Zum Inhalt springen

Normalverteilung

Aus Wikibooks
Zur Zeit nur Beispiele der BRP Prüfungen!
BRPZur Kurz und Leicht Seite!(Stoffaufbau)PRÜFUNGSTERMINEZur Seite mit dem ganzen Stoff als Aufgabensammlung WH-
Kurzanleitung
Du entscheidest bei jedem Thema, ob du erst ein Video sehen oder die Theorie lesen oder doch die Aufgaben direkt ausprobieren willst.
Klickst du auf dieses Bild, findest du eine Aufgabensammlung zum entsprechenden Thema
Klickst du auf dieses Bild, findest du externe Links zu entsprechenden Projekten und Videos im Internet
Klickst du auf dieses Bild oder , findest du ein entsprechendes Theorie-Video[1]
Klickst du auf dieses Bild, findest du ein entsprechendes Video mit gelösten Aufgaben[1]
Klickst du auf dieses Bild oder , findest du das entsprechende Theorie-Teil
Klickst du auf dieses Bild, findest du entsprechende Beispiele aus offiziellen Prüfungen!
Klickst du auf dieses Bild, kannst du in der entsprechende Seite deine Frage stellen!
  1. 1,0 1,1 Dieses Bild bedeutet allerdings, dass kein solches Projekt-Video zur Zeit vorhanden ist
Probetests

Probetests
•[ Himmel]-Lösung

Maturas Nach ThemaWH
Alle Maturas mit Lösungen

DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH UND
VERSTÄNDLICH
GRATIS!*
MIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGS VIDEOS!
Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
LINKS
Zur AufgabensammlungWeitere Links und VideosZur Bucherklärung im Zentralteil
Theorie in Kürze (mit Geogebra)


  • μ oder E(x)→ Erwartungswert (Durchschnitt, „wie viel ist im Mittel erwartet“, arithmetisches Mittel)
  • σ→ Standardabweichung

Merkmale:
Verteilung einer Eigenschaft, die unendlich viele Werte annehmen kann (z.B. Gewicht, Länge, Zeit usw.)

μ oder E(x) (Erwartungswert) ist der Wert auf der x-Achse genau in der „Mitte“ („Spitze“) des Diagramms.
Wenn f´´=0 oder das Wort „Wendepunkt“ an einem Punkt steht, dass ist der x-Wert 1 mal die Standardabweichung σ mehr als der Erwartungswert μ (rechts von μ, μ+σ) bzw. 1 mal weniger (links von μ, μ−σ).

In Geogebra kann man μ und σ eingeben!

Bei größerem μ verschiebt sich das Diagramm nach rechts, bei kleinerem nach links
Bei anderem σ wird das Diagramm „spitzer“ (kleineres σ) bzw. „flächer“ (größeres σ)
Beispiel, wenn sich σ und μ ändern

Man kann Grenzwerte a und b angeben:
P( a ≤ X ≤ b) = 0,...

Man kann auch eine von drei „Klammermöglichkeiten“ wählen: ] [] [

Aufpassen, welcher Bereich dann im Diagramm markiert ist!:

Mit der Klammer links: ] → P( X ≤ a) = p
hab ich eine Obergrenze a mit der Wahrscheinlichkeit p
(linker Bereich markiert, egal ob groß oder klein)

Mit der Klammer rechts: span style="border:solid 2px;padding:2px">[ → P( b ≤ X ) = p
hab ich eine Untergrenze b mit der Wahrscheinlichkeit p
(rechter Bereich markiert, egal ob groß oder klein)

P( a ≤ X ≤ b) = 0,...
Nach dem „=“ steht die Wahrscheinlichkeit, also eine Zahl zwischen 0 und 1 (Prozent: zwei mal Komma veschieben). Das ist die Wahrscheinlichkeit, dass das Merkmal sich zwischen den zwei Grenzwerten a und b (x-Werte) steht (oder unterhalb oder oberhalb der Grenze bei den Klammer ] bzw. [ → achte auf den markierten Bereich!)

Mit [] kann man nicht den Prozentsatz p (mit Komma verschoben) eingeben, dafür braucht man entweder die Klammer [ oder die ]

Wenn ein symmetrisches Bereich in Frage kommt: Prozentsatz aus 100% subtrahieren und der Rest in zwei teilen. Die Grenzwerte für das Ergebnis mit den Klammern ] bzw. [ finden.
BEISPIEL
68,3% symmetrisches Interval:
100%-68,3%= 31,7%
31,7%:2=15,85%
linke Klammer ] wählen, p=0.1585 angeben und unteren Grenzwert markieren
rechte Klammer [ wählen, p=0.1585 angeben und oberen Grenzwert markieren
Somit haben wir die beiden Grenzwerte.

Die Wahrscheinlichkeit kann auch durch ein Bruch angegeben sein!

FARBINDEX
Grün: Diese Aufgaben sollst du unbedingt lernen
Lila: Diese Aufgaben sind mittlerer Schwierigkeit, lieber lernen
Rot: Diese Aufgaben sind schwieriger
Grün-Gelb: Diese Aufgaben sind ähnlich wie vorherigen grüne
Rot-gelb (Orange): Diese Aufgaben sind ähnlich wie vorherigen rote
Grau: Diese Aufgaben sind noch unsortiert

 Mai 2015 1D S.4  (hier klicken!)
Lösung

 Sep 2015 8Ci S.15  (hier klicken!)
Lösung

 Sep 2015 8Cii S.15  (hier klicken!)
Lösung

 Mai 2016 2A S.5  (hier klicken!)
Lösung

 Mai 2016 5C S.9  (hier klicken!)
Lösung

 Sep 2016 3D S.7  (hier klicken!)
Lösung

 Jan 2017 1B S.4  (hier klicken!)
Lösung

 Mai 2017 6D S.17  (hier klicken!)
Lösung

 Sep 2017 3B S.8  (hier klicken!)
Lösung

 Sep 2017 3C S.8  (hier klicken!)
Lösung

 Jan 2018 1A S.5  (hier klicken!)
Lösung

 Mai 2018 4C S.13  (hier klicken!)
Lösung

 Sep 2018 7B S.16  (hier klicken!)
Lösung

 Jan 2019 6C S.10  (hier klicken!)
Lösung

 Mai 2019 2B S.5  (hier klicken!)
Lösung



BILDERVERZEICHNIS
ÖFFNE DEIN HORIZONT!
LERNE MIT MATHEMATRIX!
Seite mit Anleitungen zur Anwendung von MathematrixProblemmeldung

LOGO CH DE AT
SPENDEN
Der Hauptautor ggf. das Team verdient zwar nicht viel, braucht allerdings dein Geld eigentlich nicht. Wenn du aber doch meinst, dass gute Arbeit belohnt werden soll und dieses Projekt gut findest, kannst du immer in diesem Link spenden. Das ist allerdings vielleicht die einzige Einrichtung mit völliger Transparenz, wo du genau weißt, was mit deinem Geld passiert.