel so viel kostet wie mehrere zehntausend Blatt Papier, lohnt sich das Risiko einer Mehrfachverwendung nicht.

Beim Bedrucken von Folien sollte man keinesfalls Haushaltsfolien oder Folien für Tintendrucker zu benutzen. Diese halten die hohen Temperaturen nicht aus und schmelzen. Das kostet Sie mindestens eine neue Bildtrommel.

Energiebedarf

Während des Druckens ist der Energiebedarf hoch, denn der Toner wird mit hoher Temperatur in das Papier „eingebrannt“. Nach dem Druck reduzieren die Drucker den Energieverbrauch. Sehr alte Drucker halten ihr Heizelement auf mittlerer Temperatur, um die Vorwärmzeit bei einem neuen Druckauftrag zu reduzieren. Neue Drucker können ihr Heizelement viel schneller auf Betriebstemperatur bringen und schalten es deshalb in Stand-by ganz ab. Das spart radikal mit Energie. Ende 2009 ergab ein Test, dass die zehn energiesparendsten Einsteigerdrucker nur zwischen zwei und 12 Euro pro Jahr im Standby-Betrieb verbrauchen. [57].

Bei den zehn energieffizientesten Farblaserdruckern liegt der typische Stromverbrauch zwischen 1 und 4 kWh/Woche, was bei 15 Cent/kWh einem Jahresverbrauch von 7,5 bis 30 Euro ergibt[58][59].

Wartung

Oft kommt es beim Tonerwechsel zu Verschmutzungen des Gerätes. Lesen Sie die Anleitung und gehen Sie überlegt vor! Sollten Sie Tonerstaub sehen, nehmen Sie ihn mit einem feuchten Reinigungstuch auf. Auch während des Betriebes gelingt es nie vollständig, den Austritt von feinem Tonerstaub zu verhindern, der sich unter anderem auf der Belichtereinheit absetzt. Lesen Sie in der Bedienungsanleitung nach, wie der Staub entfernt werden kann. Achten Sie darauf, dass die Bildtrommel während des Tonertauschs möglichst wenig dem Licht ausgesetzt wird.

Der Papiertransport erfolgt mit Gummiwalzen. Wegen der hohen Temperaturen können die Walzen spröde und rissig werden und müssen dann ausgetauscht werden.

Viele Unternehmen verwenden Banner-Seiten (Trennseiten, um mehrere Ausdrucke im Druckerfach unterscheiden zu können). Diese Banner-Seiten können in Unternehmen bis zu 20% der Tonerkosten erzeugen. In einer Studie der Firma Gartner Research wurde errechnet, dass ein Unternehmen mit 1.000 Mitarbeitern durch den Verzicht auf Banner-Seiten bis zu 1,6 Millionen Seiten jährlich sparen kann, was etwa 25.000 € entspricht. Um die Banner-Seiten überflüssig zu machen, bietet sich eine Benutzer-Authentifizierung auf allen Geräten an. Diese Benutzer-Authentifizierung könnte auf biometrischer Basis erfolgen. Durch diese Praxis wird zusätzlich Verbrauchsmaterial gespart, weil somit garantiert ist, dass alle Druckaufträge auch von den Anwendern abgeholt werden.

Farbdrucke

Die Kosten für Farbdrucke sind etwa vier mal so hoch wie die für einen Standard Schwarz-Weiß-Druck. Der Grund hierfür liegt darin, dass Farblaserdrucker vier statt nur einer Tonerkartusche verwenden, nämlich Cyan, Magenta, Gelb und Schwarz. Farbdrucke können bis zu 20 Cent pro Ausdruck kosten. Ein 10-Seitiges Dokumente kann somit bis zu 2 Euro kosten. Die meisten Büromitarbeiter haben kein legitimes Bedürfnis für Farbdrucke. Was nicht heißen soll, dass keine Abteilung begründete Verwendungszwecke für Farbdrucke haben. Bestimmte Dokumente wie Grafiken und Diagramme müssen in Farbe gedruckt werden, damit man gut zwischen Zahlen und Spalten unterscheiden kann. Farbdrucker sind grundsätzlich nichts schlechtes, allerdings können die Druckkosten deutlich reduziert werden, wenn man darauf achtet, wo man diese Drucker platziert. Während ein Farbdrucker in der Werbeabteilung durchaus angemessen ist, reicht für die Buchhaltung in der Regel ein Schwarz-Weiß-Drucker. Es kann auch Sinn machen die Anwender in einer Rundmail darauf hinzuweisen, dass Farbdrucke nicht immer nötig sind. Zum Beispiel ist es in aller Regel nicht nötig, Power Point Präsentationen auszudrucken, da diese meistens am Bildschirm angesehen werden.

Einen Druckauftrag abbrechen ohne Stau

Wie oft kommt es vor, dass man das falsche Dokument druckt oder das ganze lange Dokument druckt statt einiger ausgewählter Blätter. Mancher Anwender schaltet in so einem Fall den Drucker einfach ab. Das führt aber fast immer zu einem Papierstau. Der ist nicht nur stressig, sondern doppelt gefährlich. Die Papiertransportmechanik wird hoch belastet und verschleißt schneller. Schlimmer noch: Das Herausziehen verklemmter Seiten kann die fotoelektrische Schicht beschädigen. Langfristig betrachtet ist es günstiger, hin und wieder hundert unnütze Seiten zu drucken als den Drucker zu schädigen.

Den Stau kann man sich ganz leicht ersparen, indem man die Papierschublade herauszieht und ein paar Sekunden wartet. Der Drucker stoppt wegen Papiermangel, es gibt keinen Stau. Anschließend schaltet man den Drucker aus, löscht den Druckauftrag aus der Warteschlange, schaltet den Drucker wieder ein und schiebt die Papierkassette wieder hinein.




Gedanken vor dem Kauf


Aus Montage und Reparatur von tausenden PC habe ich zahlreiche Erkenntnisse gewonnen. Trotzdem finden Sie hier keine allzu konkrete Empfehlungen, sondern nur persönliche Anmerkungen, die Sie zum Nachdenken anregen sollen. Eine Online-Kaufberatung im engeren Sinne ist nicht zu verantworten und angesichts der rasanten Entwicklung ohnehin fragwürdig. Bitte suchen Sie selbst einen kompetenten Berater!


Allgemeine Gedanken

Sogenannte Komplettsysteme werden so entwickelt, dass sie die typischen Anforderungen von möglichst vielen potentiellen Käufern erfüllen. Aus Sicht der Industrie ist das sinnvoll –  je mehr Käufer, desto größer die Serie, und je größer die Stückzahl, desto niedriger die anteiligen Entwicklungs-, Herstellungs- und Vertriebskosten.

Die Komplettsysteme der großen Ladenketten haben große Vorteile:

  • In Prospekten und Fachzeitschriften gibt es relativ gute technische Beschreibungen.
  • Die Geräte werden von vielen Fachzeitschriften verglichen und kritisch bewertet.
  • Sie können recht sicher sein, dass es die Ladenkette bis zum Ende Ihres zweijährigen Garantiezeitraums geben wird oder dass notfalls eine andere Ladenkette die Garantieleistungen übernimmt. Das Garantieversprechen eines Fachhändlers ist nichts wert, wenn er Pleite geht.
  • Kein Einzelhändler kann Ihnen die gleichen oder vergleichbare Komponenten zu diesem Preis bieten.
  • Ladenketten erhalten Software zu Sonderkonditionen (andererseits ist der Kauf ohne Software nicht möglich, sie ist zwangsweise dabei!).

Aus Sicht des Käufers haben Komplettsysteme aber auch prinzipielle Nachteile:

  • Kaum eine Funktion oder Eigenschaft ist hervorragend gut. Eine Grafikkarte der Spitzenklasse einzubauen, mit der ein Spieler glücklich wäre, ist zu teuer. Manchmal - aber viel zu selten - kann man gegen Aufpreis einzelne Komponenten auswechseln lassen. Meist bleibt nur das Austauschen von Komponenten nach dem Kauf, wobei die ausgebauten Teile übrig bleiben und es Probleme mit der Garantie geben kann.
  • Ist dennoch in einer Bauteilkategorie ein Spitzenmodell verbaut, so wird der Rest meist kaputtgespart. Eine überaus protzige Grafikkarte nützt gar nichts, wenn mangels Arbeitsspeicher ständig Daten auf die Festplatte geschoben werden. Überdimensionierte Prozessoren nutzen dem Spieler ohne passende Grafikkarte nichts. Riesige Mengen Arbeitsspeicher langweiligen sich, wenn der Rest zu nicht viel mehr als Solitär taugt. Ignorieren Sie den größten Eyecatcher einer Anzeige und hinterfragen Sie die kleiner gedruckten technischen Daten.
  • Einige Funktionen und Eigenschaften des Geräts sind besser (und teurer), als der Käufer es braucht. Wenn Sie den PC für Büroarbeit brauchen, ist beispielsweise die Grafikkarte stets überdimensioniert. Je mehr Zusatzgeräte wie TV-Empfänger verbaut sind, desto höher die Chance auf Komplikationen mit Treibern o.ä.
  • Eine Serie, ein PC-Modell muss relativ langfristig geplant und entwickelt werden, langfristige Lieferverträge über große Stückzahlen müssen mit den Zulieferern ausgehandelt werden. Dann wird das Modell ein halbes oder ganzes Jahr lang verkauft und bleibt immer mehr hinter der technischen Entwicklung zurück. Deshalb sind die verbauten Komponenten oftmals veraltet und manchmal auch minderwertig. Fachhändler können da sehr viel flexibler sein. (Allerdings gibt es natürlich auch Fachhändler, die minderwertige Teile verbauen).
  • Sehr große Ketten lassen eigene Bauteile produzieren, anstatt aus dem schon vorhandenen Pool eines Herstellers eins auszuwählen. Dann kann jede nicht bewerbbare Eigenschaft gestrichen werden – oftmals Centbeträge für einzelne Features (etwa im BIOS), die den Anwender später ärgern können. Zudem ist die Treiberunterstützung für solche beschnittenen Modelle merklich schlechter als die eines regulären Modells.
  • Eine eigene Reparaturabteilung an jedem Standort einer Ladenkette ist nicht wirtschaftlich. Um die Kosten für Garantiereparaturen zu minimieren, gibt es Zentralwerkstätten. Die defekten Geräte werden in den meisten Märkten nur einmal pro Woche abgeholt und zurückgebracht. Die Kapazität der Zentralwerkstätten ist knapp kalkuliert, damit keine Stillstandszeiten eintreten. Reparaturzeiten von zwei Wochen und mehr sind deshalb die Regel. Der Händler vor Ort würde bestimmt kürzere Reparaturzeiten haben, aber Garantie haben Sie nur dort, wo Sie das Gerät gekauft haben.

Dann gibt es noch die Komplettsysteme der großen Hersteller wie IBM, HP, Dell und andere, die meist im Direktversand vertrieben werden. Auch die großen Versandhäuser bieten PC in ihren Katalogen an. Vor dem Kauf eines dieser Versandmodelle sollten Sie beachten:

  • Beratungsbedarf nach dem Kauf sollten Sie besser nicht haben.
  • Der Versand (bei Reparaturen und Rückgabe) ist recht teuer.
  • Die verwendeten Teile (Gehäuse, Netzteile, Platinen, ...) sind meist sehr herstellerspezifisch. Abgesehen von einer RAM-Aufrüstung oder einer größeren Festplatte ist es in der Regel nicht möglich, den PC aufzurüsten oder mit preiswerten Standardkomponenten zu reparieren. Wenn die Garantiezeit vorbei ist, sind Reparaturen wirtschaftlich nicht sinnvoll.
  • Wenn der Katalog neu ist, sind die Preise gut. Wenn der Katalog schon ein dreivierteljahr bei Ihnen herum gelegen hat, sind die Preise nicht mehr gut, denn bei den Mitbewerbern ist der Preis für ein vergleichbares Gerät inzwischen deutlich gesunken.

Beispiele:

  • Firmen-PCs sind in der Regel vernetzt, und auch Familien mit mehreren PC können diese vernetzen. Dann braucht auch nicht jeder PC den allermodernsten DVD-Brenner haben – ein Brenner für gemeinsame Nutzung durch alle PC genügt möglicherweise.
  • Sie sind an den neuesten Actionspielen nicht interessiert? Dann brauchen Sie keine „durchschnittliche“ Grafikkarte, sondern eine für 40 Euro mit passiver Kühlung reicht aus. Der PC wird nicht nur billiger, sondern auch deutlich leiser.

Preisdruck

Jim Ruskin, Ökonom, um 1900:

Es gibt kaum etwas auf dieser Welt, das nicht irgend jemand etwas schlechter machen und etwas billiger verkaufen könnte, und die Menschen, die sich nur am Preis orientieren, werden die gerechte Beute solcher Machenschaften.

Es ist unklug, zu viel zu bezahlen, aber es ist noch schlechter, zu wenig zu bezahlen. Wenn Sie zu viel bezahlen, verlieren Sie etwas Geld, das ist alles.

Wenn Sie dagegen zu wenig bezahlen, verlieren Sie manchmal alles, da der gekaufte Gegenstand die ihm zugedachte Aufgabe nicht erfüllen kann.

Das Gesetz der Wirtschaft verbietet es, für wenig Geld viel Wert zu erhalten.

Nehmen Sie das niedrigste Angebot an, müssen Sie für das Risiko, das Sie eingehen, etwas hinzurechnen. Und wenn Sie das tun, dann haben Sie auch genug Geld, um für etwas Besseres zu bezahlen.

Darf es auch etwas teurer sein?

Nehmen wir mal an, dass ein durchschnittliches PC-System (mit Bildschirm) 700 Euro kostet. Bei einer Abschreibungsdauer von zwei Jahren entspricht das knapp 30 Euro pro Monat, bei einer Abschreibungsdauer von drei Jahren entspricht das etwa 65 Cent pro Kalendertag. Im Vergleich zu manch anderem Hobby ist ein PC gar nicht so teuer. Fragen Sie doch mal Ihren Händler, was er Ihnen für Verbesserungen vorschlagen kann, wenn Sie ein paar zusätzliche Euros bewilligen! Wenn Sie einem vertrauenswürdigen Händler zusätzliche 100 Euro bewilligen (auf drei Jahre verteilt sind das 10 Cent pro Kalendertag), wird er Ihnen einen wesentlich besseren PC zusammenstellen können: Schneller, zuverlässiger, leiser ... Ist Ihnen das nicht 10 Cent pro Tag wert?

Wenn Sie Firmenchef sind, vergleichen Sie diese Mehrkosten mit den tausenden Euro Lohnkosten pro Monat und Mitarbeiter! Ihr Angestellter wird (für nur 3 Euro zusätzlich pro Monat) effektiver und schneller arbeiten können, weniger PC-Probleme und Datenverluste haben, und der PC wird weniger Lärm machen, was das Arbeiten angenehmer macht. Einen überdurchschnittlich guten PC zu erhalten, wird Ihr Angestellter als Wertschätzung empfinden, und er wird seinen Bekannten davon erzählen. Auch ihre Kunden und Gäste werden sehen (einige zumindest), ob Sie „Schrott ab Werk“ kaufen oder gute PCs benutzen und sie werden daraus ihre Schlüsse ziehen.

Zahlreiche Statistiken sagen übereinstimmend, dass die laufenden Betreuungskosten von Firmen-PCs (Service, Updates usw.), ergänzt um die Ausfallkosten bei Störungen, drei- bis zehnmal höher sind als die Anschaffungskosten. Die Anschaffung eines qualitativ höherwertigeren PC kann die Folgekosten deutlich senken!

Sie sind kein Firmenchef? Denken Sie trotzdem darüber nach. Wenn Ihnen das Basteln am PC Spaß macht, werden Sie die Arbeitsstunden nicht zählen. Wenn Sie aber bei Problemen häufig einen Fachmann rufen und bezahlen müssen, sollten Sie vielleicht doch wie ein Firmenchef denken.

Die Engländer sagen „You get what you pay“ (Du bekommst das wofür du bezahlst), sehr frei übersetzt „Ich bin zu geizig, um mir billige Produkte leisten zu können“.

Muss es die neueste Technologie sein?

„Neu“ bedeutet im Unterschied zu „bewährt“ immer auch: Es ist noch nicht allzusehr in der Praxis bewährt. „Neueste Technologie“ bedeutet in der Computerbranche, dass Sie zuerst das Testobjekt für Ihr Geld kaufen müssen, um als unbezahlter Tester an einem Großversuch teilzunehmen. Drei bis sechs Monate nach der Markteinführung eines neuen Produkts hat der Hersteller das Produkt nachgebessert, und die Fachzeitschriften werden hilfreiche Tipps zur Bewältigung der übriggebliebenen Probleme veröffentlichen. Kaufen Sie also möglichst nichts, was gerade erst brandneu auf den Markt gekommen ist!

Sie halten meine Meinung für übertrieben und Sie glauben mir nicht? Das ist gut! Glauben Sie niemandem, denken Sie selber nach! Andererseits: Von den Herstellern werden immer wieder freiwillige Betatester dringend gesucht, um die Produkte zu verbessern, und im Grundgesetz steht schließlich, dass Sie an alles glauben dürfen, was Sie wollen.

Wenn Sie und andere sich als Beta-Tester betätigen, kann der Hersteller das Gerät verbessern und mir ein halbes Jahr später ein Gerät mit weniger „Kinderkrankheiten“ verkaufen. Dankeschön für Ihre Mühe!

Wo kann man einen sorgfältig geprüften, fehlerfrei funktionierenden PC kaufen?

Leider nirgends, besonders wenn er einigermaßen preiswert sein soll. Ein PC besteht aus etwa einem Dutzend Hauptbestandteilen, für jedes Teil gibt es bis zu einem Dutzend mögliche Hersteller, von denen jeder mehrere ähnliche Produkte anbietet. Bei sehr neuen Erzeugnissen wechselt die Produktversion anfangs alle paar Wochen. Das bedeutet, dass es eine unermessliche Vielfalt von Kombinationen gibt, und selbst in der Serienfertigung läuft am Ende der Woche oft ein anderes Gerät vom Band als am Anfang der Woche, weil inzwischen beim Brenner die Firmware verändert wurde oder die Grafikkarte neuerdings mit Kondensatoren eines anderen Herstellers bestückt wird (der im Moment den günstigeren Preis hat). Das bedeutet, dass Sie praktisch immer einen PC kaufen, der in Ihrer speziellen Konfiguration noch nie sorgfältig getestet wurde, sondern nach Fertigstellung nur einen Kurztest durchlaufen hat. Dieser traurige Umstand wird dadurch dramatisch verschärft, dass es erstens keine fehlerfreie Software gibt und zweitens jeder Benutzer auf seinem PC eine andere Kombination von Software-Produkten in einer anderen Reihenfolge installiert.

Was können Sie trotzdem tun, um einen möglichst zuverlässigen PC zu kaufen?

  • Verwenden Sie Komponenten von Marktführern oder zumindest von renommierten Herstellern.
  • Werden Sie nicht zum Beta-Tester. Keine Komponenten einbauen, die weniger als drei bis sechs Monate auf dem Markt sind!
  • Kein brandneues Betriebssystem einsetzen, bevor das erste Servicepack zwei Monate auf dem Markt ist!
  • Geizen Sie nicht mit RAM. Reichlich RAM von bester Qualität ist ein bedeutender Beitrag zur Stabilität.

Wenn Sie mehrere PCs für eine Firma kaufen wollen, suchen Sie nach einem spezialisierten Händler. Gegen einen deutlich höheren Preis können Sie gut geprüfte PCs von Markenherstellern kaufen, wobei Ihnen garantiert wird, dass Sie einen baugleichen PC jederzeit in den nächsten zwei Jahren nachkaufen können. Zwar sind diese PCs nicht auf dem allerneuesten Stand (sonst wären Sie nicht gut geprüft), aber sie sind einschließlich Chipsatz identisch. Sie können alle PC nach dem gleichen Muster installieren bzw. kopieren. Das reduziert dauerhaft den Aufwand bei der Systemadministration.

Wo kauft man einen PC?

Wenn Ihre Ansprüche an die Leistung eher gering sind, die Nutzung nur gelegentlich und der Preis wichtig ist: Kaufen Sie bei einer großen Ladenkette. Wenn Sie allerdings Probleme mit dem PC bekommen, könnte die Reparatur Wochen dauern.

Wenn Sie den PC intensiv nutzen wollen und/oder Ansprüche haben, sollten Sie sich einen vertrauenswürdigen Computerhändler suchen, keine Handelskette. Handelsketten locken die Käufer mit aufwändiger Werbung an. Kleine Händler haben wenig Geld für Werbung. Langfristig überleben sie nur, wenn sie gut sind und von ihren Kunden weiterempfohlen werden. Die kleinen Computerläden stehen seit Jahren unter großem Druck durch die großen Elektronikmärkte. Nur wer sich zu einem guten Fachmann entwickelt hat, übersteht die ersten drei bis fünf Jahre.

Jedes Jahr gibt es eine Menge frisch ausgebildeter EDV-Leute, die keinen Job finden. Dazu kommen noch diejenigen, die die Prüfung nicht geschafft haben (die IHK-Prüfung ist nicht leicht) sowie jene, die auch ohne Ausbildung glauben, genug über Computer zu wissen. So wird eben mal eine Computerfirma gegründet. Ein bis zwei Jahre überleben sie mit der Förderung des Arbeitsamtes, mit Hilfe der Verwandtschaft und mit 70 Wochenarbeitsstunden. Außerdem gibt es eine Menge Fachhändler anderer Branchen (Fernsehen, Elektronik, Mobilfunk, Büroartikel, Copyshops), die als zusätzliches Standbein Computerdienstleistungen anbieten. Produktgenerationen wechseln rasend schnell. Wer sich nur nebenbei und vierteltags mit Computerkonfiguration beschäftigt, wird bestenfalls ein Halbspezialist. Bei kleinen Arbeiten, z.  B. der Nachrüstung eines DVD-Brenners, reicht das aus. Wenn das Problem größer ist und Sie keine aktuelle Datensicherung haben, reicht das eventuell nicht.

Wie kauft man einen PC?

Schreiben Sie auf, was Sie mit dem Computer machen wollen und was nicht. Denken Sie mindestens einen Tag darüber nach. Welche Schnittstellen brauchen Sie? FireWire, serielle Schnittstelle, parallelen Druckeranschluss, externen SATA, optische Links zur Stereoanlage? Reichen Ihnen 5+1 Lautsprecheranschlüsse?

Vielleicht kann Ihr vorhandener PC sinnvoll umgebaut werden (nicht raten, sondern fragen!) –  dann nehmen Sie ihn mit zum Händler. Lassen Sie sich von einem Fachhändler ein detailliertes Angebot machen (geben Sie ihm mindestens einen Tag Zeit dafür). Jedes Teil muss genau bezeichnet sein! Zeigen Sie dieses Angebot dem nächsten Fachhändler und fragen Sie ihn, was er anders machen würde. Gehen Sie mit beiden Angeboten vielleicht noch zu einem dritten Fachhändler (oder auch mal in einen Supermarkt) und abschließend noch mal zu dem ersten Fachhändler. Fragen Sie Freunde und Bekannte. Für Komplettsysteme der Ladenketten gibt es Testberichte. Denken Sie selbst nach und glauben Sie nicht alles, was Sie hören - auch wenn es der Freund erzählt (der ganz andere Dinge mit seinem PC macht als Sie). Entscheiden Sie sich zügig - schon nach ein bis zwei Wochen haben sich Preise und Verfügbarkeit wichtiger Komponenten verändert. Überlegen Sie sich, ob Sie den PC bei einem Fachhändler oder einer Ladenkette kaufen. Falls Sie sich wenig mit PCs auskennen, erhalten Sie bei Fachhändlern meist die bessere Beratung, auch noch nach dem Kauf.

Und noch etwas: Lassen Sie sich vom Händler Ihres Vertrauens alles erläutern, aber nerven Sie ihn nicht mehr als nötig, sonst wird er Ihnen bei späteren Problemen etwas weniger Kulanz entgegenbringen. Insbesondere sollten Sie sich nicht ein halbes Jahr lang jeden Monat ein neues Angebot machen lassen.

PC mit alternativen Betriebssystemen

Alternative Betriebssysteme wie beispielsweise Linux können in vielen Bereichen längst mit Windows mithalten, in anderen Bereichen wurde Windows schon überholt. Um jedoch ein solches System möglichst schmerzfrei zu nutzen, sollten Sie auf Hardwarekomponenten achten, die gut unterstützt werden. Beachten Sie: Wenn Sie einen Standard-PC mit Windows kaufen und Sie Linux darauf nicht zum Laufen bekommen, ist das - juristisch gesehen - kein Reklamationsgrund, außer Sie haben sich eine schriftliche Zusicherung geben lassen, dass der PC für die Linux-Distribution (genaue Angabe, welche) geeignet ist.

Wollen Sie beispielsweise 3D-Anwendungen wie Spiele oder Rendering nutzen, ist eine Grafikkarte von NVIDIA eine sicherere Wahl, ATI hängt hingegen in der Treiberprogrammierung teilweise hinterher, so dass neuere Karten nur mit Einschränkungen oder komplizierter Mehrarbeit genutzt werden können.

Massenspeicher, DVD-Brenner, USB-Sticks, USB-Platten, Mäuse, Tastaturen etc. sind kein Problem.

Weitere kritische Punkte können Drucker und Scanner sein. Bei letzteren hilft ein Blick auf die Liste der unterstützten Scanner des SANE Projekts unter http://www.sane-project.org/.

Die Verfügbarkeit von Druckertreibern können Sie in diversen Linuxcommunities oder in der Hardwaredatenbank Ihrer Distribution erfragen. Vorsicht jedoch allgemein bei Canon-Tintendruckern! Diese lassen sich bislang nur mit den japanischen Treibern von Canon mit viel Mehrarbeit oder dem kommerziellen Druckertreiber Turboprint (für rund 30 € erhältlich) nutzen.

Das Gleiche gilt für komplexere Hardware wie beispielsweise TV-Karten. Wenn Ihr Fachverkäufer Ihnen hierbei nicht weiterhelfen kann (und „Fachverkäufer“ in Großmärkten können das in der Regel nie) müssen Sie selbst selektiv an die Wahl Ihrer Komponenten gehen. Nach Empfehlungen zu fragen kostet jedoch nichts. Bestimmt hat Ihr Fachhändler ein Vorführexemplar für Sie. Sie probieren es gleich auf dem Ladentisch des Händlers mit Ihrem mitgebrachten PC aus. Als treuer Kunde dürfen Sie das Teil vielleicht sogar für einige Tage zum Test nach Hause mitnehmen.

Profi-PC für Filmbearbeitung und Programmentwicklung

Hier sollte man nicht mit der Prozessorleistung geizen. Gegenwärtig gibt kaum eine sinnvolle Alternative zu einer Intel Dual Core oder Quad Core CPU. Dann sollte auch der Chipsatz der Hauptplatine von Intel sein. Schnelle Festplatten, möglichst als Gimp-icon-vergrössern-verkleinern.png RAID-System und sehr viel RAM sind wichtig. Programmentwicklung erfordert meist großzügig mit Hauptspeicher ausgestattete PCs.

Gerade beim Bearbeiten von Filmen sollten Sie auf eine große Festplattenkapazität achten, denn meist will man bis zur Fertigstellung eines Projektes und auch darüber hinaus dieses in einem verlustfreien Format vorhalten. Dies erfordert jedoch auch sehr viel Speicherplatz.

Einen solchen PC gibt es nicht „von der Stange“. Es besteht erheblicher Beratungsbedarf, um die oft sehr individuellen Anforderungen mit dem Budget in Übereinstimmung zu bringen. Der Wunsch nach einer bestimmten, speziellen Software scheitert oft an Problemen mit den Treibern mancher Grafikkarten.

PC für Spieler

Da viele Spieler jung und knapp bei Kasse sind, müssen sie mehr auf den Anschaffungspreis achten als Firmen. Daher könnte eine AMD-CPU vom Preis-Leistungs-Verhältnis empfehlenswert sein, zumal AMD ihre neuen Prozessoren immer auch in Richtung Spiele optimiert. Zudem lassen sich AMD-Prozessoren besser übertakten. Das ist zwar arbeitsaufwändig, aber Zeit ist kein Kostenfaktor.

Ein weiterer wichtiger Punkt ist der Chipsatz der Hauptplatine. Intel-Chipsätze stehen für Boards mit AMD-CPUs nicht zur Verfügung. NVIDIA hat über viele Jahre bei den Chipsätzen eine etwas bessere Qualität als die Konkurrenten geliefert. Zu einem NVIDIA Chipsatz passt eine Grafikkarte von NVIDIA am besten. Im Wettkampf um die höchste Grafikleistung stehen NVIDIA und ATI etwa gleichauf und haben die anderen Konkurrenten abgehängt. NVIDIA hat das etwas bessere Qualitätsmanagement und die etwas besseren Treiber.

Hauptplatine und Grafikkarte sollten natürlich über einen PCI-Express-Steckplatz die Daten austauschen. Bei der Wahl von Dual-Core Prozessoren sollten Sie jedoch bedenken, dass die Anzahl der multithreading-fähigen Spiele nur langsam zunimmt. In der Regel wird nur ein Prozessorkern ausgelastet, während der andere vom Spiel völlig unberührt bleibt.

Darüber hinaus sollten Sie überlegen, ob Ihre Spieleauswahl nicht auch von einer Konsole abgedeckt wird. Im Vergleich zu den Einstandspreisen hochgerüsteter Spieler-PCs oder auch den Updatekosten für Grafikkarte und Prozessor ist dies meist die wirtschaftlichere, ruhigere und - besonders im Hochsommer - kühlere Entscheidung. Einige Genres, beispielsweise First-Person-Shooter, MMORPGs (Massen-Mehrspieler-Online-Rollenspiele) und Strategiespiele sind auf Konsolen jedoch kaum vertreten, weshalb diese Entscheidung wie bisher auch, hauptsächlich von ihrem Anwendungsprofil abhängt. Bei z.B. einer Playstation oder XBox müssen Sie nichts installieren oder konfigurieren, jedes Spiel läuft auf Anhieb.

Wohnzimmer-PC für Internet und kleine Projekte sowie Büro-PC für Office-Anwendungen

Die Prozessorleistung wäre selbst mit der kleinsten aktuellen CPU groß genug. Nehmen Sie trotzdem nicht die langsamste aller CPUs, denn einige hundert zusätzliche Megahertz kosten nur wenige Euro mehr. Wenn Sie z. B. einen Celeron von Intel oder Sempron von AMD nehmen, sparen Sie im Vergleich zu einer „voll“-CPU (Pentium oder Athlon) 20 bis 40 Euro. Auch eine Single-Core-CPU kann sinnvoll sein. Wenn Sie einen Teil des am Prozessor eingesparten Geldes für ein zusätzliches Gigabyte RAM verwenden, gleichen Sie die etwas geringere Leistung eines Celeron oder Sempron mehr als aus.

Wenn Sie sich nur gelegentlich mit leistungshungrigen Spielen amüsieren, reicht Ihnen vermutlich eine Grafikkarte für etwa 70 Euro mit passiver Kühlung. Mit ein paar Einschränkungen (z. B. Abschalten von ein paar Schatten und Spezialeffekten) reicht diese notfalls auch für aktuelle 3D-Actionspiele, verursacht aber kein Lüftergeräusch und erzeugt nur wenig Wärme.

Achten Sie auf ein Netzteil mit großem 12 cm Lüfter. 350 W bis 400 W Leistung reichen auch für zukünftige Erweiterungen. Computernetzteile haben bei Teillast einen schlechten Wirkungsgrad, so dass ein allzu üppig dimensioniertes Netzteil vor allem Ihre Stromrechnung erhöht und mehr Verlustwärme erzeugt, wodurch das Lüftergeräusch ansteigt.

Wählen Sie eine Festplatte, die in Testberichten als leise eingeschätzt wird.

Wie steht es mit der Kühlung? Über und unter der Festplatte sollte ein Einschub frei sein. Ein Zusatzlüfter an der Gehäusevorderwand direkt vor der Festplatte kann nützlich sein. Dessen Luftstrom kommt auch anderen Komponenten zugute.

Die Festplattenhersteller haben in den letzten Jahren den Energiebedarf der Festplatten reduziert. Wenn Sie eine Festplatte mit „Eco“ in der Typbezeichnung gekauft haben, brauchen Sie keine Zusatzkühlung. Andernfalls ist eine Zusatzkühlung für die Festplatte ratsam. Ein Zusatzlüfter an der Gehäuserückwand würde bei der Kühlung der Festplatte fast gar nichts nützen, deshalb sollten Sie einen Festplattenlüfter direkt vor oder unter die Festplatte schrauben. Wenn Sie geräuschempfindlich sind, betreiben Sie diesen (aber nur diesen!!!) Lüfter mit 7 Volt statt mit 12 Volt, indem sie ihn zwischen die 5 V und 12 V schalten. Alternativ gibt es im Fachhandel entsprechende Adapter (etwa 2 bis 4 Euro), die einfach zwischen Lüfter und Stromanschluss gesteckt werden. Die verringerte Drehzahl reicht völlig aus, und der Lüfter wird praktisch unhörbar. Überprüfen Sie aber, ob der Lüfter mit der verringerten Spannung noch zuverlässig anläuft!

Eine weitere Möglichkeit sind Lüfter, die mit reduzierter Drehzahl von 500 oder 800 Umdrehungen laufen. Deren Geräuschpegel ist sehr gering.

Wählen Sie kein miniaturisiertes Gehäuse, Sie bezahlen dafür mit Hitzestaus und folglich mit verringerter Lebensdauer und höherem Lüftergeräusch. Quetschen Sie den PC nicht in ein Möbelstück und beachten Sie die Hinweise zur Aufstellung des PC. Bei einem normalgroßen Gehäuse können Sie oft auf einen zusätzlichen Gehäuselüfter verzichten.

Diese beschriebene Konfiguration erzeugt nur wenig Wärme, so dass drei Lüfter (CPU, Netzteil und Festplatte) ausreichen und nur wenig Geräusch entsteht.




Gebrauchte PC


Gebrauchte komplette PC

Der Kauf eines gebrauchten PC wird oft aus Gründen der Sparsamkeit erwogen. Man kann ein gutes Preis-Leistungs-Verhältnis erreichen, aber die Risiken sind nicht gering. Die PC kommen oft nicht aus privatem Vorbesitz, zahlreiche Händler und Hinterhofwerkstätten verkaufen gebrauchte PC. Die Gefahr ist groß, einen irgendwie aus Aufrüstungs-Resten zusammengeschraubten Rechner oder ein Gerät mit versteckten Fehlern zu erwerben.

Beim üblichen „gekauft wie gesehen“ haben Sie keine Gewährleistung und keine Herstellergarantie, kein Schutz vor versteckten Fehlern, meist kein Betriebssystem, keine Dokumentation und keine Treiber. Das Fehlen von Treibern wäre ein Grund, den Kaufpreis herunterzuhandeln, denn die Suche nach Treibern kann aufwändig sein. Und wenn Sie keinen Treiber für die Netzwerkkarte haben, kommen Sie erst gar nicht ins Internet, um dort nach Treibern zu suchen.

  • Kaufen Sie keinen PC, der älter als drei Jahre ist. Der Wertverlust bei PCs ist dramatisch. Als Faustformel kann man rechnen, dass ein PC pro Jahr die Hälfte seines Wertes verliert.
  • Vereinbaren Sie mit dem Verkäufer, dass er für einen kleinen Aufpreis das von Ihnen gewünschte Betriebssystem installiert (dann muss er sich selbst um die Treiber kümmern).
  • Lassen Sie sich die enthaltenen Komponenten genau auflisten. Zeigen Sie diese Liste einem Computerhändler oder –experten und fragen Sie, ob der Preis angemessen ist.

Wenn Sie den PC bei Ebay kaufen, fallen nicht unerhebliche Versandkosten an. Falls der PC nicht richtig funktioniert und Sie ihn zurückschicken wollen, kann das durchaus 40 Euro kosten.

Gebrauchte Komponenten

PC-Komponenten gehen oftmals nicht schlagartig kaputt. Oft sind Alterung und Mikroschäden die Ursache für eine allmählich zunehmende Anzahl von Problemen. Stellen Sie sich vor, Ihr PC - neu oder gebraucht - stürzt hin und wieder ab. Sie bringen ihn in eine Werkstatt oder zu einem Bekannten, der sich auskennt. Dort tritt der Fehler aber nicht oder viel zu selten auf. Ob Hauptplatine, CPU, RAM, Festplatte oder Netzteil schuld sind - wer weiß? Wenn es nicht gelingt, den Kunden abzuwimmeln, bleibt nur ein Austausch mehrerer Teile auf Verdacht. Oder dem Kunden wird die „Flucht nach vorn“ in Form einer Aufrüstung empfohlen.

Anschließend sitzt der Händler vor einem Häufchen Teile, von den wahrscheinlich möglicherweise eins defekt ist. Vielleicht war am PC des Kunden nur ein Treiber defekt und alle Teile sind völlig in Ordnung. Was tun mit den Teilen? Als Reklamation an den Großhändler schicken lohnt nicht, denn wenn der Großhändler in einem kurzen Test keinen Fehler findet, schickt er das Teil kostenpflichtig an den Fachhändler zurück. Also bleibt nur, es selbst zu testen. Wenn dabei kein Fehler zu finden ist, was glauben Sie, was mit den Teilen passiert? Sie werden gebraucht verkauft oder sogar als angeblich neuwertig in den nächsten PC eingebaut.



Eigenbau


Lohnt sich Eigenbau?

Selbstbau ist ein Hobby und kostet wie jedes Hobby viel Zeit und auch Geld.
Kauft man die Teile einzeln, hat man viel Lauferei und/oder Versandkosten. Funktioniert etwas nicht, haben Sie keinen Ansprechpartner, viele Händler werden die „Schuld“ auf die Komponenten schieben, die bei anderen Händlern gekauft wurden. Bei der enorm schnellen Weiterentwicklung kann es auch Fachleuten passieren, dass Komponenten nicht zueinander passen oder erstklassige Komponenten beim Zusammenwirken nicht die erwartete Leistung bringen. Der Händler hat einige Alternativen für Experimente im Regal, Sie nicht.

Muss ein Teil umgetauscht werden, hat man wieder Versandkosten und meist wochenlange Wartezeiten auf die Bearbeitung von Reklamationen. Während Sie auf das Ersatzteil warten, verlieren Ihre anderen Teile jede Woche an Wert und liegen ungenutzt herum.

Andererseits können Sie beim Selbstbau eines PCs, im Gegensatz zu Fertigangeboten, selbst auswählen, was Sie benötigen – also wofür Sie auch etwas bezahlen möchten. Heutige „Angebote“ enthalten oftmals viele unterschiedliche Komponenten, die nicht unbedingt nötig wären. Brauchen Sie beispielsweise wirklich eine TV-Karte, um auf Ihrem PC fernsehen zu können? Für jede möglicherweise entbehrliche Komponente müssen Treiber installiert werden. Durch Weglassen von Unnötigem gewinnen Sie Stabilität und Geschwindigkeit. Muss es eine der modernsten Grafikkarten für aufwendige Spiele sein, oder reicht für Ihre Büroarbeit auch das günstigere Modell vom letzten Jahr völlig aus? Sind Ihnen eine kabellose Maus und Tastatur so wichtig? All diese Dinge sind zwar für sich genommen Kleinigkeiten, zusammengenommen können Sie aber gerade hier schon bei der Montage bares Geld sparen.

Was man beachten sollte

Achten Sie immer darauf, dass Sie nicht elektrostatisch aufgeladen sind. Elektrostatische Energie kann Computer-Komponenten zerstören, da die Spannungen bei einer Entladung („Blitzen“) kurzzeitig sehr hoch sein können. „Erden“ Sie sich vor dem Um- oder Aufbau eines Computers deswegen unbedingt, indem Sie einen ins Erdreich führenden Metallleiter berühren; beispielsweise eine herkömmliche Heizung an einer nicht lackierten Stelle.

Eine der wichtigsten Regeln bei der Montage ist es weiterhin, keine mechanischen Spannungen zuzulassen und eine Durchbiegung der Hauptplatine oder der Steckkarten unbedingt zu vermeiden. Auch beim Anstecken von Kabeln darf sich die Platine nicht mal kurzzeitig verbiegen, sonst entstehen Haarrisse. Das Problem: Winzige Risse wirken wie Mini-Kondensatoren und verschlechtern die Qualität der elektrischen Signale, führen aber nicht immer zu einem Ausfall.

In modernen Hauptplatinen sind die Leiterbahnen in sechs bis acht Ebenen übereinander angeordnet und sehr schmal. Die Temperatur der Platine schwankt zwischen Raumtemperatur und 80 Grad, die Platine dehnt sich bei Erwärmung aus. Mikroskopische Haarrisse und Lötschäden vergrößern sich dadurch und führen nach Monaten und Jahren zu wachsenden Störungen.

Deshalb sollten Sie so vorsichtig und überlegt wie möglich vorgehen, um jegliche Schäden beim Montieren zu vermeiden.

Hinweise zum Einbau einzelner Komponenten finden Sie als Link in den einzelnen Kapiteln.


Reklamationen und Umtausch


Die meisten Probleme des Computers befinden sich zwischen Stuhl und Bildschirm. Dass die Hardware versagt, ist relativ selten. Etwa 70 bis 90 Prozent aller Reklamationen haben Software-Probleme als Ursache und sind deshalb keine Garantiefälle. Wohl aus diesem Grund sind zahlreiche (die meisten?) Elektronik-Großmärkte dazu übergegangen, bei zur Reparatur abgegebenen Geräten grundsätzlich die Festplatte einschließlich Ihrer Daten zu löschen! Bevor Sie ein Gerät zur Reparatur abgeben oder einsenden, informieren Sie sich genau über die Garantiebedingungen! Lassen Sie sich gegebenfalls schriftlich zusichern, dass Ihre Daten erhalten bleiben, und/oder versehen Sie sicherheitshalber Ihren Computer mit einem unübersehbaren Aufkleber: „Achtung! Festplatte enthält wichtige Daten, die wegen Computerdefekt nicht gesichert werden konnten. Tel. xxxxxxx für Rücksprachen!“ Fotografieren Sie den PC mit diesem Aufkleber zu Beweiszwecken! Auch wenn die Reparatur in einem örtlichen Fachgeschäft erfolgen soll, ist ein solcher Aufkleber sinnvoll. Es sind schon Festplatten in Werkstätten gelöscht worden mit der Begründung „ich wusste nicht, dass Daten drauf sind“ (Mancher Kunde hat wirklich keine Daten drauf, weil die auf einem Server liegen, oder er hat sie vorher gesichert). Der Mitarbeiter, der im Laden den Reparaturauftrag annimmt, führt die Reparatur nur selten selbst aus. Wenn die Werkstatt voller Arbeit steht, hat der Techniker mehrere PC gleichzeitig in Arbeit: Während der eine PC gerade neu startet, läuft auf den zweiten eine Installation, auf den dritten PC läuft ein Update und der Techniker zerbricht sich vor dem vierten PC den Kopf. Dabei kommen Informationsverluste und Verwechslungen leider vor.

Kosten minimieren

Weil die meisten Computerprobleme auf Software-Probleme zurückzuführen sind, auf die es keine Garantie gibt, lohnt es sich, über Kostenreduzierung nachzudenken.

  1. Schreiben Sie den Wortlaut von Fehlermeldungen genau auf, auch wenn die Meldung englisch ist! Ausnahme: Wenn in der Meldung viele lange Zahlen vorkommen, sind meist nur die ersten beiden Zahlen wichtig.
  2. Notieren Sie alle Fehler und nicht nur den nervigsten. Gab es bereits früher Probleme?
  3. Notieren Sie, in welcher Reihenfolge Sie vorgegangen sind, bevor der Fehler auftritt! Ist der Fehler zuverlässig reproduzierbar?
  4. Eine Fehlersuche kann leicht einige Stunden dauern, wenn der Fehler nicht regelmäßig auftritt. Wenn Sie Pech haben, berechnet Ihnen der Händler fünf Stunden Fehlersuche mal 50 Euro pro Stunde. Wenn Sie Glück haben, schämt sich der Händler zuzugeben, dass er so lange für die Fehlerlokalisierung gebraucht hat, und berechnet Ihnen nur hundert Euro. Ihre qualifizierte Mitarbeit kann Ihnen eine Menge Geld sparen!
  5. Bringen Sie ihre Betriebssystem-CD mit Seriennummer, Installations-CD/DVD aller Programme und Treiber für alle Geräte mit, denn die Fehlersuche nimmt oft überraschende Wendungen.
  6. Ohne das BIOS-Passwort, das Benutzer- und Administratorpasswort ist eine Reparatur unmöglich. Die Liste Ihrer sonstigen Passwörter sollten Sie griffbereit haben. Passwörter sollte man zwar nur im Notfall weitergeben, aber eine Reparatur ist ein Notfall.
  7. Besuchen Sie Ihren Händler nicht ohne ein Blatt Papier mit folgenden Angaben:
    1. Ihren Namen (leserlich), Adresse, Telefon und Erreichbarkeit für Rückfragen (tagsüber von - bis und abends von - bis über welche Telefonnummer)
    2. Beschreibung Ihres Problems
    3. Was gemacht werden soll und was nicht gemacht werden soll
    4. Wie lange die Reparatur dauern darf. Sind Sie eventuell bereit, einen Expresszuschlag zu zahlen?
    5. Wie viel die Problemlösung höchstens kosten darf oder beim Überschreiten welcher voraussichtlichen Kosten Rücksprache zu nehmen ist.

Sonstiges

Wenn Sie eine schnelle Reparatur wünschen, sollten Sie den PC im Winter nicht auskühlen lassen (z. B. im Auto über Nacht). Wenn der kalte PC in einen warmen Raum gestellt wird, muss er mehrere Stunden akklimatisierten, sonst entsteht Kondenswasser auf den Platinen.

Wenn Sie die Hotline anrufen müssen, wird es teuer. Stiftung Warentest ermittelte Kosten von durchschnittlich sechs Euro pro Anruf[60]. Halten Sie die genaue Typenbezeichnung und die Seriennummer bereit, bevor Sie anrufen. Schalten Sie das defekte Gerät ein, soweit möglich. Die Fehlermeldung sollte auf dem Bildschirm stehen.



Umtausch

Viele hundert Hersteller weltweit entwickeln und produzieren Computerkomponenten. Es ist nicht ungewöhnlich, dass es beim Zusammenwirken mitunter zu Problemen kommt. Was kann man tun, wenn das neue, in Fachzeitschriften angepriesene Teil ausgerechnet in Ihrem Computer nicht arbeiten will? Muss der Händler es zurücknehmen?

Grundsätzlich gilt: Gekauft ist gekauft. Allerdings sind viele Händler bereit, unbeschädigte Ware aus Kulanz zurückzunehmen. Wenn die Rücknahme freiwillig geschieht, darf der Händler festlegen, zu welchen Bedingungen das geschieht. Wenn er Aufwendungen hat, die Ware in einen verkaufsfähigen Zustand zu bringen (z. B. Windows neu zu installieren) oder er die zurückgenommene Ware nur noch preisgesenkt als gebrauchte Ware weiterverkaufen kann, wird er Ihnen nicht den vollen Preis erstatten. Wenn Sie die Originalverpackung weggeworfen oder sichtbar beschädigt haben, vermindert das ebenfalls die Weiterverkaufsmöglichkeiten.

Allerdings gibt es eine Ausnahme. Wenn Sie als Computerlaie um eine Beratung bitten und der Fachhändler Sie falsch beraten hat, hat er die Folgen selbst zu vertreten. Wenn Sie jedoch einen fachkundigen Eindruck erwecken und, einen Testbericht schwenkend, ein ganz bestimmtes Teil verlangen, muss Ihnen der Händler keine Beratung aufzwingen und Sie tragen das Risiko selbst.

In einem Computergroßmarkt ist eine Beratung die Ausnahme. Zu behaupten, Sie wären falsch beraten worden, dürfte wenig glaubhaft sein. In kleinen Fachgeschäften ist die Beratung die Norm und die Behauptung, falsch beraten worden zu sein, ist etwas glaubhafter.

Es gibt mehrere Möglichkeiten, solchen Problemen aus dem Weg zu gehen:

  • Lassen Sie sich auf der Rechnung oder in einem schriftlichen Angebot zusichern, dass das Teil die gewünschte Eigenschaft hat (z. B. dass es mit Windows 7 kompatibel ist).
  • Bringen Sie Ihren Computer in den Laden und lassen Sie das gekaufte Teil vom Händler einbauen.
  • Lassen Sie sich mindestens mündlich zusichern, dass ein Kulanzumtausch möglich ist. Probieren Sie zu Hause das gekaufte Teil sofort aus und bringen Sie es möglichst noch am gleichen Tag zurück, wenn Sie nicht zufrieden sind. Wenn sich der Verkäufer noch an das Gespräch mit Ihnen erinnern kann, ist es optimal für beide Seiten.


Warum altern Computer?


Welche Prozesse führen dazu, dass Computer altern?

Kondensatoren

Im Netzteil, auf der Hauptplatine, den Erweiterungskarten und anderen Komponenten sind insgesamt fünfzig bis hundert Elkos (Elektrolyt-Kondensatoren) verbaut, um die Betriebsspannungen zu glätten. Leider hat das Elektrolyt die Neigung auszutrocknen: Je wärmer es im Computer ist, umso schneller. Dadurch verringert sich die Fähigkeit der Elkos, Ladung zu speichern und die Spannung zu glätten.

Leider werden oftmals minderwertige Kondensatoren eingebaut, um die Platinen billiger zu machen. Dabei gehen manche Firmen durchaus selektiv vor: Auf Platinen für professionelle Computer werden die besseren Elkos eingebaut. Platinen für Spieler werden mit verwertbarem Schrott bestückt, weil Hardcore-Gamer ohnehin jedes Jahr einen neuen PC kaufen, wozu also eine Haltbarkeit von zwei Jahren vorsehen?

Verschärft wird die Lage durch die Unsitte, unterdimensionierte Elkos einzusetzen. Es wird empfohlen, Elkos nur mit der Hälfte ihrer zulässigen Maximalspannung zu betreiben[61][62].

Laut Spezifikation der Netzteile darf beispielsweise die 12-Volt-Spannung um 5% schwanken, also von 11,4 bis 12,6 Volt. Ein Elko mit einer zulässigen Höchstspannung von 12,6 Volt ist offensichtlich zu knapp dimensioniert, es gibt keine Sicherheitsreserve. Trotzdem werden solche Kondensatoren verbaut. Damit spart der Hersteller ein bis zwei Euro pro Hauptplatine.

Solid Capacitors.JPG

Die Unsitte, minderwertige Kondensatoren zu verwenden, hat so weit um sich gegriffen, dass erste Hersteller in ihrer Werbung Garantien für die Lebensdauer der verwendeten Kondensatoren geben. Nebenstehend ein Ausschnitt von der Verkaufsverpackung einer Hauptplatine. Der Hersteller meint, dass jeder einzelne Elko mindestens 5000 Stunden durchhält. Das sind jedoch nur 625 Tage zu je acht Arbeitsstunden! Abgesehen davon dürfte es schwierig sein, bei einer defekten Hauptplatine nachzuweisen, dass einer von 50 bis 100 Elkos am Defekt schuld ist. Selbst wenn Sie mit bloßem Auge sehen können, dass ein Kondensator kaputt ist - weisen Sie mal dem Hersteller der Hauptplatine nach, dass nicht eine Überspannung aus dem Netzteil die Ursache des Schadens ist!

Wenn dieser Hersteller 5000 Stunden für einen so guten Wert hält, um damit zu werben - wie hoch ist dann wohl die durchschnittliche Lebenserwartung von Boards, die nicht beworben werden?

Die Lebensdauer von Kondensatoren hängt stark von der Temperatur ab. Ein Temperaturanstieg um 10°C halbiert die Lebensdauer, weitere 10°C halbieren sie noch einmal.

Mechanischer Verschleiß

Die Lager der Festplatte sind hoch beansprucht. Normalerweise halten sie einige Jahre durch. Hohe Temperaturen, Vibration und Erschütterungen können die Lebensdauer deutlich verringern.

Am schnellsten jedoch versagen die Lager der Lüfter. Der Staub verringert die Drehzahl der Lüfter. Beim Anlaufen hat der Lüftermotor den größten mechanischen Widerstand zu überwinden. Irgendwann schafft er es nach dem Einschalten nicht mehr, anzulaufen.

Elektromigration

Ränder eines Leiters, die durch Elektromigration „angefressen“ sind

Kleiner werdende Prozessorstrukturen führen zu neuen Problemen. Die Leiterbahnen im Inneren moderner CPUs und Gimp-icon-vergrössern-verkleinern.png GPUs sind teilweise nur noch 15 bis 20 Atome dick. Die Magnetfelder um jeden Leiter herum, verbunden mit den hohen Temperaturen im Inneren des Chips, bewirken, dass vereinzelte Atome ihren Platz im Kristallgefüge verlassen, das nennt man „Elektromigration“. Wenn dadurch ein hauchdünner Leiterzug noch dünner wird, steigt sein elektrischer Widerstand. Es kann zu einem sich verstärkenden Effekt kommen: Je größer der Widerstand wird, desto mehr erwärmt sich der Leiter durch den Stromfluss. Die Abwanderung der Atome beschleunigt sich, bis der Leiterzug durchbrennt. [63]

Dieser Alterungseffekt tritt vor allem auf

  • bei den letzten Pentiums auf, die vor der Entwicklung der Dual-Core-Technologie produziert wurden (die aktuellen Dual-Core-CPUs werden nicht sehr warm, im Leerlauf ist ihre Temperatur nur drei bis fünf °C höher als die Temperatur der Hauptplatine).
  • wenn die Elektronik übertaktet wird,
  • in Notebooks mit deren steigendem Alter. Notebooks werden wegen ihrer kompakten Bauweise sehr warm. Die Kunden wünschen eine flache Bauweise, also ist kein Platz für Luftkanäle da. Ein kräftiger Lüfter könnte die Wärme heraus blasen, doch das würde viel Strom kosten. Der Akku ist das schwerste Teil eines Notebooks und die Kunden wünschen ein geringes Gewicht bei langer Akkulaufzeit. Also werden weiterhin Wegwerf-Notebooks gebaut.

Dreck und Hitze

Es ist manchmal kaum zu glauben, wie verdreckt ein PC nach einem Jahr oder schon nach einem halben aussehen kann. Staub und Fusseln setzen die Kühlrippen zu, besonders beim Prozessorkühler. Ein Desktop-Prozessor verwandelt 60 bis 140 Watt in Wärme. Können Sie sich im Zeitalter von Stromsparlampen noch daran erinnern, wie heiß eine 100-Watt-Glühlampe wird? Wenn der Lüfter keine Luft mehr durch den Kühler pressen kann, wohin geht dann die Wärme? Sie heizt die Hauptplatine auf. Die Elektrolytkondensatoren trocknen schneller aus, besonders in der Nähe der CPU. Die Elektromigration in der CPU wird verstärkt.

Nicht anders sieht es mit der Kühlung von Grafikkarten aus, besonders bei den teuren. Auch im Netzteil sammeln sich beachtliche Mengen Dreck.

Mikrorisse

Die Leiterzüge in den achtlagigen Leiterplatten sind sehr dünn und empfindlich. Wenn sich beim Bestücken der Hauptplatine mit Arbeitsspeicher und Flachbandkabeln die Hauptplatine durchbiegt, werden die Leiterzüge gedehnt und können einreißen. Nach dem Einschalten erwärmt sich die Hauptplatine und dehnt sich aus, wobei Trägermaterial, Leiterzüge und Bauelemente unterschiedliche Wärmeausdehnungskoeffizienten haben. Nach dem Ausschalten des PC schrumpft sie wieder. Diese mechanische Belastung kann vorhandene Mikrorisse vergrößern.

Lötstellen

Die EU hat vor einiger Zeit die Verwendung von bleihaltigem Lötzinn verboten. Alternative bleifreie Lote sind von minderer Langzeitstabilität, wenn sie nicht 100% korrekt verarbeitet werden. Einen Vorgeschmack bietet die Ausfallrate bei der XBox 360, einer Spielkonsole von Microsoft. Der Temperaturunterschied zwischen ein- und ausgeschaltetem Gerät ist bei derart kleinen Computern besonders groß, was bei etwa einem Drittel aller Geräte das Lötzinn brüchig werden ließ[64]

Anders als die ungewollten Ausfälle bei Microsoft können Lötstellen auch bewusst auf eine gewisse Lebensdauer dimensioniert werden. Da Notebookreparaturen mangels Bauteilstandards fast nur beim Hersteller zu hohen Preisen durchgeführt werden können, ist eine Lötstelle mittlerer Qualität ein lukratives Unterfangen. Als „Serienfehler“ deklariert können sie nach Ablauf der vom Hersteller gewollten Lebensdauer des Geräts, nämlich des Garantiezeitraums, plötzlich gehäuft auftreten.

Lange Lagerung

Das Ergebnis zu großen Reststroms: Drei Kappen wurden abgesprengt

Durch einen Elko fließt ständig ein kleiner Verluststrom, „Reststrom“ genannt. Wenn Elkos längere Zeit spannungsfrei sind, finden im Inneren chemische Prozesse statt, die zur Vergrößerung des Reststroms führen. Normalerweise stört das nicht. Wird Spannung angelegt, regeneriert sich der Elko innerhalb einiger Stunden. Werden Elkos jedoch nach mehrmonatiger Lagerung unter Spannung gesetzt, fließt ein hoher Anfangsstrom, der fast an einem Kurzschluss heranreichen kann. Selbst wenn es nicht für einen Kurzschluss reicht, erwärmt sich der Elko stark durch den hohen Strom, das Elektrolyt verdunstet schneller und der Elko ist seinem Lebensende ein großes Stück nähergerückt [65]. Der kritische Zeitraum bei hochwertigen Elkos liegt bei zwei Jahren, aber die Hauptplatine ist vermutlich nicht mit hochwertigen Elkos bestückt. Gehen Sie sicherheitshalber davon aus, dass sechs Monate ohne Spannung gerade noch ungefährlich sind.

Was man dagegen tun kann? Schalten Sie einen ungenutzten PC jeden Monat oder jedes Quartal für einige Stunden ein. Sie brauchen dazu Tastatur, Maus und Bildschirm nicht anzuschließen. Lassen Sie den PC einige Stunden eingeschaltet und drücken Sie dann kurz auf die Power-On-Taste, dann fährt er herunter.

Falls Sie im Schrank eine alte Festplatte mit Daten haben, die Sie aufheben wollen, sollten Sie auch diese hin und wieder für einige Stunden an die Stromversorgung eines Computers anstecken. Ein Datenkabel braucht nicht angeschlossen zu werden, es genügt, wenn sich die Festplatte dreht.

Wollen Sie mehr über Alterung wissen?


Ist Ihnen eigentlich aufgefallen, wie vielfältig schädlich eine zu hohe Temperatur im PC ist?




Schlusswort


Ich finde den Fehler nicht, die Werkstatt auch nicht

Als junger Ingenieur arbeitete ich in einem Rechenzentrum. Eines Tages erschien ein Professor der Astronomie mit ein paar Lochkarten. Er behauptete, unser Großrechner, ein Serienmodell aus den USA, würde die darauf befindliche Gleitkommadivision völlig falsch ausführen. Leider hatte er recht.

Gleitkommazahlen nimmt man, um mit sehr großen und sehr kleinen Zahlen zu rechnen. Ein Beispiel für eine Gleitkommadivision: 1,496 × 1011 m (mittlere Entfernung Erde-Sonne) geteilt durch 2,99792458 × 108 m/s (Lichtgeschwindigkeit) ergibt 499 Sekunden = 8,31 Minuten (so lange braucht das Licht von der Sonne zur Erde).

Verdrahtungsseite von 3 Steckkarten der CPU.
Auf jeder Steckkarte befanden sich etwa fünf Transistoren plus Dioden, Widerstände und Kondensatoren. Jeweils 40 Steckkarten nebeneinander und davon 25 Reihen passten in einen Gestellrahmen von 200 × 80 cm. Acht solche Rahmen bildeten die CPU. In Ihr Wohnzimmer hätte diese CPU von 1971 nicht gepasst.

Der Großrechner arbeitete mit 48 Bit Genauigkeit und war − für die damalige Zeit − fast ein Superrechner. Jeden Morgen absolvierte er ein umfassendes Prüfprogramm. Und doch rechnete er falsch. Was war da kaputt gegangen?

Alle, die imstande waren, eine Gleitkommadivision mit 48-stelligen Dualzahlen Bit für Bit nachzurechnen, wurden zusammengetrommelt. Auf riesigen Blättern und Tapetenrollen rechneten wir nach. Der Großrechner führte endlos nur noch diese eine Division durch. Zwei Kollegen fuhren in der CPU mit dem Oszilloskop umher, um nachzuprüfen, an welcher Stelle Theorie und Praxis nicht mehr übereinstimmten.

Am nächsten Tag hatten wir das Problem gefunden: Der Rechner war nicht kaputt gegangen, sondern er und alle Rechner der Serie waren schon defekt ausgeliefert worden. Auf irgend einer Etappe des Entwurfs hatten die Konstrukteure etwas umgebaut und dabei vergessen, einen überflüssig gewordenen Draht aus den Fertigungsunterlagen zu streichen. Wir mussten „nur“ den überzähligen Draht aus der Zentraleinheit herausschneiden, und schon rechnete der Computer richtig.

Der Computer hatte nicht nur diese eine Division falsch gerechnet. Es gab unendlich viele Zahlenkombinationen, deren Division schon immer ein falsches Ergebnis geliefert hatte. Nur hatte es noch niemand bemerkt.

Natürlich haben wir uns gefragt, warum die Konstrukteure den Computer vor der Auslieferung nicht vollständig getestet hatten, mussten aber einsehen, dass sie das nicht gekonnt hatten.

Stellen Sie sich vor, Sie wollen Ihren PC allumfassend testen. Sie beginnen mit der Addition: 1+1, 1+2, 1+3, 1+4, ... bis 1+264. Dann 2+1, 2+2, 2+3 usw. bis 2+264. Insgesamt sind das 264 × 264 = 2128 Additionen. Nehmen wir an, Ihr PC läuft mit 3 GHz Takt und bewältigt drei Milliarden Additionen pro Sekunde, dann braucht er 1,134 × 1029 Sekunden oder 3,596 ×1021 Jahre. Sie können sich eine so lange Zeit nicht vorstellen? Ich auch nicht. Teilen wir die Jahre durch das Alter des Universums: 13,75 Milliarden Jahre sind seit dem Urknall vergangen. Der vollständige Test der Addition würde also 261 582 619 898 mal so lange dauern wie das Alter des Universums.

Und das war nur die Addition. Sorgfältige Konstrukteure würden noch die Subtraktion, Multiplikation und Division überprüfen und die komplexeren Funktionen wie Kehrwert, Wurzel, Potenz, Logarithmus, Sinus, Tangens ... Also halten Sie bitte weder sich noch die Techniker vom Computerservice für Idioten, wenn sie einen Fehler nicht finden können.

Auch in der Hardware Ihres PC stecken Fehler, die noch niemand gefunden hat. Aber deshalb brauchen Sie Ihren PC nicht wegwerfen. Sie selbst machen − ohne Sie beleidigen zu wollen − viel mehr Fehler als Ihr PC. Ob Jumbojet, Spaceshuttle oder Atomkraftwerk − sie werden von Menschen gebaut, die manchmal Fehler machen. Und wenn der PC ein merkwürdiges Ergebnis ausrechnet, denken Sie nie „weil es der Computer berechnet hat, muss es richtig sein“. Bleiben Sie kritisch. Benutzen Sie Ihren „gesunden Menschenverstand“.


Glossar


Diese Liste stellt eine kurze Übersicht über wichtige Fachbegriffe dar.

Inhaltsverzeichnis: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3,5" Festplatten

Standard-Festplatte mit einem Scheibendurchmesser von 3,5 Zoll = 89 mm. Daraus ergeben sich Gehäusemaße von etwa 10 cm Breite, 14,5 cm Länge und 2,5 cm Höhe. In Notebooks werden kleinere Festplatten mit 2,5" und 1,8" Breite verwendet.

8-Bit-Prozessor

Ein 8-Bit-Prozessor kann Zahlen aus 8 Bit, also Zahlen von Null bis 255 (2 8) in einem Rechenschritt verarbeiten. Das in der Schule gelernte „kleine Einmaleins“ geht bis 100, bei einer 8-Bit-CPU bis 255. Rechnungen mit größeren Zahlen muss der Computer nach den gleichen Rechenregeln in einfachere Rechenschritte zerlegen wie wir.

64-Bit-Prozessor

16-Bit-CPUs verarbeiten Zahlen bis 65.535 (2 16) in einem Schritt, 32-Bit-CPUs verarbeiten Zahlen bis 2 32, also etwa vier Milliarden, in einem Rechenschritt. 64-Bit-CPUs schaffen das mit Zahlen bis 2 64, also etwa 18 Trillionen (18 Milliarden Milliarden). Eine Multiplikation wie beispielsweise 72 057 594 037 927 936 x 122 = 8 791 026 472 627 208 192 gehört für eine 64-Bit-CPU noch zum „kleinen Einmaleins“.

A

abgesicherter Modus

Eine funktionell eingeschränkte Betriebsart. Nur die allernotwendigsten Treiber werden geladen, wodurch nach schweren Abstürzen oder Installationsfehlern auch ein beschädigtes Windows oft noch starten kann.

AC97

Ein Verfahren, den Sound mit der CPU zu berechnen, um auf eine Soundkarte verzichten zu können.

Access Control List

Eine Liste im Dateisystem NTFS mit den Zugangsberechtigungen der Benutzer.

Access Point

Basisstation für ein WLAN, z. B. der DSL-Router.

AGP

Advanced Graphic Port: Eine schnelle Schnittstelle für Grafikkarten, Nachfolger des PCI-Interfaces. Ist veraltet. Neue PC benutzen PCI-Express, vor allem für Grafikkarten.

AHCI

Advanced Host Controller Interface: Neuerer Standard für den Festplattenzugriff. Ermöglicht es der Festplatte, eintreffende Lese- und Schreibanforderungen in geänderter, optimierter Reihenfolge abzuarbeiten.

AMD

Bedeutender Hersteller von hochwertigen Halbleitern, vor allem von Prozessoren.

Analog

Eine Größe, die beliebig viele Zwischenwerte haben kann. Das Gegenteil ist „Digital“.

Android

Ein auf Linux basierendes Betriebssystem, das auf den meisten Smartphones, Mobiltelefonen, Netbooks und Tablet-Computern installiert ist. Es wird von der „Open Handset Alliance“ weiterentwickelt, deren Hauptmitglied Google ist.

Anschluss

Steckverbinder für zusätzliche Baugruppen. Fast alle Steckverbinder haben eine andere Form, so dass es nicht zu Verwechslungen und Schäden kommen kann.

ANSI

Amerikanisches Nationales Standardisierungs Institut: Normungsinstitut der USA, hat die gleiche Aufgabe wie das Deutsche Institut für Normung e.V. (DIN).

Apple

Führender Hersteller von Smartphones und Tablets

Arbeitsspeicher (Memory)

Kurzzeitspeicher aus DRAM-Chips für Zwischenspeicherung von Daten und Programmen, meist 2 – 8 GB.

ASCII

American Standard Code for Information Interchange: weitverbreitete Zeichencodetabelle. Nachfolger: ANSI

ATA

Standard für Massenspeicher-Schnittstellen (Festplatte, DVD u.a.)

Athlon

Markenname für die Prozessoren des Herstellers AMD. Siehe auch  Athlon.

ATI

bedeutender Hersteller von Grafikprozessoren (GPU), wurde von AMD übernommen.

ATX

Aktueller Formfaktor für PCs, vor allem für Gehäuse, Platinen und Netzteile.

Auflösung

Anzahl der Bild- oder Druckpunkte in waagerechter und senkrechter Richtung auf Bildschirm oder Drucker.

Auslagerungsdatei

engl.: swapfile. Bereich der Festplatte für kurzzeitige Zwischenlagerung von momentan nicht benötigten Daten und Programmen.

B

Ball bearing

Kugellager-Lagerung

Bandbreite

Ein Maß für die Übertragungsleistung eines Datenkanals. In der Computertechnik wird sie in Bit pro Sekunde angegeben, in der Kommunikationstechnik in Baud (was etwa dasselbe ist).

Beacon

von einer WLAN-Basisstation regelmäßig ausgesandtes Synchronisationssignal.

Befehlssatz

Die Menge aller Maschinensprachebefehle einer CPU.

Benchmark

Testprogramm zum Messen und Vergleichen der Leistung von Computern.

Bereitschaftsspannung

Eine Spannung von 5 Volt, mit der es Maus, Tastatur, Netzwerkkarte und Netztaster möglich wird, den „ausgeschalteten“ PC aufzuwecken.

Betatester

Kunde, der ein unausgereiftes Produkt gekauft hat und es unter Nutzung von Fachzeitschriften, Internet und Hotline mühsam in einen brauchbaren Zustand bringen muss.

Betriebssystem

Eine aufwändige Software, welche die grundlegende Steuerung des PC, die Verwaltung seiner Ressourcen und das Management der Anwendungen übernimmt.

Big-Tower-Gehäuse

Großes Computergehäuse, 50 cm hoch oder mehr

Bildtrommel

Lichtempfindliche Trommel eines Laserdruckers, meist mit Selen beschichtet.

Bildwiederholspeicher

RAM der Grafikkarte, der für jeden Bildpunkt Farbe und Helligkeit speichert. Siehe BWS

Binärsystem

auch: Dualsystem. Zahlensystem mit zwei Ziffern: 0 und 1

BIOS

Basic Input/Output System. Das fest eingebaute Programm, welches die ersten Befehle enthält, die der Prozessor nach dem Einschalten auszuführen hat. Außerdem sind einige grundlegende Hilfsprogramme eingebaut.


BIOS-ROM

Festwertspeicher, der das BIOS-Programm enthält.

Blauer Engel

Das älteste Umweltlogo der Welt kennzeichnet seit 1978 ökologisch vorteilhafte Produkte. Er wird von einer Jury aus Vertretern von Umweltbundesamt, Bundesumweltministerium, Verbraucherverbänden, Gewerkschaften, Wissenschaft, Medien u. a. vergeben.

Blu-ray

Optischer Datenträger mit einer Kapazität von 25 GB oder mehr.

Bluescreen

Fehlermeldung des PC in weißer Schrift auf blauem Hintergrund nach einem Absturz.

Booten

Vorgang des „Hochfahrens“ nach dem Einschalten des Computers, bei dem die Hardware erkannt und das Betriebssystem in den Arbeitsspeicher geladen wird.

Branch Prediction

Teil der CPU, der den weiteren Programmablauf vorherzusagen versucht.

BrightView

Eine der Bezeichnungen für Bildschirme mit hochglänzender Oberfläche

BTX

„Balanced Technology eXtended), ein veralteter Gehäuse-Formfaktor

Buffer-Underrun

nennt man es, wenn es beim Brennen zu Stockungen im Datennachschub kommt. Bei früheren Brennern wurde der CD/DVD/BD-Rohling unbrauchbar. Moderne Brenner können kurze Unterbrechungen tolerieren.

Bulldozer

Markenname für eine Prozessorgeneration von AMD

Bus

Verbindungssystem zwischen den PC-Komponenten, bestehend aus Daten-, Adress- und Steuerleitungen.

BWS

Der „BildWiederholSpeicher“ ist derjenige Teil des Speichers der Grafikkarte, in dem ein Abbild des aktuellen Bildschirminhalts gespeichert ist.

Byte

Maßeinheit für digitale Daten, besteht aus 8 Bit.

C

Cache

Zwischenspeicher: schneller Halbleiterspeicher zur Beschleunigung eines langsameren Speichers.

CAD

CAD = Computer Aided Design = Design-Entwurf am Computer. Mit einem solchen Programm kann man Werkstücke und Autos entwickeln, und auch eine Küche dreidimensional planen.

Celeron

Bezeichnung der Herstellers Intel für CPUs mit halbiertem Cache.

Chip oder Schaltkreis

Hochintegrierte Schaltung in einem kleinen Plast- oder Keramikgehäuse.

Chipsatz

Eine Gruppe von hochintegrierten Schaltkreisen auf der Hauptplatine, welche den Datenverkehr zwischen dem Prozessor, den anderen Hauptbaugruppen und den Anschlüssen steuert.

Client

PC in einem Netzwerk, der Dienste anderer Computer in Anspruch nimmt.

Cluster

Zusammenfassung mehrerer Sektoren der Festplatte zu einer Verwaltungseinheit.

CMOS-RAM

Extrem stromsparender RAM, in dem das BIOS Konfigurationseinstellungen speichert.

Compiler

Computerprogramm, das die Anweisungen einer Programmiersprache in Maschinensprache übersetzt.

Core Duo

Bezeichnung für eine Intel-CPU mit zwei Kernen. Siehe „Multikernprozessor“.

Core Quad

Bezeichnung für eine Intel-CPU mit vier Kernen. Siehe „Multikernprozessor“.

CPU

Central Processor Unit, Hauptprozessor: oberste Steuerungs- und Recheneinheit des Computers.

Crossfire

eine Technologie von AMD bzw. ATI, um die Grafikberechnungen auf zwei Grafikkarten aufzuteilen.

Crossover-Kabel

Bezeichnung für ein Kabel für die Direktverbindung zwischen Computern, an dem die Eingangs- und Ausgangssignale vertauscht sind.

CUDA

eine von NVIDIA entwickelte Technologie, einen Teil der CPU-Arbeit auf den Grafikprozessor zu verlagern.

D

Defragmentierung

Wenn die Daten auf der Festplatte nicht zusammenhängend gespeichert werden, sondern irgendwie auf der Festplatte verteilt werden, wo gerade eben mal Platz ist, spricht man von Fragmentierung. Wenn man gelegentlich (Empfehlung: Monatlich) ein Defragmentierungsprogramm laufen lässt, werden die Daten besser (zusammenhängender) angeordnet, wodurch der PC um einige wenige Prozente schneller werden kann. Moderne Dateisysteme achten bereits beim Speichern auf eine sinnvolle Verteilung der Daten und brauchen keine Defragmentierung.

DDR-RAM

Das sind die gegenwärtig in PC verwendeten Speicherbausteine. DDR steht für Doppelte Daten-Rate: Die RAM-Vorgängergeneration „SD-RAM“ konnte einmal pro Takt Daten liefern, DDR-RAM können zweimal pro Takt und häufiger Daten lesen bzw. schreiben.===DDR-RAM=== Das sind die gegenwärtig in PC verwendeten Speicherbausteine. DDR steht für Doppelte Daten-Rate: Die RAM-Vorgängergeneration „SD-RAM“ konnte einmal pro Takt Daten liefern, DDR-RAM können zweimal pro Takt und häufiger Daten lesen bzw. schreiben.

Desktop-PC

Bezeichnung für einen nicht-mobilen PC, der auf oder unter dem Tisch (Desktop) seinen Platz hat.

DHCP

Dynamic Host Configuration Protokoll: ein Verfahren, um PCs und Netzwerkgeräten eine geeignete IP-Adresse aus einem Nummernkontingent automatisch zuzuteilen.

Digital

bezeichnet eine Größe, die nur genau definierte Werte annehmen kann. Zwischenwerte müssen auf den nächsten Zahlenwert gerundet werden. Das Gegenteil ist „Analog“.

DirectX

Schnittstelle von Windows zu den Treibern der Grafikkarte.

Diskette

Veralteter magnetischer Massenspeicher mit 1,4 MByte Kapazität.

DisplayPort

moderne Schnittstelle zum Anschließen vor allem von Bildschirmen.

DOS

Das ist die Abkürzung von Disk Operation System, deutsch etwa „Disk-Betriebssystem“, wobei Disk sowohl für Hard-Disk (Festplatte) als auch für Floppy-Disk (Diskette) steht. Dieses Betriebssystem wurde in den achziger Jahren von den Firmen Microsoft (MS-DOS) und Digital Research (DR-DOS) angeboten. Es gab keine Maus, keine Farben und keine Grafik.

Dotierung

Hinzufügen von winzigsten Spuren eines Stoffes zu einem anderen hochreinen Material, um dessen Eigenschaften zu ändern. In der Regel kommt ein „Fremdatom“ auf viele Milliarden Siliziumatome.

Downlink

Übertragungskanal vom Internet zum PC oder – allgemeiner formuliert – vom Provider zum Kunden, z. B. zu einem Mobilfunkgerät.

Download

Datenübertragung vom Internet zum PC (eingehende Daten). Gegenrichtung: Upload.

DPI

Dot Per Inch (Pixel pro Zoll), Maßeinheit für die Auflösung von Druckern und Bildschirmen.

DRAM

Dynamischer RAM, wird als Arbeitsspeicher verwendet.

Dual Channel

Verfahren zur Geschwindigkeitssteigerung, indem zwei Speichermodule abwechselnd, zeitlich überlappend angesprochen werden.

Dualsystem

auch: Binärsystem. Zahlensystem mit zwei Ziffern: 0 und 1

Duron

Bezeichnung der Herstellers AMD für CPUs mit halbiertem Cache.

DVB-T

Digital Video Broadcasting Terrestrial, deutsch: Digitales erdgebundenes Antennenfernsehen. Fernsehnorm, sogenanntes „Überallfernsehen“. Wird 2016 bis 2019 durch das (nicht kompatible) DVB-T2 HD abgelöst.

DVD

Digital Versatile Disc, deutsch: digitale vielseitige Disk. Datenträger mit 4,7 GB oder mehr Kapazität.

DVD-RAM

Besonders langlebige vielmals beschreibbare DVD, die wie eine Festplatte beschrieben werden kann.

DVI

Eine digitale Verbindung zwischen Grafikkarte und moderneren Flachbildschirmen.

E

EDGE

Enhanced Data Rates for GSM Evolution: Standard zur Beschleunigung von GSM.

EEPROM

Elektrisch löschbarer und beschreibbarer ROM, wird zum Speichern des BIOS verwendet.

Eingabeaufforderung

Blinkender Kursor in schwarzem Fenster, der auf das Eintippen eines Kommandozeilenbefehls wartet.

Elko

Elektrolyt-Kondensator, elektronisches Bauteil zum Speichern von Energie.

Embedded Computer

Spezialisierte Kleincomputer in Navis, Handys, MP3-Playern, Waschmaschinen usw.

EPROM

Löschbarer und erneut beschreibbarer Festwertspeicher.

Erdung

Elektrische Geräte mit einem Metallgehäuse müssen über den Schutzkontakt des Steckers geerdet sein, damit bei einem Schaden an der Stromversorgung das Gehäuse nicht unter Spannung steht. Durch Berühren dieses Schutzkontaktes, des über Schutzkontakt geerdeten Gehäuses oder eines Heizungsrohrs kann man elektrostatische Ladungen (ESD) ableiten, die bei Arbeiten im Computer zu Schäden führen könnten.

eSATA, auch e-SATA

Extern SATA: nach außen geführter, abgeschirmter SATA-Anschluss.

Ethernet

Übertragungsstandard für Netzwerke.

Even

deutsch: gerade. Meist bei der Angabe der Parität und im Druckertreiber („Even Pages = gerade Seiten) verwendet. Gegenteil: Odd = ungerade.

F

Farbtiefe

Anzahl der möglichen Farben für einen Bildpunkt.

Farbtripel

Eine Gruppe von drei Farbpunkten (rot, grün und blau) auf dem Bildschirm. Das Auge verschmilzt die Farbpunkte wegen ihrer Kleinheit zu einem einzigen Farbeindruck.

Fernsehkarte

Erweiterungsbaugruppe (meist Steckkarte), die den Fernsehempfang auf dem Computermonitor und das Mitschneiden von Sendungen ermöglicht.

Festplatte

Schnell drehende Metallscheiben in einem hermetischen Gehäuse. Die Scheibenoberfläche ist mit einem Material beschichtet, in dem durch Magnetisieren gewaltige Informationsmengen gespeichert werden. Siehe auch  Festplatte

Festplattenaktivitätsanzeige

Ein meist rotes Lämpchen an der Vorderfront des PC, das beim Zugriff auf die Festplatte flackert.

FireWire

auch als iLink oder IEEE1394 bezeichnet, ist ein Datenübertragungssystem ähnlich USB.

Firmware

BIOS-Software

Flash-ROM

mit relativ hoher Geschwindigkeit wiederbeschreibbarer nichtflüchtiger Speicher.

Flatrate

Bezeichnung für einen Tarif, der nicht von der übertragenen Datenmenge oder der Dauer der Verbindung abhängt.

Front Side Bus

Eine Bezeichnung für die schnellsten Datenwege im PC, die von der CPU zum RAM und zum Chipsatz führen.

Full-HD

Bezeichnung für die High-Density-Auflösung von 1920 × 1080 Pixeln.

Full-Speed

Geschwindigkeit von USB 2.0 (480 Mbit/s)

G

Gamer

Meist ein junger Mann, der viel Zeit damit verbringt, an einem hochgerüsteten Computer-Boliden in anspruchsvollen Spielen (meist 3D-Actionspiele) den Sieg gegen den Computer oder (über das Internet und auf LAN-Partys) gegen Gleichgesinnte zu erringen. Andere Bezeichnung: Zocker oder einfach nur Spieler.

GDI-Drucker

Drucker mit minimierter Elektronik, dessen Bildaufbereitung im PC geschieht.

Gigabit-Ethernet

Netzwerkprotokoll mit einer theoretischen Übertragungsrate von 1 Milliarde Bit pro Sekunde.

Gleitkomma

In der Wissenschaft gebräuchliche Zahlenschreibweise, mit der auch sehr große und kleine Zahlen dargestellt werden können, z. B. 3 × 108 m/s = 300 000 000 m/s = Lichtgeschwindigkeit.

GPU

Die Graphics Processor Unit ist der Prozessorchip auf der Grafikkarte. Die GPU übernimmt rechenintensive Aufgaben der 2D- und 3D-Computergrafik und entlastet damit den Hauptprozessor, die CPU. Moderne GPUs haben eine mit der CPU vergleichbare Rechenleistung.

Grafikkarte

Diese Steckkarte wandelt die vom Computer kommenden Signale in eine Form um, die vom Bildschirm dargestellt werden kann.

GUI

Grafisches User Interface, deutsch: Grafische Bedienoberfläche.

GSM

Global System for Mobile Communication: Mobilfunk-Standard für Sprache, SMS und Daten.

H

Hauptplatine

Größte Leiterplatte im Computer, welche den Prozessor, den Chipsatz und viele andere wichtige Komponenten trägt.

HD-Ready

Bezeichnung für einen Fernseher, der Vollbilder der Auflösung 1280 × 720 oder Halbbilder mit 1920 × 1080 Pixeln wiedergeben kann.

HDD

Hard Disk Drive = Festplatte. Massenspeicher mit magnetischer Aufzeichnung.

HDMI

High Definition Multimedia Interface: Schnittstelle für die digitale Übertragung von Bild- und Tonsignalen.

HDTV

High Definition TV: Fernsehnorm für hochauflösendes Fernsehen mit 1920 × 1080 Pixeln.

Headcrash

Zerstörung einer Festplatte durch Aufschlagen eines Magnetkopfes.

Heatpipe

Spezialkühler für CPUs und Grafikkarten, die ähnlich wie eine „Wärmepumpe“ arbeiten.

Hexadezimalsystem

Zahlensystem mit 16 Ziffern: 0 bis 9 sowie A B C D E F

High Dynamic Range Image (HDRI)

deutsch: Hochkontrastbild, Bild mit hohem Kontrastumfang. Das Auge kann Helligkeitsunterschiede von mehr als 1 : 100000 unterscheiden, während Displays und Drucker nur mit 256 Helligkeitsstufen pro Farbe darstellen können. Daher sind auf Bildschirmen Details in sehr hellen und sehr dunklen Bereichen nicht sichtbar. Kameras und 4k-Bildschirme mit höherem Kontrastumfang sind in Entwicklung.

Hot Plug

Verfahren, um Geräte im laufenden Betrieb anschließen und abkoppeln zu können, wie z. B. USB.

Hot Spot

Stelle an der Oberfläche eines Chips, wo sich die Wärme konzentriert.

Hot Swapping

Austausch der Festplatten von RAID-Systemen im laufenden Betrieb.

Hot Spare

Ein betriebsbereites, noch ausgeschaltetes Reservelaufwerk in einem RAID-System.

HT

Hyper Threading: Der CPU-Kern kann zwischen zwei Programmteilen wechseln.

Hub

Netzwerk-Verteiler im LAN. Veraltet, wurde durch „Switch“ abgelöst.

Hyper Memory

Technologie von ATI, die einen zu knapp dimensionierten Grafikspeicher mit einem Teil des Hauptspeichers ergänzt. Bei NVIDIA heißt die gleiche Technologie TurboCache.

I

IBM

Bedeutender Hersteller von (vor allem großen) Computern, der die Computerfamilie "PC" bzw. "IBM_kompatibel" begründete.

IC

Integrated Circuit, deutsch: integrierter Schaltkreis, Mikrochip.

IDE

Integrated Device Electronic: Schnittstelle von älteren Festplatten.

IEEE

Das „Institute of Electrical and Electronics Engineers“ ist ein weltweiter Berufsverband von Ingenieuren der Elektrotechnik, Elektronik und Informatik. In 38 Fachbereichen werden Standards erarbeitet.

IEEE 1394

Standard für den Anschluss schneller Geräte, vorzugsweise Videokameras. Auch als „Firewire“ bezeichnet.

IEEE 802.11

Gruppe von Standards des IEEE für WLAN.

Image

Eine komplette Kopie einer Festplatte oder Partition, mit der eine identische, sofort startfähige Kopie erstellt werden kann.

Intel

Bedeutender Hersteller von hochwertigen Halbleitern, vor allem von Prozessoren.

Interlacing

Methode des Bildaufbaus aus zwei Halbbildern.

Interrupt

Eine Unterbrechung der Befehlsfolge des Prozessors durch ein unvorhergesehenes Ereignis, z. B. eine Bewegung der Maus.

iOS

Betriebssystem der Apple-Geräte iPhone und iPad, basierend auf OS X, dem Betriebssystem der „großen“ Apple-Computer.

IP-Adresse

Damit Computer Daten austauschen können – sei es untereinander oder mit dem Internet – braucht jeder Computer eine eigene Adresse. Diese „Internet-Protokoll-Adresse“ ist 32 Bit lang. Die Adresse wird mit Punkten in vier Gruppen zu je acht Bit unterteilt. Jede der vier Gruppen wird in eine Dezimalzahl umgewandelt. Diese Schreibweise heißt „punktierte Dezimalnotation“ (dotted decimal notation). Jede der vier Dezimalzahlen darf einen Wert zwischen 0 und 255 haben. Jede „öffentliche“ Adresse darf es weltweit nur einmal geben. Eine IP-Adresse wird Ihnen von Ihrem Provider für die Dauer der Internetverbindung zugeteilt. Einige Adressbereiche sind für private Verwendung freigegeben.

Mit 32 Bit sind zwei hoch 32 Adressen möglich, etwa vier Milliarden. Das reicht nicht mehr. Deshalb wird die gegenwärtige vierte Version des Internet-Protokolls schrittweise durch die sechste Version (IPv6) abgelöst, die mit 128 Bit Adresslänge ausreichend viele Adressen ermöglicht.

ISO

Die „International Standardisation Organization“ ist die Dachorganisation der Normierungsinstitute von 89 Staaten, darunter DIN und ANSI. Die ISO erarbeitet internationale Standards, die aber nicht verbindlich sind. ISO-Normen werden verbindlich, indem sie von den nationalen Normierungsorganisationen (z. B. DIN) in nationale Normen umgesetzt werden.

ISO-Image

Datei, die ein Abbild einer startfähigen CD oder DVD enthält.

Jewel Case

Hartplastehülle für CD, DVD und BD, Abmessungen 140 x 125 x 10 mm.


K

Kommandozeilenbefehl

Diese Befehle können nach dem Öffnen des Zubehör-Programms Eingabeaufforderung mit der Tastatur eingetippt werden. Zu den klassischen DOS-Befehlen sind neuere Befehle dazugekommen. Ein Beispiel: Der folgende Befehl listet alle Programme im Windows-Verzeichnis auf.

dir c:\%SystemRoot%\*.exe /s /p 

Kompatibilität

Kompatibilität bzw. Abwärtskompatibilität ist die Strategie, bei der Entwicklung einer neuen Hard- oder Software alle Eigenschaften der Vorgängerversion beizubehalten und sie um neue Funktionen zu ergänzen. Dadurch funktioniert eine Software, die für ein bestimmtes Computermodell entworfen wurde, auch mit den Nachfolgermodellen.

L

LAN

Local Area Network: Lokal begrenztes Netzwerk mit einer Ausdehnung von wenigen hundert Metern.

Level-1-Cache und Level-2-Cache

kleiner Zwischenspeicher zwischen CPU und Arbeitsspeicher, der langsamer als die CPU und schneller als der Arbeitsspeicher ist.

LightScribe

Das ist eine Technik zur Beschriftung optischer Datenträger. Der DVD- oder BD-Rohling wird mit der speziell beschichteten Beschriftungsseite nach unten in den Brenner eingelegt und mit dem Laser bearbeitet.

Low-Speed

Geschwindigkeit von USB 1.1 (1,5 Mbit/s).

LTE

Long Term Evolution: Moderne, schnelle Datenübertragung über Funknetz, Nachfolger von UMTS.

M

MAC-Adresse

weltweit einzigartige Seriennummer einer Netzwerkkarte.

Mainframe

Großrechner

Malware

Sammelbezeichnung für Viren, Trojaner, Spyware und andere schädliche Software.

Micro ATX

Formfaktor für 24,5 × 20,5 cm große Mainboards. Maximal 2 Erweiterungssteckplätze (PCI) sind möglich.

Miracast

Ein offener Standard, um den Fernseher und (große) Displays als Ausgabegerät für Mobilgeräte nutzen zu können, wobei die Übertragung über WLAN erfolgt.

MLC

Multi-Level-Cell, eine Technologie für Speichersticks und SSD-Festplatten.

MMX

Multimedia-Extension, ein spezieller Befehlssatz der CPU.

Modding

Verändern des eigenen PCs, um dessen Aussehen zu verändern. Beliebt sind Fenster und Beleuchtungen.

Modem

Ein Kunstwort aus Modulation und Demodulation. Weil Einsen und Nullen nicht über Telefonkabel übertragen werden können, verwandelt sie das Modem in eine Folge von Tönen. Auf dem Empfängerseite werden die Töne demoduliert, d. h. in Einsen und Nullen zurückverwandelt.

Motherboard

auch Mainboard: Hauptplatine

Multikernprozessor

Eine CPU besteht intern aus Rechen-, Speicher-, Verwaltungs- und anderen Komponenten. Wenn die Rechenkomponenten mehrfach vorhanden sind, ist es ein Multikernprozessor.

Multisession

die Fähigkeit eines CD-Laufwerks, CDs zu lesen, die in mehreren Durchgängen beschrieben wurden. Ist heute selbstverständlich.

Multitasking

ist die Fähigkeit eines Betriebssystems, mehrere verschiedene Programme oder auch verschiedene Teile eines Programms gleichzeitig abarbeiten zu können.

N

Nano ITX

Formfaktor für 12 × 12 cm große Mainboards.

NAND-Speicher

Bezeichnung für Flash-Speicher, der in Tablet-Computern statt einer Festplatte verwendet wird.

NAS

Networt Attached Storage ist ein lokaler Netzwerkspeicher für die gemeinsame Nutzung durch mehrere PC, im Prinzip ist es ein Mikro-Fileserver.

NAT

Network Address Translation: Austausch der internen IP-Adresse durch eine externe, um die PC vor Angriffen zu verstecken und damit zu schützen.

Native Auflösung

die echte, „natürliche“ Auflösung eines Bildschirms. Die höchste Auflösung, die man einstellen kann.

NIC

Network Interface Card, deutsch: Netzwerkkarte.

Netzwerkkarte

Komponente zur Verbindung der Computer untereinander oder mit dem Internet. Früher nur als Steckkarte, heute meist auf der Hauptplatine integriert.

Northbridge

Hochintegrierter Schaltkreis auf der Hauptplatine, zuständig für schnelle Verbindungen ­zwischen CPU, RAM, Steckplätzen und Southbridge. Teil des Chipsatzes.

Nullmodemkabel

Crossover-Kabel für die serielle Schnittstelle, bei dem Eingangs- und Ausgangsleitungen gekreuzt sind. Damit konnte man zwei PC ohne Verwendung von zwei Modems (Modem-Anzahl = null) verbinden. Veraltet.

NVIDIA

bedeutender Hersteller von Grafikprozessoren.

O

Odd

deutsch: ungerade. Meist bei der Angabe der Parität und im Druckertreiber („Odd Pages = Ungerade Seiten) verwendet. Gegenteil: Even = gerade.

OEM

Original Equipment Manufakturer: ein Hersteller, der Hard- oder Software anderer Hersteller unverändert in seine Produkte übernimmt.

Onboard-Grafikkarte

in den Chipsatz oder in die CPU integrierte Grafikelektronik.

Open Source

deutsch: Öffentlicher Quellcode. Bezeichnet kostenlos nutzbare Software, wobei aber Lizenzbedingungen zu beachten sind.

Overclocking

ist das Übertakten von Prozessor und Hauptplatine, um einen bescheidenen Geschwindigkeitszuwachs zu erhalten. Nicht empfehlenswert, weil es oft zu Instabilität des Systems und verkürzter Lebensdauer führt.

Ozonfrei

Beschönigende Bezeichnung für einen Drucker, dessen Ozonausstoß geringer ist als der gesetzliche Grenzwert.

P

P-ATA

Schnittstelle für Massenspeicher, unter Verwendung von Flachbandkabel.

Parallelisierung

Mehrere Aufgaben gleichzeitig ausführen.

Parallelport

25-poliger Anschluss für einen älteren Drucker.

Parität

Fehlerkorrekturverfahren, mit dem eventuelle Einzelbitfehler erkannt werden können.

PATA oder P-ATA

veralternde Schnittstelle für Festplatten mit Parallelübertragung.

PEG

PCI Express Graphics. Ein PCIe-x16-Steckplatz mit kräftigerer Stromversorgung (75 statt 25 Watt).

PCI

Peripheral Computer Interface: Schnittstelle für Erweiterungskarten. Auf einer Hauptplatine lassen sich theoretisch bis zu acht PCI-Karten unterbringen, z. B. Soundkarte oder Netzwerkkarte. Üblich sind zwei bis fünf Steckplätze. Wird in neuen PC durch PCI-Express-Steckplätze ergänzt.

PCI-Express

Allerneuester Schnittstellen-Standard für Erweiterungskarten. Hat AGP abgelöst und wird in einigen Jahren vermutlich auch PCI ersetzen.

PCI Express oder PCIe

Allerneuester Schnittstellen-Standard für Erweiterungskarten. Hat AGP und PCI abgelöst.

PCMCIA

Schnittstellenstandard für Notebook-Erweiterungskarten.

Permanent-Druckkopf

nicht austauschbarer Druckkopf in hochwertigen Tintendruckern.

Piezoelektrischer Effekt

Verformung von Kristallen durch Anlegung von Spannung, wird in Tintendruckern verwendet.

Pivot-Funktion

ist die Möglichkeit, den Bildschirm hochkant zu drehen (und das Bild anzupassen).

Pixel

ist die Abkürzung von Picture Element und bezeichnet den kleinsten Leuchtpunkt auf einem Bildschirm oder den kleinsten druckbaren Punkt auf dem Papier.

Pixelgrafik

Darstellung eines grafischen Objekts als Matrix von Pixeln. Der Speicherbedarf ist zur Bildfläche proportional.

Platine

Isolierplatte mit aufgebrachten Leiterzügen und aufgelöteten elektronischen Bauelementen.

Plotter

Gerät zur Anfertigung technischer Zeichnungen. Ursprünglich wurde ein Zeichenstift, von Präzisionsmotoren gesteuert, über ein Zeichenblatt geführt. Siehe auch  Plotter.

Plug-and-Play

Wird mit PnP abgekürzt und bedeutet „Einstecken und Loslegen“. Gemeint ist, dass sich neue Hardware teilweise selbst konfiguriert. PnP Plug and Play: automatische Zuteilung von Ressourcen an elektronische Baugruppen.

Port

Anschluss, Schnittstelle für ein Gerät oder ein Netzwerk.

Portable Software

Software, die nicht installiert werden muss. Sie kann direkt vom USB-Speicherstick o. ä. ausgeführt werden, ohne das installierte Windows zu verändern.

POST

Power On Self Test: vom BIOS nach dem Einschalten durchgeführter Test des PCs.

PowerLAN

Das 240 Volt Stromnetz wird für Netzwerkübertragungen genutzt.

Prefetch

Verfahren zur Startbeschleunigung bei Windows XP, wurde seit Windows Vista durch Superfetch abgelöst.

PROM

Programmierbarer ROM: einmalig programmierbarer, nicht löschbarer Festwertspeicher.

Proprietäre Software

Bezeichnung für eine herstellereigene Software, deren Einzelheiten geheim gehalten werden, im Unterschied zu „quelloffener“ Software.

Provider

Anbieter von Internet-Dienstleistungen.

Prozessor

Zentrale Steuer- und Recheneinheit im PC. Engl. „CPU“.

PS/2

Standard von IBM, wird für runde Tastatur- und Mausstecker verwendet.

Q

Quelloffene Software

Software, die in allen Details offengelegt ist und die jeder kostenlos nutzen darf, z. B. Linux. Wird auch als „Open Source Software“ oder „freie Software“ bezeichnet, im Unterschied zu proprietärer Software.

R

RAID

Redundant Array of Independent Disk: Festplattenverband, bei dem der Ausfall einer Festplatte nicht zu Datenverlust und Arbeitsunterbrechung führt.

RAM

Bedeutet Random Access Memory. Schneller Halbleiterspeicher für Arbeitsdaten und -ergebnisse.

RAMDAC

RAM-Digital-Analog-Converter: Teil der Grafikkarte. Wandelt den digitalen Inhalt des Bildwiederholspeichers in ein analoges VGA-Signal.

Redundanz

Hinzufügen von Kontrollsummen o. a., um die Gefahr von Datenübertragungsfehlern zu verringern.

Registry

Datenbank mit zehntausenden Einträgen im Kern des Windows-Betriebssystems, in der die Parameter von Hard- und Software gespeichert sind.

RIP-Server

Server zur Druckaufbereitung für hochwertige Laserdrucker.

Rendern

Verarbeitung eines geschnittenen Videos zu einer fertigen Videodatei, was viele Stunden dauern kann.

Rendern

Konvertieren einer Vektorgrafik oder eines TrueType-Textes in die Pixeldarstellung (vor dem Ausdrucken).

RMA

Return Material Authorization: deutsch etwa „Genehmigung zur Rücksendung“. Bei Hardwareherstellern muss im Garantiefall eine Rücksendung angemeldet werden.

RoHS-Verordnung

Verordnung der EU, dass bleihaltiges Lötzinn nur noch in genau definierten Ausnahmefällen verwendet werden darf.

ROM

"Read Only Memory". Speicher für grundlegende Daten und Programme, die während der Herstellung von Hauptplatine, Grafikkarte, Brenner o. ä. gespeichert werden und danach nicht mehr verändert werden können.

Router

Verbindet Netzwerke und sucht Transportwege für Datenpakete.

S

Samplingrate

bei der Digitalisierung von Tönen: die Häufigkeit, mit der die Lautstärke gemessen wird.

SATA, auch S-ATA

Serial ATA: Moderne serielle Schnittstelle für Festplatten und optische Laufwerke.

Scanner

Ein Gerät zum Digitalisieren von Vorlagen. Texte, Zeichnungen und Fotos werden in eine Form umgewandelt, die vom PC gespeichert und weiterverarbeitet werden kann. Siehe auch  Scanner.

Schaltkreis

kompakte Schaltung in kleinem Plastgehäuse, engl.: chip.

Schnittstelle

engl. „Interface“. Standardisierte Kopplung zwischen Komponenten. Steckerart, Kabelbelegung, Spannungen und Timing (zeitliche Abfolge der Signale) sind präzise vorgeschrieben.

SCSI

Abkürzung für Small Computer System Interface, wird „Skasi“ ausgesprochen. Es handelt sich um eine sehr flexible, sehr schnelle, sehr zuverlässige und sehr teure Technik zur Ansteuerung von Festplatten und anderen Massenspeichern, die fast nur in Profi-Systemen zum Einsatz kommt.

SDRAM

Synchroner dynamischer RAM, eine veraltete RAM-Bauart, Vorgänger von DDR-RAM.

Seitendrucker

Drucker, der keine einzelnen Zeilen, sondern nur komplette Seiten drucken kann.

Sektor

Kleinste Speichereinheit auf Diskette und Festplatte, enthält 512 oder neuerdings 4096 Datenbyte.

Server

Computer, der Speicherplatz, Drucker, Internet oder andere Ressourcen für die gemeinsame Nutzung durch andere Computer bereitstellt.

Shared Memory

Grafikkarte ohne eigenen Speicher, die einen Teil des Arbeitsspeichers benutzt.

SLC

Single Level Cell, eine Technologie für Speichersticks und SSD-Festplatten.

SLI

Scalable Link Interface − eine Technik von NVIDIA, um mehrere GPUs zusammenzuschalten.

Slot

Steckplatz für Einsteckkarten auf der Hauptplatine.

SMART

In die Festplattenelektronik integriertes Diagnose- und Verwaltungsprogramm.

SMD

Surface Monted Device: Oberflächen-montiertes Bauteil. Indem Elektronikbauteile direkt auf die Oberfläche der Leiterplatte gelötet werden, können Bohrungen eingespart werden.

Socket

Steckfassung für die CPU.

Software

Oberbegriff für Computerprogramme jeder Art.

Solid State Disk

Abkürzung: SSD. So heißen die Geräte, die anstelle von Festplatten verwendet werden. Im Inneren haben sie keinerlei Mechanik, sondern nur Flash-ROM und sind dadurch schnell, stromsparend und lautlos.

Software

Oberbegriff für Computerprogramme jeder Art.

Soundkarte

Diese Steckkarte wandelt die vom Computer kommenden Signale in eine Form um, die vom Lautsprecher wiedergegeben werden kann. Wird ein Mikrofon angeschlossen, können Tonaufzeichnungen gemacht werden.

Southbridge

Hochintegrierter Schaltkreis auf der Hauptplatine, zuständig für „langsame“ Komponenten. Teil des Chipsatzes.

SPD-ROM

Ein auf dem RAM-Modul aufgelötetes ROM-Modul, in dem der Hersteller die technischen Daten des Speicherriegel hinterlegt hat. In mehr als hundert Byte stehen Details über Zugriffszeiten, Modulaufbau und Fehlerkorrektur.

Mehr dazu im Kapitel SPD-ROM

.

Speedstep

Verfahren, um den Energiebedarf der CPU zu verringern, wenn sie gering belastet oder im Leerlauf ist.

Speicherbank

Gruppe von Steckplätzen (Slots) auf der Hauptplatine zur Aufnahme von Speichermodulen.

Speicherbus

Verbindungsleitungen (Adress-, Daten- und Steuerleitungen), die vom Chipsatz oder der CPU zu den Speichermodulen führen.

Speichermodul oder Speicherriegel

kleine Leiterplatte mit aufgelöteten RAM-Speicherbausteinen. 133 mm breit, etwa 30 mm hoch.

Spiegelung

Duplizierung von Daten auf zwei identische Speicher, um bei Ausfall von einem der Speicher die Daten nicht zu verlieren. Es können auch Computer und ganze Rechenzentren gespiegelt werden.

Splitter

Frequenzweiche zum Aufteilen eines Eingangssignals in Telefon- und Datensignale.

SRAM

Statischer RAM. Sehr schnell, wird deshalb vor allem als Cache-Speicher in der CPU verwendet.

SSD

Solid State Disk: So heißen die Massenspeichergeräte, die anstelle von Festplatten verwendet werden. Im Inneren haben sie keinerlei Mechanik, sondern nur Flash-ROM und sind dadurch schnell, stromsparend, robust und lautlos.

SSID

Service Set Identifier: der Netzwerkname eines WLAN-Routers.

Stand-By

Bereitschaftsmodus, wenn der PC nicht benutzt wird und möglichst viele Komponenten abschaltet, um Energieverbrauch und Verschleiß zu verringern. Das System kann in wenigen Sekunden wieder hochfahren.

Super Speed

Bezeichnung für die höchste Übertragungsrate einer USB 3.0-Schnittstelle (5 Gbit/s).

Supercomputer

Bezeichnung für die leistungsfähigsten Großcomputer der Welt, mit einem Stückpreis von einer knappen Milliarde Euro.

Superfetch

Speichermanagement ab Windows Vista, bei dem häufig benötigte Dateien einer Magnetfestplatte vorsorglich im Arbeitsspeicher bereitgehalten werden.

Steckkarte

Bestückte Leiterplatte, die in einen Steckplatz (Slot) der Hauptplatine gesteckt wird.

Strukturbreite

Halber Abstand zwischen den Leiterbahnen in Prozessoren und anderen Mikrochips.

Switch

Netzwerk-Verteiler im LAN, der sich die Adressen der angeschlossenen Geräte merkt und dadurch die Datenpakete zielgerichtet zustellen kann.

Systemeinheit

Kernstück eines Computersystems: Gehäuse mit Hauptplatine, Festplatte, DVD u. a.

T

Taskleiste

Bei Windows die graue Leiste am unteren Bildrand, die links den Start-Button, rechts die Uhr und dazwischen die laufenden Programme („Tasks“) anzeigt. (Sie lässt sich an jeden Bildschirmrand verschieben).

Tastatur-Kontroller

Ein integrierter Schaltkreis, der das Drücken und Loslassen jeder Taste registriert und daraus unter Berücksichtigung der Feststell- und Sondertasten einen Zeichencode an den Prozessor schickt.

Thunderbolt

Moderne Schnittstelle für den Anschluss von Bildschirmen und Massenspeichern.

Tool

wird ins Deutsche als „Werkzeug“ übersetzt. Als PC-Werkzeug ist eine kleine Anwendungssoftware oder Dienstprogramm gemeint.

Touchpad

Ersatz für die Maus in Notebooks. Wird mit einem oder mehreren Fingern bedient.

Touchscreen

Bildschirm mit berührungsempfindlicher Oberfläche. Der Computer kann mit einem oder mehreren Fingern gesteuert werden. Wird vor allem in Smartphones und Tablets verwendet.

Transferjet

Nahbereichsübertragungstechnik, die auf Entfernungen von max. 3 cm um mehrere Größenordnungen schneller ist als Bluetooth oder NFC. Dient zur schnellen Übertragung großer Datenmengen zwischen Mobilgeräten oder zu Drucker oder Fernseher.

Tuner

Empfangsbaugruppe in Radio- und Fernsehgeräten. Der Tuner filtert aus der Vielzahl von Frequenzen die gewünschte Senderfrequenz heraus.

True-Type-Schrift

Das Aussehen jedes Buchstabens wird durch mathematische Formeln festgelegt.

Turbo-Cache

Technologie von NVIDIA, die einen zu knapp dimensionierten Grafikspeicher mit einem Teil des Hauptspeichers ergänzt. Bei ATI heißt die gleiche Technologie HyperMemory.

Turbo-Modus

Wenn in einem Mehrkernprozessor einzelne Kerne zeitweilig nicht gebraucht werden, können die benutzten Kerne höher getaktet werden.

U

Übertakten

Ein Art von Tuning, bei der es darum geht, durch Erhöhung der Taktfrequenzen und Verändern der Betriebsspannungen über die vom Hersteller vorgegebenen Grenzen hinaus einige wenige Prozent mehr Leistung aus dem PC herauszuholen.

UEFI-BIOS

Neue BIOS-Generation mit grafischer Bedienung, das Festplatten über 2 TB nutzen kann. Der Startvorgang wird beschleunigt und eine Festplatten-Komplettverschlüsselung ist möglich.

UMTS

Datenübertragungsverfahren über das Mobilfunknetz.

Unicode

Zeichencode, der für jedes Schriftzeichen der Erde geeignet ist.

Unterbrechungsleitung

Eingänge der CPU für Meldungen von der Peripherie über unerwartete Ereignisse.

Uplink

Übertragungskanal vom PC in Richtung Internet oder – allgemeiner – vom Kunden zum Provider.

Upload

Datenübertragung vom PC ins Internet (Senden). Die Gegenrichtung ist der Download.

USB

Universal Serial Bus mit Übertragungsgeschwindigkeiten Low-Speed (1,5 Mbit/s), Full-Speed (12 Mbit/s), High-Speed (480 Mbit/s) und Super-Speed (5000 Mbit/s).

Utility

Bezeichnung für ein Dienstprogramm zur Verwaltung des Betriebssystems.

V

Vektorgrafik

Ein Bild (oder Buchstabe) wird durch eine Folge von Linien und geometrischen Figuren (z. B. Kreisabschnitte) beschrieben.

W

Wear Leveling

Verfahren des Speichercontrollers von SSD-Platten, um eine möglichst gleichmäßige Abnutzung der Speicherblöcke zu sichern.

WEP

Wred Eäquivalent Privacy: veralteter Verschlüsselungsstandard für WLAN. Die Nachfolger sind WPA und WPA-2.

WiDi (Wirecess Display)

Microsoft’s Proprietäre Realisierung des Miracast-Standards, um Videos über WLAN von einem Mobilgerät auf einen großen Bildschirm zu übertragen.

Wi-Fi

Auch WiFi. Bezeichnung für ein Funknetzwerk (WLAN), das nach den IEEE 802.11-Normen funktioniert.

WiFi Alliance

Ein Konsortium von Firmen, das WLAN-Geräte zertifiziert und WLAN-Standards entwickelt, wie z. B. die Verschlüsselungsverfahren WEP, WPA und WPA-2.

Workstation

So bezeichnet man besonders leistungsfähige Computerarbeitsplätze. Bei einem Preis von vielen zehntausend Euro haben sie eine mehr als zehnfache Leistung eines bestens ausgestatteten PC.

WPA

WiFi-Protected Access: Verschlüsselung für WLAN, WPA-2 ist der aktuelle Standard.

X

XEON

Bezeichnung für hochwertige Server-CPUs von Intel.







Literatur und Referenzen
  1. Google hat eine Million Server http://www.spiegel.de/fotostrecke/fotostrecke-53882.html
  2. Intel beginnt mit 22-nm-Fertigung von Prozessoren http://ht4u.net/news/22702_intel_beginnt_mit_22-nm-fertigung_von_prozessoren/
  3. Die Zukunft der intel-Prozessoren http://www.intel.de
  4. 32 nm Technologie http://www.intel.com/cd/corporate/pressroom/emea/deu/archive/2008/410929.htm
  5. Herstellung von CPUs (Lithografie) http://www.techtower.de/pdf/techtower_mikroelektronik_Lithographie.pdf
  6. 50 Gbit/s Datenübertragung mit Halbleiter-Lasern http://www.storage-insider.de/themenbereiche/storage-hardware/forschung-und-wissenschaft/articles/276138/
  7. „Wear Leveling“ erhöht die Lebensdauer von Flash-ROM-Speicher http://www.siliconsystems.com/silicondrive/whitepapers/SSWP03-Endurance-R.pdf
  8. Vier Bit pro Flash-Speicherzelle http://www.heise.de/newsticker/meldung/MirrorBit-Quad-Vier-Bits-pro-Flash-Speicherzelle-165786.html
  9. Foto und Datenblatt der ersten Festplatte der Welt http://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
  10. Festplatten werden kleiner http://de.wikipedia.org/wiki/Festplattenlaufwerk#Chronologische_.C3.9Cbersicht
  11. Chronik von Seagate http://www.seagate.com/www/en-us/about/corporate_information/company_milestones/
  12. Perpendicular recording http://www.tecchannel.de/storage/komponenten/401602/grundlagen_festplattentechnik/index7.html
  13. Festplatten mit 150.000 Spuren pro Zoll http://www.seagate.com/staticfiles/support/disc/manuals/notebook/momentus/5400_3/100398882d.pdf
  14. Headcrash: Aquaplaning für die Festplatte http://www.it-service24.com/datenrettung/headcrash/#aquaplaning-fuer-die-festplatte
  15. Festplatte setzt Lageänderungen Widerstand entgegen wie ein Gyroskop http://de.wikipedia.org/wiki/Gyroskop
  16. Rechenzentrum durch Feuerlöschübung zerstört http://www.availabilitydigest.com/public_articles/0505/westhost.pdf
  17. Moderne Festplatten sind geräuschempfindlich http://www.webhosternews.com/2010/12/festplatten-tonfrequenzen-rechenzentrum-zerstoert-wagner-schutzvorkehrungen/?tlid=Array
  18. Schalldruck über 100 dB verursacht Festplattenschäden http://www.webhosternews.com/wp-content/uploads/2010/12/WAGNER_Silent_Schalldaempfer.pdf?tlid=Array
  19. Studie von Google über Festplattenausfälle, 2007: http://labs.google.com/papers/disk_failures.html
  20. Polymerschicht schützt vor Kopfaufsetzern http://www.golem.de/0607/46302.html
  21. Spindelmotor als Bremse: http://de.wikipedia.org/wiki/Elektromotorische_Bremse
  22. Vergleich SLC und MLC http://www.channelpartner.de/index.cfm?pid=266&pk=299939&p=2
  23. Hybrid-Festplatten sind zu teuer, Quelle: PC-Welt, 02/2008, S. 142)
  24. SSD-Hybride relativ erfolglos http://www.channelpartner.de/index.cfm?pid=266&pk=299939&p=4
  25. 22000 DM für einen CD-Brenner http://de.wikipedia.org/wiki/Brenner_(Hardware)
  26. Querschnitt der M-Disk http://www.computerbase.de/bildstrecke/35878/1/
  27. 1000 Jahre Haltbarkeit http://www.computerbase.de/news/2011-08/m-disc-verspricht-1.000-jahre-datenbestaendigkeit/
  28. Blu-ray im PC ist eine Seltenheit: http://www.isuppli.com/News/Pages/Blu-ray-Sings-the-PC-Blues.aspx http://www.zdnet.de/artikel_zum_thema_isuppli_thema-39002356-39073620o1o0-1.htm
  29. Opto-Wheel http://www.genius-europe.com/aktuelles_presse.php?sid=92&ar=-1
  30. 5000 Prozessorkerne in Grafikkarten im Jahr 2015? http://www.xbitlabs.com/news/video/display/20090730072951_Nvidia_Chief_Scientist_11nm_Graphics_Chips_with_5000_Stream_Processors_Due_in_2015.html
  31. VGA nur noch bis 2015 http://www.dotnetpro.de/news3947.aspx
  32. Hintergrundinfos zu HDMI http://www.hifi-regler.de/hdmi/hdmi.php#hdmi_04
  33. Karte der Empfangsbereiche für DVB-T http://www.ueberallfernsehen.de/empfangsprognose.html
  34. 42% Ausfälle bei Spielkonsolen http://www.nofussreviews.com/survey-results-2010.php
  35. w:Xbox_360#Bekannte_Probleme
  36. Lärm macht krank: Siehe http://www.baua.de/de/Publikationen/Fachbeitraege/Suga-2007.pdf;jsessionid=BBB1E57C33295F27F9E289E8187357E2?__blob=publicationFile&v=4 auf Seite 23
  37. Lautstärke von Netzteilen http://www.au-ja.de/review-be-quiet-e7-400+be-quiet-l7-430+lc-power-lc420h-8+noname-sps-400xpe-p+xigmatek-nrp-pc402-13.phtml
  38. Typische Schalldruckpegel http://de.wikipedia.org/wiki/Schalldruckpegel#Schalldruckpegel_und_Schalldruck_diverser_Schallquellen
  39. WLAN können stärker strahlen als DECT http://www.izgmf.de/Aktionen/Meldungen/Archiv_03/WLAN_Access_Points/wlan_access_points.html
  40. WLAN an Schulen soll eingeschränkt werden http://diepresse.com/home/techscience/hightech/402167/index.do
  41. Heise über PowerLAN http://www.heise.de/tp/r4/artikel/16/16435/1.html
  42. 42,0 42,1 Sendeleistung von Bluetooth http://www.chip.de/artikel/Bluetooth-FAQ-9_12890886.html
  43. NiMH-Akkus unter dem Gefrierpunkt nicht mehr verwenden http://de.wikipedia.org/wiki/Nickel-Metallhydrid-Akkumulator#Einschränkungen
  44. Gefährdet Winterkälte Festplattendaten? http://www.server-datenrettung.de/datenrettung-service/haeufige-fragen/gefaehrdet-winterkaelte-festplattendaten/
  45. SSD sind nicht frosttauglich http://www.kuert-datenrettung.de/pressebereich/vorsicht-mit-mobilen-ssds-und-nand-flash-bei-klirrender-kalte.html
  46. Ausfallhäufigkeit bei Notebooks 1997 http://www.heise.de/mobil/artikel/Notebooks-fuer-den-rauen-Alltagseinsatz-223587.html
  47. Austausch Hauptplatine bei Notebooks ist teuer http://www.focus.de/digital/computer/stiftung-warentest-notebook-reparaturen-sind-zu-teuer_aid_523090.html
  48. Stiftung Warentest über Notebookreparaturen http://www.test.de/themen/computer-telefon/test/Notebookreparaturen-Nur-HP-und-Apple-reparieren-gut-4108181-4108183/
  49. U.S. Militär Falltest-Standard http://www.hp.com/sbso/solutions/pc_expertise/professional_innovations/hp-military-grade-specifications.pdf
  50. Doppelgarantie: Reparatur plus Kaufpreis zurück http://www.toshiba.de/doppelgarantie
  51. 100 Chemiker entwickeln Tinte bei HP http://h20195.www2.hp.com/V2/GetPDF.aspx/c02468558.pdf (Seite 3)
  52. Pigmenttinte trocknet nicht auf auf High Glossy Paper http://www.cartridgeworld.de/fileadmin/cartridgeworld/redakteur/Support-PDF/Support2/Pigmenttinten_auf_Fotopapier.pdf
  53. Gesundheitsgefährdung durch Toner http://de.wikipedia.org/wiki/Kopierer#Gesundheitsgef.C3.A4hrdung
  54. Keine Gesundheitsgefahr durch Toner in Privathaushalten http://www.bundestag.de/aktuell/hib/2009/2009_065/03.html
  55. Computerpartner 06/2006, S.17: 90% der eingesandten Drucker sind mit falschem Toner verschmutzt
  56. http://www.haz.de/Nachrichten/Der-Norden/Uebersicht/Justizministerium-laesst-4033-Drucker-verschrotten
  57. Die zehn sparsamsten SW-Laserdrucker ChannelPartner 47/09 S. 16
  58. Die zehn sparsamsten Farblaserdrucker ChannelPartner 09/2010 S. 42
  59. Energieeffiziente Geräte finden http://www.stromeffizienz.de/index.php?id=8827
  60. Hotlines sind teuer http://computer.t-online.de/stiftung-warentest-notebook-reparatur-oft-teuer-und-langsam/id_42070796/index
  61. Die Betriebsspannung von Elkos sollte die Hälfte der Nennspannung nicht überschreiten: http://www.controllersandpcs.de/lehrarchiv/pdfs/elektronik/pass02_02x.pdf (Seite 4)
  62. Eine möglichst kleine Betriebsspannung erhöht die Lebensdauer von Elkos http://www.elektronik-kompendium.de/sites/bau/1011281.htm
  63. Alterung von CPUs durch Elektromigration: http://www.heise.de/ct/Ploetzlicher-Pentium-4-Tod-durch-Uebertakten--/hintergrund/meldung/34186
  64. Bleifreies Lot wird brüchig http://de.wikipedia.org/wiki/Xbox_360#.C3.9Cberhitzung
  65. Langzeitverhalten von Kondensatoren http://www.tonbandmuseum-koeln.de/joomla1015/content/view/16/31/


Feedback geben
Waren diese Informationen hilfreich für Sie?
Wenn nicht, dann klicken Sie bitte hier und schreiben Sie uns, was Sie vermisst haben.

Lizenz

Dieses Buch steht unter der Lizenz Creative Commons CC-by-sa 3.0, Details siehe http://creativecommons.org/licenses/by-sa/3.0/deed.de Siehe auch http://de.wikipedia.org/wiki/Wikipedia:Lizenzbestimmungen .