Quadriviale Kuriositäten

Aus Wikibooks
Zur Navigation springen Zur Suche springen
Books Flat Icon Vector.svg

Dieses Buch steht in den Regalen Mathematik, Astronomie und Musik.

Green star boxed.svg Dieses Buch wurde in die Liste exzellenter Bücher aufgenommen.

Die Philosophie in der Mitte der sieben freien Künste in einer Darstellung um 1180 aus dem Hortus Deliciarum (zu deutsch: Garten der Köstlichkeiten) der elsässischen Benediktinerin Herrad von Landsberg.

Diese Einleitungsseite dient als Vermittlungsstelle zu interessanten Kuriositäten der Arithmetik, Geometrie, Astronomie und Musik über die in verschiedenen Büchern und Kapiteln auf Wikibooks nachgelesen werden kann. Nach kurzer Vorrede über die Bedeutung des Titels werden die entsprechenden Inhalte übersichtlich präsentiert.

Vorrede[Bearbeiten]

Neue Erkenntnis wird häufig durch die Verknüpfung und genauere Untersuchung von bereits bekannten Sachverhalten gewonnen. Hierbei erweist sich eine unvoreingenommene Kooperation zwischen verschiedenen Forschenden sehr oft als hilfreich. Besonders förderlich ist es hierbei, wenn Beteiligte aus verschiedenen Fachgebieten interdisziplinär zusammenarbeiten. Je mehr dieses ideale Prinzip angestrebt wird, desto weniger Einschränkungen drohen durch den Hemmschuh des  Not-invented-here-Syndroms. Vor diesem Hintergrund soll zunächst die Frage beantwortet werden, wofür das Attribut „quadrivial“ steht.

Quadriviale…[Bearbeiten]

Das Adjektiv „quadrivial“ steht zum Substantiv „Quadrivium“ wie das Adjektiv „trivial“ zum Substantiv „Trivium“. Die vier freien Künste des Quadriviums und die drei freien Künste des Triviums bilden zusammen die sieben freien Künste (lateinisch: septem artes liberales) des Mittelalters. Betrachtet werden hier in erster Linie die vier freien Künsten des Quadriviums, namentlich die Arithmetik, die Astronomie, die Geometrie und die Musiktheorie. Insbesondere sei darauf hingewiesen, dass viele der hier aufgeführten Kuriositäten die Themenbereiche mehrerer dieser freien Künste berühren.

Wahre Universalgelehrte waren nicht nur sprachgewandt, gebildet und beherrschten mehrere Fremdsprachen, sondern waren gerade auch in den vier Fachgebieten des Quadriviums auf dem Stand des Wissens ihrer Zeit. Diese Fähigkeiten anzustreben scheint auch heute nicht unmöglich oder abwegig und insbesondere bei gesellschaftlich verantwortungsvollen Projekten dürfte dieses Ideal immer nützlicher und wichtiger werden. Der deutsche Ethiker  Peter Dabrock (* 1964) hat beispielsweise darauf hingewiesen, dass bei der Gestaltung und Anwendung von Künstlicher Intelligenz nicht nur die digitale Kompetenz eine Rolle spiele, sondern dass auch sämtliche klassische Bildungselemente hierfür eine sehr wichtige Voraussetzung seien. Die wesentliche Fähigkeit, sowohl Unterschiede als auch Mehrdeutigkeiten erkennen und bewerten zu können, sei umso größer, je mehr fundierte Kenntnisse aus möglichst vielfältigen Fachgebieten vorhanden sind.[1]

…Kuriositäten[Bearbeiten]

Die Wörter Kuriosität oder Kuriosum sind vom lateinischen Wort curiositas abgeleitet, das Neugier bedeutet. Auch wenn Kuriositäten auf den ersten Blick oft nur absonderlich oder lustig erscheinen mögen, sind sie doch genauso häufig lehrreich und regen zu weiterführender Beschäftigung mit interessanten Themen an. Dabei spielt es selbstverständlich keine Rolle, ob diese Themen dann quadrivialer, trivialer oder philosophischer Natur sind...

Die hier aufgeführten Inhalte sollen die Neugier der Lesenden zunächst wecken. Möge der vorliegende Beitrag einen weiteren Dienst leisten und auch dabei helfen, diese Neugier zu befriedigen.

Nicht zuletzt sei erwähnt, dass Kuriositäten auch einen Unterhaltungswert haben können und es somit ermöglichen, die Freizeit sowohl lehrreich als auch kurzweilig zu gestalten.

Das Quadrivium[Bearbeiten]

Die vier mittelalterlichen freien Künste des Quadriviums
Name Lateinische
Bezeichnung
Thema Tätigkeit
Arithmetik Arithmetica Zahlen Rechnen
Astronomie Astronomia Himmelskörper Sehen
Geometrie Geometria Formen Zeichnen
Musik Musica Klänge Hören

Diese vier Fachgebiete werden im Buch 3 der Enzyklopädie Etymologiae von  Isidor von Sevilla (* um 560; † 636) unter der Überschrift „Von den vier mathematischen Disziplinen“ abgehandelt. Isidor von Sevilla übersetzt das altgriechische Wort „mathema“ („μάθημα“) mit „das Gelernte“ beziehungsweise mit „die Wissenschaft“ im Sinne der Lehre. Mit seiner Systematik bezieht er sich explizit auf die Pythagoräer, die im 6. Jahrhundert vor Christus in Süditalien tätig waren.

Arithmetik[Bearbeiten]

 Boethius' (links) und  Pythagoras' (rechts) zeigen in einer fiktiven Darstellung unter den Augen der personifizierten Arithmetica, wie gerechnet werden kann. Während Boethius eine Rechenaufgabe unter Verwendung von Ziffern schon gelöst hat, ist Pythagoras mit Hilfe eines Abakus noch beim Zählen.

Die Arithmetik befasst sich im engeren Sinn mit ganzen Zahlen und den Grundrechenarten. Daraus abgeleitet ergeben sich dann auch die Bruchrechnung mit rationalen Zahlen und die Potenzrechnung sowie die Algebra zur rechnerischen Bestimmung von unbekannten Größen. In Deutschland gilt  Adam Ries(e) (* 1492 oder 1493; † 1559) als Vater des modernen Rechnens, da er das indisch-arabische System der Ziffern einschließlich der Null einführte und mehrere deutschsprachige Bücher darüber verfasste.

Die Mengenlehre beschäftigt sich als vergleichsweise junges Teilgebiet der Mathematik mit unterscheidbaren Objekten respektive Elementen, die gezählt und somit nummeriert werden können. Die Menge der natürlichen Zahlen ist ein Beispiel für eine abzählbare Menge. Dadurch ergeben sich starke Bezüge zwischen der Mengenlehre und der Arithmetik. Ferner sind Zahlenfolgen wie die der  Primzahlen oder die der  Fibonacci-Zahlen durch arithmetische Regeln festgelegt. Diese Zahlenfolgen haben weitreichende Bedeutung in zahlreichen Themengebieten, wie zum Beispiel in der Kryptographie, aber auch bei vielen natürlichen Prozessen.

Die reellen Zahlen, die komplexen Zahlen oder gar die Quaternionen sowie die Vektor- und Tensor-Rechnung konnten aus der Arithmetik entwickelt werden, gehören aber selbst nicht mehr zu dieser Disziplin. Dennoch bleibt festzuhalten, dass sogar irrationale Zahlen, wie die Quadratwurzel der ganzen Zahl Zwei, bereits im Altertum bekannt waren. Nichtsdestoweniger wurden bereits in der Antike mangels tieferer Erkenntnisse verschiedene arithmetische Näherungen für die transzendente Kreiszahl π verwendet. So soll beispielsweise der erste Jerusalemer Tempel Salomos mit einem großen, vollkommen runden aus Bronze gegossenen Meerbecken ausgestattet gewesen sein, das zehn Ellen von einem Rand zum andern maß und von einer Schnur von dreißig Ellen rings umspannt werden konnte.[2] Aus dem Verhältnis der angegebenen Maße für den Durchmesser und den Umfang ergibt sich eine ganzzahlige Kreiszahl mit dem Wert Drei.

Auch die höhere Mathematik mit der Differential- und Integralrechnung ist kein Teilgebiet der Arithmetik. Das gilt also ebenfalls für trigonometrische Funktionen, die in der Analysis als Lösung von Funktionalgleichungen definiert werden. Auch die Trigonometrie hatte allerdings bereits im Altertum als Teilgebiet der Geometrie – ausgehend von der Betrachtung von Winkeln in ebenen Dreiecken – Vorläufer mit geometrisch gemessenen Funktionswerten, die in Tabellenform notiert wurden. Dennoch sind all diese Teilgebiete auch mit Hilfe arithmetischer Grundlagen weiterentwickelt worden.

Der deutsche Geologe  Wolfgang Sartorius von Waltershausen (* 1809; † 1876) erwähnte im Nachruf an seinen engen Freund, den Fürsten der Mathematiker  Carl Friedrich Gauß (* 1777; † 1855), welche hohe Bedeutung dieser der Arithmetik zugeschrieben hatte:

Die Mathematik hielt Gauss um seine eigenen Worte zu gebrauchen, für die Königin der Wissenschaften und die Arithmetik für die Königin der Mathematik. Diese lasse sich dann öfter herab, der Astronomie und den andern Naturwissenschaften einen Dienst zu erweisen, doch gebühre ihr unter allen Verhältnissen der erste Rang.[3]

In der folgenden Tabelle sind die arithmetischen Kuriositäten nach den vier mittelalterlichen freien Künsten des Quadriviums aufgeführt und können sortiert und ausgewählt werden. In der ersten Spalte steht jeweils die entsprechende Bezeichnung des Kapitels oder Buchs (anklickbar).

Arithmetische Kuriositäten zu den vier freien Künsten des Quadriviums
Verweis Arithmetik Astronomie Geometrie Musik Bemerkungen
Zahlensymbolik X X X X Bedeutung von Zahlen in allen Disziplinen
Till Eulenspiegels lustige Serie X X X X Übertragung der arithmetisch-geometrischen Verteilung von Spektrallinien astronomischer Objekte auf Musik
Die Siebentagewoche X X X Eine besondere Zahl aus der geometrischen Beobachtung des Himmels
Astronomische Konjunktionen X X X Besondere zählbare Erkenntnisse bei der geometrischen Beobachtung des Himmels
Die vier Evangelistensymbole X X X Astronomische und geographische Bezüge zur Zahl Vier
Pythagoras in der Schmiede X X X Beobachtung von Zahlenverhältnissen und Abmessungen bei Klangerzeugern
Akustische Transmissionline X X X Funktion und Geometrie einer Schallröhre für die Wiedergabe von Klängen
Das Apfelmännchen X X Geometrische Darstellung von Zahlenfolgen
Stimmung von Musikinstrumenten X X Zahlenverhältnisse bei der Klangerzeugung
Tonsysteme X X Zahlenverhältnisse bei traditionellen Tonleitern

Siehe auch

Astronomie[Bearbeiten]

Der Mond steht täglich in einem bestimmten Mondhaus. Einmal im Monat durchwandelt er das Goldene Tor der Ekliptik zwischen dem V-förmigen Kopf des Sternbilds Stier (Taurus) links unten mit dem Roten Riesen Aldebaran (α Tauri) als Hauptstern (links) und dem offenen Sternhaufen der Plejaden (Siebengestirn) rechts. In der Momentaufnahme sind der zunehmende Mond halb links oben und der ebenfalls immer wieder (nur langsamer) durch das Goldene Tor der Ekliptik wandelnde rote Planet Mars oben in der Mitte in Konjunktion zu sehen.

Die Astronomie entspringt der unmittelbaren und alltäglichen Betrachtung des Himmels. Hierbei konnten mit bloßem Auge schon immer sieben Himmelskörper beobachtet werden, die sich entlang der Ekliptik in Bezug zum sich selber scheinbar ebenfalls bewegenden Fixsternhimmel um die Erde bewegen. Die sieben sich bewegenden Wandelgestirne hatten zu allen Zeiten und vermutlich in den meisten Völkern Eigennamen, und sie benennen noch heute unsere sieben Wochentage. Es handelt sich um die Sonne, den Mond und die fünf Planeten Merkur, Venus, Mars, Jupiter und Saturn. Der Name Ekliptik leitet sich von der lateinischen Bezeichnung linea ecliptica („Verdeckungslinie“) ab, die wiederum auf das altgriechische Wort ἐκλειπτική (ekleiptikē für „verdeckend“) zurückgeht. Alle sieben Wandelgestirne begegnen sich entlang der Ekliptiklinie bei Konjunktionen regelmäßig nach mehr oder weniger langen Zeitabschnitten. Hierbei kann es sogar zu Bedeckungen kommen, von denen Mond- und Sonnenfinsternisse besonders spektakulär sind.

Zur besseren Orientierung am Himmel und zur Wiedererkennung wurden auch besonders markante Sterne mit Namen versehen und benachbarte Sterne zu Sternkonstellationen oder Asterismen zusammengefasst und ebenfalls benannt. Die meisten dieser Bezeichnungen wurden im Altertum nur mündlich überliefert, aber auch heute finden wir in den Sternkatalogen immernoch viele alte Bezeichnungen, die auf die uralten arabischen, griechischen, chinesischen oder lateinischen Wurzeln zurückweisen.

Die Astronomie hat in der Geschichte der Menschheit wesentlich zur Ausbildung eines arithmetischen und geometrischen Vorstellungsvermögens beigetragen. Durch die systematische Beobachtung des Sternenhimmels über längere Zeitabschnitte konnten Kalendersysteme aufgestellt und bestimmte Konstellationen am Himmel vorhergesagt werden, die häufig auch mit irdischen Ereignissen in Verbindung gebracht wurden. Zwischen den der Astronomie (altgriechisch ἄστρον und νόμος, zu deutsch: „Sterngesetz“) und der Astrologie (altgriechisch ἄστρον und λόγος, zu deutsch "Sternlehre") wurde im Altertum und im Mittelalter und selbst noch während der Renaissance nicht unterschieden. Diese gemutmaßten Zusammenhänge wurden erst in der Neuzeit entmystifiziert. Ohne die Niederschriften von  Nikolaus Kopernikus (* 1493; † 1543) und ohne die präzisen geometrischen Beobachtungen von  Tycho Brahe (* 1546; † 1601) und  Johannes Kepler (* 1571; † 1630), die noch ohne Teleskope durchgeführt werden mussten, hätte Johannes Kepler die Keplerschen Gesetze nicht entdecken können. Und ohne die Kenntnis dieser Gesetze hätte  Isaac Newton (* 1643; † 1727) fünf Jahrzehnte später nicht das Gravitationsgesetz formulieren können.

Der als der erste Professor der Experimentalphysik im Zeitalter der Aufklärung sowie als Begründer des Aphorismus in Deutschland geltende  Georg Christoph Lichtenberg (* 1742; † 1799) hat einmal geschrieben, für wie beachtlich er die Astronomie in den Wissenschaften hält:

Die Astronomie ist vielleicht diejenige Wissenschaft, worin das wenigste durch den Zufall entdeckt worden ist, wo der menschliche Verstand in seiner ganzen Größe erscheint, und wo der Mensch am besten kennen lernen kann wie klein er ist.[4]

Heute kann der wegen der unzähligen künstlichen Lichtquellen stark verschmutzte Nachthimmel nur noch in Lichtschutzgebieten in seiner vollen Sternenpracht bewundert werden, so dass es zunehmend schwieriger wird, die Geschehnisse am Sternenhimmel über die eigene und regelmäßige Anschauung zu verinnerlichen.

In der folgenden Tabelle sind die astronomischen Kuriositäten nach den vier mittelalterlichen freien Künsten des Quadriviums aufgeführt und können sortiert und ausgewählt werden. In der ersten Spalte steht jeweils die entsprechende Bezeichnung des Kapitels oder Buchs (anklickbar).

Astronomische Kuriositäten zu den vier freien Künsten des Quadriviums
Verweis Arithmetik Astronomie Geometrie Musik Bemerkungen
Zahlensymbolik X X X X Bedeutung von Zahlen in allen Disziplinen
Till Eulenspiegels lustige Serie X X X X Übertragung der arithmetisch-geometrischen Verteilung von Spektrallinien astronomischer Objekte auf Musik
Die Siebentagewoche X X X "Eine besondere Zahl aus der geometrischen Beobachtung des Himmels
Astronomische Konjunktionen X X X Besondere zählbare Erkenntnisse bei der geometrischen Beobachtung des Himmels
Das Mirakelkreuz zu Elspe X X Geometrische Messungen an astronomischen Objekten
Die Himmelstafel von Tal-Qadi X X Astronomische Interpretation geometrisch angeordneter Symbole
Die vier Evangelistensymbole X X X Astronomische und geographische Bezüge zur Zahl Vier
Das Belchen-System X X Astronomische Interpretation der geographischen Anordnung von Bergen
Die Höhlenmalerei in der Magura-Höhle X X Interpretation geometrischer Darstellungen in Bezug auf Mythen
Der Stern von Bethlehem X X Besondere geometrische Beobachtungen in der Astronomie

Siehe auch

Geometrie[Bearbeiten]

Die geometrische Darstellung des Satzes von Pythagoras.

Die euklidische Geometrie beschäftigt sich mit Punkten und Linien sowie mit von Linien begrenzten Flächen in der Ebene und mit von ebenen Oberflächen begrenzten Körpern im Raum.

Zu den besonderen Körpern zählen die fünf platonischen Körper, deren ebene Oberflächen aus gleichgroßen und gleichseitigen Flächen gebildet werden:

Der Grieche  Euklid hat vermutlich im dritten vorchristlichen Jahrhundert gelebt und wurde möglicherweise an der Platonischen Akademie ausgebildet. Er verfasste mit seinem Werk Elemente ein äußerst wichtiges und nachhaltiges Lehrbuch, das nicht nur die Arithmetik und die mathematische Beweisführung auf dem damaligen Stand des Wissens weitgehend darstellt, sondern auch die Geometrie umfassend abhandelt.

In der Geometrie werden Winkel, Längen, Abstände sowie Flächen- und Volumeninhalte bestimmt. Ausgehend von den Betrachtungen der Winkel in rechtwinkligen Dreiecken wurde die Trigonometrie entwickelt. Der  Satz des Pythagoras ist ein fundamentaler Satz für die Seitenlängen rechtwinklige Dreiecke. Er dürfte an Bekanntheit kaum von einem anderen Satz in der Geometrie erreicht werden und hat im Übrigen enge Bezüge zum  Kepler-Dreieck und somit auch zum  Goldenen Schnitt:

Der erste Kartendruck des Abendlandes in der Etymologiae von Günther Zainer von 1472 mit der den Kontinenten Asien, Europa und Afrika. Die vier Himmelsrichtungen sind wie folgt angegeben: Oriens = Osten (oben), Meridies = Süden (rechts), Occidens = Westen (unten), Septentrio = Norden (links).

Zur Geometrie gehören nicht nur Aspekte der Winkel- und Richtungsmessung am Himmel, sondern auch auf der Erde. Daher sind bei dieser freien Kunst auch geographische Themengebiete eingeschlossen. Der deutsche Astronom  Johannes Kepler (* 1571; † 1630) hat in der Mitte seines Lebens in seiner lateinischsprachigen Abhandlung Über die zuverlässigeren Grundlagen der Astrologie festgestellt, für wie wesentlich die Geometrie in diesem Kontext hält:

Mihi Alteritas, in creatis nulla aliunde esse videtur, quam ex materiae, aut occasione materiae; at ubi materia, ibi Geometria.[5]

Ins Deutsche übersetzt:

Mir scheint es anders, in der Erschaffung kann nichts anderswoher gesehen werden, als aus der Materie, oder anlässlich der Materie; wo aber Materie ist, da ist Geometrie.

Zahllose Aufgaben der Geometrie beschäftigen sich mit der Konstruktion von geometrischen Objekten mit Hilfe eines Lineals und eines Zirkels. Viele Probleme hierzu wurden bereits in der Antike formuliert und auch gelöst. Es war allerdings bis in die Neuzeit nicht geklärt, dass es zum Beispiel keine allgemeinen geometrischen Lösungen für die Dreiteilung eines Winkels (Winkeltrisektion), die Quadratur des Kreises oder die Verdopplung des Würfelvolumens gibt.

Die Strahlenoptik basiert auf der geometrischen Untersuchung und Beschreibung von Lichtstrahlen. Dies führte unmittelbar zum Reflexionsgesetz und letztlich auch zum Brechungsgesetz. Abweichungen der Lichtstrahlen von der strengen Geometrie optischer Strahlengänge führten zur Wellenoptik und damit zur Entdeckung der elektromagnetischen Strahlung.

Komplizierter als in der euklidischen Geometrie wird es beispielsweise in der sphärischen Geometrie, bei der die Geometrie auf der Kugel untersucht und beschrieben wird. Die Linien und Flächen sind hierbei gekrümmt und liegen also nicht in einer Ebene. Ähnlich wie bei der Arithmetik wurde auch die elementare Geometrie zu Disziplinen wie zum Beispiel der algebraischen, der algorithmischen oder der diskreten Geometrie sowie der Differentialgeometrie weiterentwickelt.

In der folgenden Tabelle sind die geometrischen Kuriositäten nach den vier mittelalterlichen freien Künsten des Quadriviums aufgeführt und können sortiert und ausgewählt werden. In der ersten Spalte steht jeweils die entsprechende Bezeichnung des Kapitels oder Buchs (anklickbar).

Geometrische Kuriositäten zu den vier freien Künsten des Quadriviums
Verweis Arithmetik Astronomie Geometrie Musik Bemerkungen
Zahlensymbolik X X X X Bedeutung von Zahlen in allen Disziplinen
Till Eulenspiegels lustige Serie X X X X Übertragung der arithmetisch-geometrischen Verteilung von Spektrallinien astronomischer Objekte auf Musik
Die Siebentagewoche X X X Eine besondere Zahl aus der geometrischen Beobachtung des Himmels
Astronomische Konjunktionen X X X Besondere zählbare Erkenntnisse bei der geometrischen Beobachtung des Himmels
Pythagoras in der Schmiede X X X Beobachtung von Zahlenverhältnissen und Abmessungen bei Klangerzeugern
Akustische Transmissionline X X X Funktion und Geometrie einer Schallröhre für die Wiedergabe von Klängen
Das Apfelmännchen X X Geometrische Darstellung von Zahlenfolgen
Das Mirakelkreuz zu Elspe X X Geometrische Messungen an astronomischen Objekten
Die Höhlenmalerei in der Magura-Höhle X X Interpretation geometrischer Darstellungen in Bezug auf Mythen
Die Himmelstafel von Tal-Qadi X X Astronomische Interpretation geometrisch angeordneter Symbole
Die vier Evangelistensymbole X X X Astronomische und geographische Bezüge zur Zahl Vier
Das Belchen-System X X Astronomische Interpretation der geographischen Anordnung von Bergen
Der Stern von Bethlehem X X Besondere geometrische Beobachtungen in der Astronomie
Hybridlied X X Übertragung geometrischer Verhältnisse auf Klänge

Siehe auch

Musik[Bearbeiten]

Eine Darstellung der Guidonischen Hand aus dem 13. Jahrhundert als geometrisches Hilfsmittel zur Orientierung im mittelalterlichen Tonsystem.

Hier geht es nicht um das musikalische Praktizieren, sondern um Musiktheorie. Der mittelalterliche Benediktinermönch  Guido von Arezzo (* um 992; † 1050), der Verfasser des um 1025 entstandenen Micrologus Guidonis de disciplina artis musicae, hat diesen Unterschied in einem lateinischsprachigen, scherzhaften Reim einmal folgendermaßen auf den Punkt gebracht:[6]

Musicorum et cantorum magna est distantia.
Isti dicunt, illi sciunt, quae componit musica.
Nam qui facit, quod non sapit, diffinitur bestia.
Caeterum tonantis vocis si laudent acumina,
Superabit philomelam vel vocalis asina.

Frei ins Deutsche übertragen:

Zwischen Musikern und Sängern ist ein großer Unterschied.
Letztere tun kund, erstere wissen, was die Musik zusammensetzt.
Wer nämlich macht, was er nicht weiß, wird abgegrenzt als wildes Tier.
Im Übrigen wird die donnernde Stimme, wenn sie die scharfen Sinne loben,
genauso wie eine stimmvolle Eselin eine Nachtigall übertreffen.

Dass konsonante Klänge mit ganzzahligen – also arithmetisch beschreibbaren – Verhältnissen bei Schwingungen im Zusammenhang stehen, und dass solche Konsonanzen akustisch als harmonisch wahrgenommen und empfunden werden, war bereits in der Antike bekannt. Die auf der Arithmetik ganzer Zahlen beruhende Naturtonreihe konnte schon immer durch die Erhöhung des Drucks (Überblasen) an der Anblaskante (Labium) auf Knochenflöten, durch die Erhöhung der Lippenspannung am Trichtermundstück auf Widderhörnern oder durch die Berührung mit einem Finger an den Schwingungsknoten einer Saite (Flageoletttöne) auf Leiern erzeugt werden. Der in sechster Generation von Adam und Eva abstammende  Jubal gilt als Urvater aller Leier- und Flötenspieler.[7] In Psalm 82 wird im vierten Vers darauf aufmerksam gemacht, dass im Altertum bei astronomischen Ereignissen regelmäßig ins Widderhorn zu stoßen sei:[8]

Stoßt am Neumond ins Widderhorn, am Vollmond, zum Tag unsres Festes!

Bis ins Mittelalter wurde in Chören der Regel einstimmig gesungen. Hierbei konnten tiefe und hohe Stimmen unisono im Oktavabstand erklingen, ab dem 9. Jahrhundert wurden beim Quint- und dem Quartorganum dann auch Quinten und Quarten als Intervalle für die parallele Stimmführung gewählt. Die frühen Vertreter der Notre-Dame-Schule in Paris komponierten in der zweiten Hälfte des 12. Jahrhunderts dann sogar komplexere vierstimmige Organa, die ein einheitliches Tempo und ein Metrum voraussetzen, damit alle Stimmen immer zu den richtigen Zählzeiten erklingen können.

Der große deutsche Universalgelehrte  Gottfried Wilhelm Leibniz (* 1646; † 1716) hat im Alter die Bezüge zwischen Arithmetik und Musik sehr poetisch ausgedrückt:

Musica est exercitium arithmeticae occultum nescientis se numerare animae.[9]

Ins Deutsche übertragen:

Musik ist die verborgene arithmetische Übung der nicht verstehenden Seele, dass sie zählt.

In der folgenden Tabelle sind die musikalischen Kuriositäten nach den vier mittelalterlichen freien Künsten des Quadriviums aufgeführt und können sortiert und ausgewählt werden. In der ersten Spalte steht jeweils die entsprechende Bezeichnung des Kapitels oder Buchs (anklickbar).

Musikalische Kuriositäten zu den vier freien Künsten des Quadriviums
Verweis Arithmetik Astronomie Geometrie Musik Bemerkungen
Zahlensymbolik X X X X Bedeutung von Zahlen in allen Disziplinen
Till Eulenspiegels lustige Serie X X X X Übertragung der arithmetisch-geometrischen Verteilung von Spektrallinien astronomischer Objekte auf Musik
Pythagoras in der Schmiede X X X Beobachtung von Zahlenverhältnissen und Abmessungen bei Klangerzeugern
Akustische Transmissionline X X X Funktion und Geometrie einer Schallröhre für die Wiedergabe von Klängen
Stimmung von Musikinstrumenten X X Zahlenverhältnisse bei der Klangerzeugung
Tonsysteme X X Zahlenverhältnisse bei traditionellen Tonleitern
Hybridlied X X Übertragung geometrischer Verhältnisse auf Klänge

Siehe auch

Das Trivium[Bearbeiten]

Zur Vervollständigung werden in der folgenden Tabelle auch noch die drei freien Künste des Triviums aufgeführt:

Die drei mittelalterlichen freien Künste des Triviums
Name Lateinische
Bezeichnung
Thema Tätigkeit
Dialektik Dialectica Diskurs Argumentieren
Grammatik Grammatica Textform Formulieren
Rhetorik Rhetorica Redekunst Überzeugen

Die Grammatik wird in Buch 1 und die Dialektik sowie die Rhetorik werden in Buch 2 der oben genannten Enzyklopädie Etymologiae von Isidor von Sevilla behandelt.

Siehe auch

Einzelnachweise[Bearbeiten]

  1. Peter Dabrock: Wir sollten auf klassische Bildung setzen. In: Aufbruch Künstliche Intelligenz – Was sie bedeutet und wie sie unser Leben verändert, Google LLC, SZ Scala GmbH, 2018, Seite 34
  2. Ausstattung des Tempels, Vers 23, 7. Kapitel, Erstes Buch der Könige, Einheitsübersetzung 2016
  3. Wolfgang Sartorius von Waltershausen: Gauss zum Gedächtniss, Seite 79, Verlag Salomon Hirzel, Leipzig, 1856
  4. Georg Christoph Lichtenberg: Sudelbuch C, Seite 56, Göttingen, 1772-1773
  5. Johannes Kepler: De fundamentis astrologiae certioribus, Thesis XX, 1602
  6. Guido (d'Arezzo.): Micrologus Guidonis de disciplina Artis Musicae. Commissionsverlag J. B. Grach (Micrologus Guidonis de disciplina Artis, in: Michael Hermesdorff: Micrologus Guidonis de disciplina artis musicae: d. i. Kurze Abhandlung Guido's über die Regeln der musikalischen Kunst).
  7. Genesis, 4. Kapitel, Vers 21, bibleserver.com, Einheitsübersetzung, 2016
  8. Psalm 82, Vers 4, bibleserver.com, Einheitsübersetzung, 2016
  9. Gottfried Wilhelm Leibniz: „Brief an Christian Goldbach“, 27. April 1712

Zusammenfassung des Projekts[Bearbeiten]

Dieses Projekt wird hoffentlich nie fertig.

  • Zielgruppe: Interessierte und Wissbegierige
  • Lernziele: Erkennen fachübergreifender Aspekte in der Arithmetik, Astronomie, Geometrie und Musik
  • Buchpatenschaft/Ansprechperson: Benutzer:Bautsch
  • Sind Co-Autoren gegenwärtig erwünscht? Ja, sehr gerne. Korrekturen von offensichtlichen Fehlern und Ergänzungen direkt im Text; Inhaltliches bitte per Diskussion.
  • Richtlinien für Co-Autoren: Wikimedia-like.