Tangens und Kotangens – Serlo „Mathe für Nicht-Freaks“
- ↳ Projekt „Mathe für Nicht-Freaks“
- ↳ Analysis 1
Inhalte „Analysis 1“
- Was ist Analysis?
- Was sind reelle Zahlen?
- Körperaxiome
- Anordnungsaxiome
- Vollständigkeit reeller Zahlen
- Die komplexen Zahlen
- Supremum und Infimum
- Wurzel reeller Zahlen
- Folgen
- Konvergenz und Divergenz
- Teilfolgen, Häufungspunkte und Cauchy-Folgen
- Reihen
- Konvergenzkriterien für Reihen
- Potenzreihen
- Exponential- und Logarithmusfunktion
- Trigonometrische und Hyperbolische Funktionen
- Stetigkeit
- Ableitung
- Integrale
Wir entwickeln neue, interaktive Formate für die Hochschulmathematik. Nimm dir maximal 15 Minuten Zeit, um an unserer Umfrage teilzunehmen.
Mit deinem Feedback machen wir die Mathematik für dich und andere Studierende leichter zugänglich!
Definition
[Bearbeiten]Definition (Tangens)
Die Tangensfunktion ist definiert über
Definition (Kotangens)
Die Kotangensfunktion ist definiert über
Den Bereich zur Analysis 1 gibt es jetzt auch als Buch! Bestelle dir dein Exemplar oder lade dir das Buch gleich kostenlos als PDF herunter:
Fragen? Feedback? Interesse an der Mitarbeit?
Wenn du Fragen zum Inhalt hast oder etwas nicht verstanden hast, kontaktiere uns. Wir werden dir deine Fragen gerne beantworten! Auch für Kritik und Anmerkungen sind wir sehr dankbar! Unsere Artikel sind gewissenhaft recherchiert, aber vereinzelte Fehler können nicht ausgeschlossen werden und wir sind sehr dankbar für alle Hinweise. Melde dich auch bei uns, wenn du unsere Vision, Hochschulmathematik verständlich zu erklären, unterstützen möchtest! Unsere Kontaktmöglichkeiten:
Hinweis: Telegram ist ein externer Chatdienst, der nicht von Serlo oder der Wikimedia betrieben wird. Bitte informiere dich selbstständig, ob du mit ihren Datenschutzbestimmungen einverstanden bist.
Dieser Artikel steht unter einer freien CC-BY-SA 3.0 Lizenz. Damit kannst du ihn frei verwenden, bearbeiten und weiterverbreiten, solange du „Mathe für Nicht-Freaks“ als Quelle nennst und deine Änderungen am Text unter derselben CC-BY-SA 3.0 oder einer dazu kompatiblen Lizenz stellst. Auf der Seite „Kopier uns!“ erklären wir dir detailliert, was du bei der Benutzung unsere Texte, Bilder und Videos beachten musst.