|
Stellen wir die Wahrheitstabelle auf:
|
Wahrheitstabelle
|
C |
Q |
Kommentar
|
0 |
0 |
Annahme
|
/ |
1 |
|
\ |
1 |
|
/ |
0 |
|
\ |
0 |
wieder in der Ausgangssituation
|
|
/ (slash) steht für die Positive Taktflanke
\ (back slash) für die Negative Taktflanke
|
|
Die negativen Taktflanken können entfallen, da das Flipflop nur auf positive Taktflanken regiert.
|
Wahrheitstabelle
|
C |
Q |
Kommentar
|
0 |
0 |
Annahme
|
/ |
1 |
|
/ |
0 |
|
|
Was auch entfallen kann, ist die Annahme für den Start:
|
Wahrheitstabelle
|
C |
Q |
Kommentar
|
/ |
1 |
|
/ |
0 |
|
|
Die Wahrheitstabelle lässt sich noch weiter vereinfachen.
Dazu führen wir eine Spalte Qn ein. Diese Spalte gibt den letzten Zustand des Flipflops an.
|
Wahrheitstabelle
|
C |
Qn |
Q
|
/ |
0 |
1
|
/ |
1 |
0
|
|
Betrachten wir die Abhängigkeit von Qn zu Q:
Qn ist immer das Gegenteil von Q. Wir können also sagen:
|
|
Oder kurz: Bei jeder Taktflanke ändert sich das Ausgangssignal
|
Wenn wir jetzt nochmal das Schema betrachten, lässt sich das auch schon darin erkennen.
|
|
Rein der Form wegen fügen wir diese Gleichung wieder in die Tabelle ein:
|
Wahrheitstabelle
|
C |
Q
|
/ |
|
|
Die Wahrheitstabelle ist zwar jetzt aufs Minimum gekürzt, aber zugebenermaßen nicht einfacher interpretierbar.
|