MIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGSVIDEOS!
Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
LINKS
Theorie in Kürze (mit Geogebra)
N(t) ist die y-Achse (das y), t die x-Achse (das x). ist der "Anfangswert", also der Wert der Funktion (y-Wert) da, wo x Null ist (y-Achsenabschnitt). Die Basis der Potenzzahl (das ist ein "Änderungsfaktor") kann man auch als "Prozentsatz" interpretieren, z.B. bedeutet, dass bei jeder Änderung der x-Achse (z.B. t Zeit in Jahren) um 1 (z.B. jährlich) bleiben (0,964=) 96,4% des vorherigen Wertes, also 3,6% (100%−96,4%) weniger.
Extra Merkmal der Exponentialfunktion: Halbwertszeit: Nach der gleichen Änderung des x-Wertes wird der Wert der Funktion (y-Wert) immer halbiert. Im Bild: Am Anfang (also an der Stelle 0) ist der Wert der Funktion , nach 3,5 auf der x-Achse (also an der Stelle 3,5) ist N(t) =N(3,5)=4000 (also die Hälfte), nach noch 3,5 auf der x-Achse (also an der Stelle 7) ist N(t) 2000 (also die Hälfte der Hälfte) usw. Die Halbwertszeit kann man berechnen, indem man am Wert Funktion die Hälfte des Anfangswerts einsetzt, z.B. (2350 ist die Hälfte von 4700) oder (hier "fehlt" der Anfangswert, er ist also 1, und die Hälfte von 1 ist ja 0,5). Entsprechend für eine "Verdoppelungszeit" oder ähnliches: , usw.
Noch dazu: die Exponentialfunktion hat keine "Nullstellen": sie kommt immer näher zur x-Achse aber trifft diese nie!
SPENDEN
Der Hauptautor ggf. das Team verdient zwar nicht viel, braucht allerdings dein Geld eigentlich nicht. Wenn du aber doch meinst, dass gute Arbeit belohnt werden soll und dieses Projekt gut findest, kannst du immer in diesem Link spenden. Das ist allerdings vielleicht die einzige Einrichtung mit völliger Transparenz, wo du genau weißt, was mit deinem Geld passiert.