Zum Inhalt springen

MathemaTriX ⋅ Theorie. Klasse 3

Aus Wikibooks

DEINE FESTE BEGLEITERIN
FÜR DIE SCHULMATHEMATIK
EINFACH UND
VERSTÄNDLICH
GRATIS!*
MIT MEHR ALS 200 THEORIE- UND AUFGABEN-ERKLÄRUNGS VIDEOS!
Mathe lernen ist wie Fahrradfahren lernen: Du kannst es dir stundenlang erklären lassen, du wirst nie fahren können, wenn du nicht selber zu fahren probierst.
Inhalt
Ein-Aus-
klappen
AUFGABEN

Hinweis[Bearbeiten]

Hier ist zur Zeit nur eine grobe Struktur. Die schon vorhandenen entsprechenden Kaitel sind für erwachsene Personen gedacht. Für diese Klasse hier sollten erst Kapitel in einer Zentralseite entstehen, die der Altersgruppe entsprechen. Für diese Klasse sollte hier ein Kapitel mit natürlichen Zahlen entstehen (Ohne Dezimalzahlen)

Arbeiten mit Zahlen und Maßen[Bearbeiten]

Stoffbeschreibung[Bearbeiten]

  • Arbeiten mit Zahlen und Maßen: Klasse 2
  • rationale Zahlen in verschiedenen Formen deuten können,
  • als Zustände gegenüber einem Nullpunkt,
  • als Punkte auf einer Zahlengeraden,
  • Erkennen und Beschreiben von Kleiner-Größer-Beziehungen;
  • rationale Zahlen für Darstellungen in Koordinatensystemen verwenden können;
  • die Regeln für das Rechnen mit rationalen Zahlen wissen und bei Rechenbeispielen (mit einfachen Zahlen) mit Sicherheit anwenden können;
  • Verketten der vier Grundrechnungsarten und derart entstehende Terme auch mit elektronischen Rechenhilfsmitteln berechnen können,
  • Sicherheit im Kopfrechnen gewinnen;
  • Potenzschreibweise kennen und anwenden können,
  • Zahlen, vor allem in Sachsituationen, unter Verwendung von Zehnerpotenzen darstellen können.

Prozentrechnung[Bearbeiten]

Umkehraufgaben der Prozentrechnung[Bearbeiten]

  • Man hat in seinem Haus ein neues Zimmer aufgebaut. Die Fläche des Hauses ist dadurch um 15% auf 112,7m² gewachsen. Berechnen Sie die ursprüngliche Fläche!

Der Wert am Anfang (das „Ganze“) ist immer 100%. Hier wissen wir nicht, wie groß das Haus am Anfang war, das ist doch gefragt! Das gefragte schreibt man in Mathematik mit x. 100% ist also x. Das Haus ist um 15% gewachsen, also die Fläche am Ende (112,7m²) ist 100%+15%=115%. Daher sind 112,7m² 115%.

Schreiben wir diese Information auf, wie wir das gelernt haben:

      .


  • Ein Tisch wurde um 10% geschnitten. Die neue Länge ist 2,7m. Berechnen Sie die ursprüngliche Länge!

Der Wert am Anfang (das „Ganze“) ist immer 100%. Er ist aber nicht gegeben. Daher ist x 100%. Der Tisch wurde um 10% geschnitten, war am Anfang 100%, daher bleibt noch 100%-10%=90%. 2,7m (der Wert am Ende) sind daher 90%. Schreiben wir das Ganze auf:

      .

Erklärung der Prozent und Schlussrechnung[Bearbeiten]

Wie schon betont, bedeutet "ein Prozent" das gleiche wie ein Hundertstel. Ein Hundertstel ist ein Bruch.Für die Erklärung der Prozentrechnung kann man daher die Bruchrechnung benutzen, genauer gesagt das Erweitern von Brüchen.

Wenn wir wissen wollen, wie viel Prozent von 5kg 3kg sind, können wir mit der Darstellung von 5kg anfangen:

Drei kg kann man dann als Bruchteil von diesen 5kg darstellen, wie im folgenden Bild:

Wenn jemand das Ganze senkrecht auf 20 teilt, ist jeder kleiner Teil ein Hundertstel. Im Bild kann man schon sehen, dass die drei fünftel solche kleine Teile sind, also 60 Hundertstel, also 60%:

Wenn wir jetzt mit Brüchen arbeiten, können wir durch die Bilder leicht verstehen, dass wir den Bruch mit der Zahl 20 erweitert haben:

Wie sind wir auf die Zahl 20 gekommen? Wir haben einfach 100 durch 5 dividiert, also durch die Zahl, die den Wert des Ganzen darstellt. Wieso ist 5 das Ganze? Wir haben schon in den Definitionen gesagt, dass das Ganze nach dem Wort "von" steht, also hier die 5 kg. So wie wir die Prozentrechnung gelernt haben, bedeutet das, dass man mit der Zahl quer gegenüber multiplizieren muss und durch die andere Zahl dividieren:

         

3 kg sind daher 60% (also 60 Hundertstel) von 5 kg.

Schauen wir jetzt ein Beispiel mit Zahlen, die nicht so "rund" sind:

Wie viel Prozent von 17 Äpfel sind 230 Äpfel?

Hier ist das Ganze die 17 Äpfel, also was nach dem Wort "von" (also in Genitiv) steht. Welcher Anteil von 17 Äpfel sind 230 Äpfel?

Diesen Bruch müssen wir so erweitern, damit im Nenner am Ende 100 steht:

Der Nenner hier wird tatsächlich 100 sein (es gilt: ). Somit haben wir:

da hundertstel genau Prozent bedeutet.

Wir haben in diesem Fall tatsächlich die Prozentrechnung mit Hilfe der Schlussrechnung durchgeführt, so wie wir das gelernt haben:

        

230 Äpfel sind daher ca. 1352,94% von 17 Äpfel.


Was ist, wenn man 17% von 35 Stunden berechnen will?

17% bedeutet 17 Hundertstel. Wir müssen 35 Mal die 17 Hundertstel nehmen. Anders gesagt teilen wir die 35 Stunden in Hundert Teile und nehmen 17 davon:

17% von 35 Stunden sind daher 5,95 Stunden.

Das ist wieder genauso, wie wir den Prozess mit Schlussrechnung gelernt haben:

        

Ähnlich denkt man bei der Schlussrechnung (genauer: bei der direkten Proportionalität). Nehmen wir folgendes Beispiel:

3,5 Liter eines Stoffes wiegen 14,7 kg.

a) Wie viel wiegen 175 Liter?
b) Wie viel Liter sind 3850kg?

Für die erste Frage denkt man erst, wie viel ein Liter wiegt. Man soll also 14,7 kg durch 3,5 dividieren, um zu finden, wie viel jedes Liter wiegt. Das ist als ob man eine Schokolade hätte und wissen wollte, wie viel jedes Teil wiegt.

4,2 kg wiegt jedes Liter des Stoffes.

175 Liter wiegen dann 735 kg:

Als Schlussrechnung:

        



In der zweiten Frage muss man erst finden, wie viel Volumen ein kg hat:

Ca. 0,238 Liter ist jedes kg des Stoffes.

Das Volumen von 3850 kg ist dann ca. 917 Liter:


Nochmal als Schlussrechnung:

        



Bei der indirekten Prportionalität muss man ein bisschen anderes denken:

  • 3 Arbeiter brauchen 15 Stunden, um ein Haus mit Fliesen zu verlegen. Wie viel Zeit brauchen dann 5 Arbeiter?

1 Arbeiter würde in diesem Fall mehr Zeit brauchen. Es gibt für einen Arbeiter viel mehr Boden zu verlegen, wenn er alleine arbeitet. Also weniger Arbeiter brauchen mehr Zeit. Wie wir schon im entsprechenden Kapitel erklärt haben, ist das keine direkte sondern eine indirekte Proportionalität. Man muss in diesem Fall herausfinden, wie viel Zeit ein Arbeiter braucht. Ein Arbeiter wird die Arbeit von allen anderen erledigen müssen und jede der 3 Arbeiter braucht 15 Stunden. Einer Arbeiter braucht daher 45 Stunden:

Wenn jetzt diese Arbeit auf 5 Arbeiter aufgeteilt wird, wird jeder ein fünftel der Arbeit erledigen müssen. Wenn alle zusammen arbeiten, dann wird die Arbeit 9 Stunden dauern:

In diesem Fall muss man also direkt gegenüber multiplizieren, wie wir das gelernt haben:

      

Kombinationsaufgaben der Prozentrechnung[Bearbeiten]

  • Die Produzenten eines Filmes hatten vor dem Schnitt 5 Stunden Material. Beim ersten Schnitt haben Sie 70% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 20% länger (als der geschnittene Film) Version gemacht. Berechnen Sie die Dauer der letzten Version!

Der Wert ganz am Anfang (100%) ist hier gegeben (5 Stunden). Das wurde um 70% geschnitten, es bleiben also 100-70=30%. Schreiben wir diese Information auf:

        Stunden.

Der Film war dann den Produzenten doch zu kurz. Diesen geschnittenen Film (also die 1,5 Stunden) haben sie dann um 20% verlängern. Diese 1,5 Stunden sind daher der neue Anfangswert, also 100%! Der Wert am Ende ist daher 100+20=120% von 1,5 Stunden (vom geschnittenen Film):

        Stunden.

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
*Die Produzenten eines Filmes hatten vor dem Schnitt zu viel Material. Beim ersten Schnitt haben Sie 80% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 15% längere (als der geschnittene Film) Version gemacht. Die letzte Version dauert 1,61 Stunden. Berechnen Sie die ursprüngliche Dauer, also die Dauer des ungeschnittenen Films!

Das hier ist eine Kombination von zwei Umkehraufgaben. Die letzte Version dauert 1,61 Stunden. Sie ist um 15% länger als die erste geschnittene Version. In diesem Fall haben wir am Anfang die geschnittene Version, diese ist also 100% und wurde um 15% auf 1,61 Stunden verlängert. 1,61 Stunden sind daher 115%, der Wert am Anfang (100%) ist noch unbekannt:

        Stunden.

Der Schnitt ist 1,4 Stunden nachdem er geschnitten wurde. Die Dauer am Anfang (100%), vor dem Schnitt, ist noch unbekannt. 80% wurden geschnitten, also 100-80=20% sind nach dem Schnitt geblieben. Nach dem Schnitt (80%) war der Film 1,4 Stunden:

        Stunden.

Das Filmmaterial am Anfang (die ursprüngliche Dauer) war daher 7 Stunden!

Prozentrechnung für Fortgeschrittene[Bearbeiten]

Es gibt einen viel schnelleren Weg um Aufgaben mit Prozentrechnung zu lösen. Nehmen wir die zwei Aufgaben aus dem letzten Kapitel.

  • Die Produzenten eines Filmes hatten vor dem Schnitt 5 Stunden Material. Beim ersten Schnitt haben Sie 70% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 20% längere (als der geschnittene Film) Version gemacht. Berechnen Sie die Dauer der letzten Version!

Die Dauer nach dem Schnitt ist 100%-70%=30%. Wie am Anfang des Kapitels über Prozentrechnung erwähnt, 30% ist 0,3 ().

Wenn der Anfangswert gegeben ist, muss man mit dem Prozentsatz (als Zahl, also nicht 30, was %, also Hundertstel, ist, sondern 0,3) multiplizieren:

5·0,3=1,5 (Stunden).

Den nächsten Schritt kann man genauso machen. Nach 20% Erhöhung (aufpassen: des geschnittenen Films) haben wir .

1,5·1,2=1,8 (Stunden).

Das ganze kann man sogar in einem Schritt berechnen:

5·0,3·1,2=1,8 (Stunden).


Betrachten wir noch einmal den ersten Schritt. Wir wollen wissen, wie viele Stunden 30% von 5 Stunden sind. 30% bedeutet . Man soll daher die 5 Stunden in 100 teilen und 30 Teile davon nehmen:

(Stunden)

Der Anfangswert (Grundwert) wird daher mit 0,3 multipliziert.

Das kann man auch feststellen, wenn man die Schlussrechnung wie bisher gelernt durchführt:

      .


Aber 1,5 in der letzten Rechnung ist so viel wie 5·0,3, wie man in der ersten Rechnung sehen kann. Daher kann man in der letzten Berechnung schreiben:

Die Schlussrechnungen können durch eine einfache und schnelle Multiplikation ersetzt werden!


In der Umkehraufgabe soll man die Gegenrechnung der Multiplikation benutzen, also die Division.

  • Die Produzenten eines Filmes hatten vor dem Schnitt zu viel Material. Beim ersten Schnitt haben Sie 80% geschnitten. Das war ihnen aber doch zu kurz, daher haben sie eine neue um 15% längere (als der geschnittene Film) Version gemacht. Die letzte Version dauert 1,61 Stunden. Berechnen Sie die ursprüngliche Dauer, also die Dauer des ungeschnittenen Films!

1,61:1,15:0,2=7 (Stunden)

Schon fertig!

Man kann auch so denken:

x⋅0,2⋅1,15=1,61         |:1,15:0,2

x=1,61:1,15:0,2=7 (Stunden)

Wenn der Wert am Ende (der Prozentanteil) gegeben ist, muss man durch den Prozentsatz (als Zahl) dividieren.

Bruchrechnungen[Bearbeiten]

Bruchrechnungen und Vorrang[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Bei Kombinationen von Bruchrechnungen muss man auf der Reihenfolge (siehe Vorrang der Rechenarten) aufpassen:


Man muss zuerst die Klammern machen:

  • Erste Klammer

   Hier haben wir nur eine Strichrechnung und zwar mit dem gleichen Nenner.


  • Zweite Klammer

      Hier müssen wir erst die Punktrechnung machen und dann die Strichrechnung.

      Hier soll man erst kürzen.

     



Jetzt kann man in der Rechnung die Ergebnisse für die Klammern einsetzen:

Zahlenmengen[Bearbeiten]

Einführung zu den Zahlenmengen[Bearbeiten]

Einfach gesagt ist eine Menge eine Sammlung von mehreren Sachen. Viele Bücher zusammen sind eine Menge von Büchern, viele Blumen zusammen sind eine Menge von Blumen, viele Ziegen und Schafen und Kühe zusammen sind eine Menge von Tieren. Man kann sogar von einer Menge sprechen auch, wenn man eine Sache hat (z. B. ein Buch) oder keine Sache (die leere Menge). Ein Bereich der Mathematik, die Mengentheorie, beschäftigt sich mit den Mengen. In dieser Theorie spricht man auch von Zahlenmengen.

Einführung zu den Zahlenmengen[Bearbeiten]

Mathematrix: MA TER/ Theorie/ Zahlendarstellungen Mengentheorie und Aussagenlogik

Natürliche Zahlen[Bearbeiten]

Die einfachste Zahlenmenge ist die Menge der natürlichen Zahlen :

1, 2, 3, 4, 5, …

Die Menge der natürlichen Zahlen schreibt man mit . Null kann auch zur Menge der natürlichen Zahlen gehören. Wie man die Menge mit oder ohne Null schreibt, unterscheidet sich zwischen Sprachen und Kulturen.

Ganze Zahlen[Bearbeiten]

Die Menge der natürlichen Zahlen kann man mit den negativen Zahlen erweitern. Dann entsteht die Menge der ganzen Zahlen :

… −3, −2, −1, 0, 1, 2, 3, …

Alle natürliche Zahlen sind auch ganze Zahlen. Andererseits sind NUR die positive ganze Zahlen (oder die nicht negativen) auch natürliche Zahlen!

Rationale Zahlen[Bearbeiten]

Wenn man natürliche oder ganze Zahlen dividiert, bekommt man oft Zahlen mit Nachkommastellen:

Diese Zahl ist keine ganze (und daher auch keine natürliche) Zahl. Sie ist eine sogenannte rationale Zahl. Die Menge alle Zahlen, die man als Brüche von ganzen Zahlen schreiben kann, ist die Menge der rationalen Zahlen. Man soll aufpassen. 11 durch 7 (11:7) ist eine Division zwischen zwei ganzen Zahlen. Der Bruch hingegen ist eine Zahl (eine rationale Zahl), die gleich so viel ist, wie das Ergebnis (Quotient) der Division 11:7.

Wenn man zwei ganze Zahlen dividiert, kann man wieder eine ganze Zahle bekommen (wie z. B. 26:2=13) oder eine Zahl mit Nachkommastellen. Wenn das Ergebnis Nachkommastellen hat, dann ist sie keine ganze Zahl mehr.

Alle ganze Zahlen (und daher auch alle natürliche) sind auch rationale Zahlen (z. B. ). NUR die rationalen Zahlen OHNE Nachkommastellen sind auch ganze Zahlen.

Für die Zahlen mit Nachkommastellen gibt es zwei Möglichkeiten: sie können endlich viele Nachkommastellen haben (z. B. ) oder unendlich viele Nachkommastellen (wie ). Im letzten Fall gibt es in den Nachkommastellen eine Wiederholung von der gleichen Zahlenfolge:

Diese wiederholte Zahlenfolge (hier die Zahlenfolge ) nennt man Periode. Eine intuitive Erklärung für die Entstehung dieser Periode können wir bei der Division feststellen, wenn wir sie ohne Taschenrechner durchführen: Wenn nach der letzten Kommastelle unendlich lang Nullen geschrieben werden können und die Division dadurch weiter geführt werden kann, wird irgendwann als Rest genau die gleiche Zahl vorkommen und dadurch wird der Prozess wieder genauso wiederholt.

Die erweiterte Zahlenmenge (ganze Zahlen und dazu Zahlen mit endlich viele oder unendlich viele aber periodischen Nachkommastellen) nennt man Menge der rationalen Zahlen .

Arbeiten mit Termen[Bearbeiten]

Term Definition[Bearbeiten]

Ein Term ist ein mathematischer Ausdruck. ,  ,  ,  ,     sind alles Terme, wobei     aus mehreren Teiltermen besteht.

Potenz Definition[Bearbeiten]

Jeder Term der Form mn ist eine Potenz. Was unten steht (hier m) nennt man Basis, was oben rechts (hier n) Hochzahl.

Potenz        Was bedeutet diese Schreibweise?

Wenn man 4+4+4 hat, kann man auch 3·4 schreiben: . Eine Multiplikation zeigt, wie oft man eine Zahl mit sich selbst addiert.

Wenn man 4·4·4 hat, dann kann man 4³ schreiben. Eine Potenzzahl (hier 4³) zeigt, wie oft (so oft, wie die Hochzahl, hier 3) man eine Zahl (die Basis, hier 4) mit sich selbst multipliziert.

Strichrechnungen unter Potenzzahlen[Bearbeiten]

Wir haben gelernt, dass eine Multiplikation uns zeigt, wie oft die gleiche Zahl innerhalb einer Summe vorkommt. Beispielsweise ist . Das bedeutet allerdings auch, dass ist, weil

Eine Potenzzahl zeigt, wie oft die gleiche Zahl innerhalb eines Produktes vorkommt. Beispielsweise: .

Was ist jetzt, wenn wir Potenzzahlen addieren (oder subtrahieren)?

Eine Vereinfachung einer Strichrechnung zwischen Potenzen ist nur dann möglich, wenn die Potenzzahl die gleiche Basis und die gleiche Hochzahl hat.

Nehmen wir ein Beispiel: .

Bei 3a² und 7a² hat die Potenzzahl a² die gleiche Basis a und die gleiche Hochzahl 2. Diese Potenzen können zusammengerechnet werden:

Entsprechend können wir mit a⁴ arbeiten:

a² und a⁴ können wir hingegen nicht zusammenrechnen, da sie zwar die gleiche Basis a aber nicht die gleiche Hochzahl (2 bzw. 4) haben.

a² und b² können wir auch nicht zusammenrechnen, da sie zwar die gleiche Hochzahl 2 aber nicht die gleiche Basis (a bzw. b) haben.

Daher ist:

Warum ist es so? Wie schon erwähnt, können nur gleiche Summanden durch eine Multiplikation ersetzt werden:

Wenn wir 3⁴ und 3² anstatt 3 haben, sind die Summanden nicht gleich, da 3⁴=3·3·3·3=81 und 3²=3·3=9 ist:

Nur Potenzen, die sowohl die gleiche Basis als auch die gleiche Hochzahl haben, können zusammengerechnet werden.

Noch ein Beispiel:

 

Arbeiten mit Variablen[Bearbeiten]

Stoffbeschreibung[Bearbeiten]

  • Arbeiten mit Variablen: Klasse 2
  • Formeln (bzw. Terme) umformen und durch Rechenregeln begründen können,
  • mit einfachen Potenzen arbeiten können,
  • Formeln in Sachsituationen und in der Geometrie aufstellen können,
  • Aufgaben aus Anwendungsbereichen und aus der Geometrie durch Umformungen von Formeln oder Termen lösen können,
  • dabei auch Aufgaben variieren und graphische Darstellungen nutzen können,
  • Lösen von linearen Gleichungen mit einer Unbekannten.

Arbeiten mit abstrakten Termen[Bearbeiten]

Potenzen[Bearbeiten]

Multiplikation von zwei Potenzen mit der gleichen Basis[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Zwei Potenzzahlen mit der gleichen Basis kann man multiplizieren, indem man die gleiche Basis und als Hochzahl die Summe der Hochzahlen schreibt.

Warum das so ist, ist leicht zu erklären:

Die Hochzahlen addiert man, auch wenn sie negativ sind:

Allgemein kann man daher folgern:

wobei n und m irgendwelche positive oder negative reelle Zahlen sein können. Für den Fall von natürlichen Hochzahlen können wir schreiben:

Vorischt! Bei einer Addition oder Subtraktion von Potenzen kann man dagegen die Hochzahlen nicht addieren!

Klammer auflösen[Bearbeiten]

Ziel des Ausmultiplizierens[Bearbeiten]

Lösen Sie die Klammern auf!

Ziel solcher Aufgaben ist, einen Ausdruck ohne Klammern zu schreiben, der gleichwertig zu diesem Ausdruck (mit Klammern) ist. Probieren wir zunächst einmal die Klammern einfach wegzulassen. Zuerst soll man etwas erklären:

Wenn zwischen zwei mathematischen Ausdrücken nichts (keine Rechenart) steht, ist ein "mal" gemeint (Multiplikation) (einzige Ausnahme sind hier die gemischten Zahlen)

Probieren wir jetzt in beiden Ausdrücken eine Zahl an der Stelle von x einzusetzen, beispielsweise 0:

Die beide Ausdrücke sind nicht gleich. Probieren wir es auch mit 1:

Wieder sind die Ausdrücke nicht gleich. Man sagt dann, dass    ist, dass    nicht gleich zu    ist. Obwohl eine Zahl schon ausreichen könnte, stimmt das eigentlich für alle Zahlen, die man für einsetzen kann.

Probieren wir dann beide Summanden in der Klammer mit dem Ausdruck außerhalb der Klammer zu multiplizieren:

Egal mit welcher Zahl wir es jetzt ausprobieren, werden die beide Ausdrücke immer gleich sein! Beispielsweise mit :

Da das immer gilt, kann man schreiben:

Wir haben daher unser Ziel erreicht! Wir haben einen gleichwertigen Ausdruck ohne Klammern!

Klammern werden aufgelöst, indem jeder Summand in Klammern mit dem Ausdruck außerhalb der Klammer multipliziert wird.

Erklärung des Ausmultiplizierens[Bearbeiten]

Denken wir an eine Kiste die 2 Zitronen und 4 Birnen hat:



Nehmen wir an, dass wir diese Kiste 3 mal haben:

In diesem Fall haben wir 3 mal 2 also 6 Zitronen und 3 mal 4 also 12 Birnen.

Den Inhalt der Kiste müssen wir mit 3 multiplizieren und zwar muss jede verschiedene Sorte, die in der Kiste ist, mit 3 multipliziert werden.

Ein Klammer ist genau so wie eine Kiste:

Wir haben einfach statt Bilder für die Zitronen den Buchstabe z und für die Birnen den Buchstabe b benutzt.

Es spielt keine Rolle, ob außerhalb der Kiste eine Zahl oder ein Symbol steht:

Zwischen 2z und 4b steht ein Plus. Der Vorgang ist der gleiche bei Minus:

Auch wenn wir Minus haben, können wir die verschiedenen Sorten (hier 2z und 4b) Summanden nennen.

Ein Klammer wird ausmultipliziert, indem jeder Summand in der Klammer mit der Sache außerhalb der Klammer multipliziert wird.

Beispiel:

Aufgaben mit einer Klammer[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Lösen Sie die Klammern auf!

Die Aufgabe hier ist, einen gleichwertigen Ausdruck ohne Klammern zu schreiben. Wie eben erklärt, multipliziert man dafür den Term außerhalb der Klammer (  ) mit jedem Summand in den Klammern (also erst mit   , dann mit    und dann mit   ):

Der Ausdruck am Ende ist immer gleich mit dem Ausdruck am Anfang. Wir haben also die Klammer aufgelöst!

Aufgaben mit 2 Klammern[Bearbeiten]
Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Lösen Sie die Klammern auf!

Die Aufgabe hier ist wieder, einen gleichwertigen Ausdruck ohne Klammern zu schreiben. Um das zu machen, multipliziert man jeden Summand der ersten Klammer    mit jedem Summand der zweiten Klammer   :

Zu bemerken ist, dass −8x²−15x² eine Strichrechnung zwischen Potenzen ist. Daher gelten hier die entsprechenden Regel der Strichrechnungen unter Potenzzahlen

Hier gilt die Multiplikationsregel der Vorzeichen: plus mal plus ist plus, plus mal minus ist minus, minus mal plus ist minus, minus mal minus ist plus. (Das Gleiche gilt bei durch)

+ · + = +

+ · − = −

− · + = −

− · − = +

Hier ist darauf zu achten, dass die Regel ausschließlich bei Punktrechnungen gilt (Multiplikation und Division). Hier ein paar Beispiele, die den Zusammenhang klar machen sollten:

5−6=−1
In diesem Fall haben wir eine Strichrechnung zwischen zwei Zahlen: 5 MINUS 6, was insgesamt MINUS 1 beträgt.


5·(−6)=−30
In diesem Fall haben wir eine Punktrechnung (mal) zwischen eine positive und eine negative Zahl, also hier gilt + · − = − und die Werte 5 und 6 müssen wir multiplizieren (5 mal 6 ist 30).

−20−4=−24
In diesem Fall haben wir eine Strichrechnung zwischen zwei Zahlen, wobei die erste Zahl negativ ist, also MINUS 20 MINUS 4, was insgesamt MINUS 24 beträgt.

−20 : (−4)=5
In diesem Fall haben wir eine Punktrechnung (durch) zwischen zwei negative Zahlen, also hier gilt − · − = + und die Werte 20 und 4 müssen wir dividieren (20 durch 4 ist 5).

5+6=11
In diesem Fall haben wir eine Strichrechnung zwischen zwei Zahlen: 5 PLUS 6, was insgesamt 11 beträgt.

5·6=30
In diesem Fall haben wir eine Punktrechnung (mal) zwischen zwei positive Zahlen, also hier gilt + · + = + und die Werte 5 und 6 müssen wir multiplizieren (5 mal 6 ist 30). Diese Berechnung ist gleichbedeutend mit (+5)·(+6)=30.

Die Berechnung 5−6=−1 ist gleichbedeutend mit 5+(−6)=−1. Hier haben wir zwar keine ausdrückliche Multiplikation, wir addieren allerdings eine negative Zahl. In solchen Fällen sollen wir schon die plus mal minus Regel anwenden, wir haben aber doch keine Multiplikation, also 5 wird NICHT mit 6 multipliziert. Die Regel gilt nur für die Vorzeichen. Daher gilt:
5+(+6)=11
5−(+6)=−1
5−(−6)=5+6=11
5+(−6)=−1
Es gilt auch: −5+6=1

Arbeiten mit negativen Zahlen[Bearbeiten]

Wir haben die Regeln für die Multiplikation mit Plus und Minus gesehen. Wie kann man diese Regeln mit Zahlen erklären?

Dass ist, ist trivial. ist und ist . ist daher gleichbedeutend wie und, wie Multiplikation definiert wird, ist das 15.

Dass ist, macht eben auch Sinn. Laut Definition der Multiplikation ist , wie man beim Arbeiten mit negativen Zahlen lernt.

Wenn man hat, ist die Erklärung ebenso leicht. In der Multiplikation spielt die Reihenfolge keine Rolle, daher ist .


Warum ist aber Minus mal Minus doch Plus?

Um das zu erklären, kann man folgende Rechnung betrachten:

Macht man nach der Regel erst die Rechnung in Klammern, ist das Ergebnis:

Wenn erst die Klammer aufgelöst wird, wie wir das vorher gelernt haben, dann ergibt sich Folgendes:

ist , wie wir eben gelernt haben.

Wenn Minus mal Minus Plus ist, dann ist und das Ganze ergibt:

Wenn Minus mal Minus Minus wäre, dann wäre und das Ganze ergäbe:

was ein falsches Ergebnis ist, da wir schon gesehen haben, dass das Ergebnis, wenn man erst die Rechnung in Klammern macht, ist. Ähnliche Ergebnisse bekommt man, egal welches Beispiel benutzt wird. Daher ist Minus mal Minus Plus.

Ähnliches gilt, wenn man nur Vorzeichen hat:

Umformen[Bearbeiten]

Umformen einfache Kombinationen[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Wenn man mehrere Summanden und Rechenarten und eine unbekannte Variable hat, dann soll man alle Teilterme (Summanden) mit der gesuchten Variable auf eine Seite bringen. Im Folgenden werden alle Terme mit der gesuchten Variable nach links gebracht. Die restlichen Terme werden auf die andere Seite gebracht (das geht aber selbstverständlich auch umgekehrt). Schauen wir ein Beispiel an:

5x − 7 = 3x + 11

Wir wählen die linke Seite als die Seite, in der die Teilterme (Summanden) mit der gesuchten Variable (x) sein werden. Wir haben zwei solchen Teilterme, 5x und 3x. 5x ist schon auf der linken Seite, wir müssen also noch 3x auf die andere Seite bringen. Vor 3x steht das Symbol „=“. Ist 3x jetzt positiv oder negativ? Wenn man b=4 schreibt, ist +4 oder −4 gemeint? Die Antwort ist +4. Daher auch hier, wenn nach dem Symbol „=“ kein plus oder minus steht, dann ist ein plus gemeint. Wenn man 5x − 7 = 3x + 11 schreibt, ist es das Gleiche wie + 5x − 7 = + 3x + 11. Wenn man den Term 3x auf die andere Seite bringt, muss man die Gegenrechnung benutzen, also Subtraktion (minus).

5x − 7 − 3x = 11

7 hat kein x neben sich, sie muss auch auf die rechte Seite gebracht werden, wieder mit der Gegenrechnung, also diesmal mit Addition (plus):

5x − 3x = 11 + 7

Das Ganze kann man in einem Schritt machen:

5x − 7 = 3x + 11

5x − 3x = 11 +7

2x = 18
(Hier haben wir einfach die Rechnungen gemacht: 5x-3x ist 2x und 11+7 ist 18).

Es bleibt noch, 2 auf die andere Seite zu bringen. Zwischen 2 und x steht nichts, daher ist eine Multiplikation gemeint. Die Gegenrechnung ist eine Division:

x = und daher x = 9

Man kann das ganze auch so erklären:

5x − 7 = 3x + 11

Man will, dass auf der rechten Seite 3x verschwindet. Das kann passieren, indem man 3x subtrahiert. Ein Gleichung aber ist wie eine Waage. Das Gleichungssymbol (=) teilt die Gleichung in zwei Teilen, links und rechts. Was auf der einen Seite passiert, muss auch auf der anderen stattfinden, damit das Gleichgewicht erhalten bleibt. Man benutzt folgende Schreibweise:

5x − 7 = 3x + 11      | −3x (Man schreibt am Rand, was auf beiden Seiten zu tun ist)

5x − 7 − 3x = 3x + 11 − 3x

2x − 7 = 11

Man will aber auf der linken Seite nur Teilterme (Summanden) mit x haben, deshalb muss die -7 dort verschwinden. Das geht, indem man 7 auf beiden Seiten addiert.

2x − 7 = 11      | +7

2x − 7 + 7 = 11 + 7

2x = 18

Jetzt bleibt nur die Division:

2x = 18      | :2

x = 18 : 2      (Man kann auch    schreiben)

x = 9


Sofern mehrere Teilrechnungen oder Zwischenschritte im Kopf durchgeführt werden, wird zusammengefasst und kürzer notiert:

5x − 7 = 3x + 11      | −3x+7

2x = 18      | :2

x =  

x = 9

Wenn die Variable innerhalb einer Klammer steht, ist der erste Schritt, die Klammer aufzulösen, sonst geht man wie vorher vor:

4y + 3 (7 − 5y) = 11 − 6y

4y + 21 − 15y = 11 − 6y | −21

4y − 15y = 11 − 6y −21 | +6y

4y − 15y + 6y = 11 − 21

− 5y = −10 | : (−5)

y=2


Wenn man y durch 2 in der Anfangsgleichung 4y + 3 (7 − 5y) = 11 − 6y ersetzt, stellt man fest, dass die Gleichung tatsächlich stimmt.

4y + 3 (7 − 5y) = 11 − 6y

4·2 + 3 (7 − 5·2) = 11 − 6·2

8 + 3 ·(−3) = 11 − 12

8 − 9 = − 1

In der Tat ist 2 der einziger Wert von y, für den die Gleichung wirklich stimmt. Die LeserInnen können andere Werte ausprobieren und feststellen, dass die Gleichung dann nicht mehr stimmt.

Arbeiten mit Figuren und Körpern[Bearbeiten]

Stoffbeschreibung[Bearbeiten]

  • Arbeiten mit Figuren und Körpern: Klasse 2
  • Vergrößern und Verkleinern von Figuren,
  • ähnliche Figuren erkennen und beschreiben;
  • Formeln für Flächeninhalte von Dreiecken und Vierecken begründen und damit Flächeninhalte berechnen können,
  • Umkehraufgaben lösen können,
  • Gegenstände, die die Gestalt eines Prismas oder einer Pyramide haben, zeichnerisch darstellen können,
  • Oberfläche,Rauminhalt und Gewicht von Gegenständen, die die Gestalt eines Prismas oder einer Pyramide haben, berechnen können;
  • den Lehrsatz des Pythagoras für Berechnungen in ebenen Figuren nutzen können.

Ebene Geometrie[Bearbeiten]

Fläche des Dreiecks[Bearbeiten]

Fläche des Dreiecks

Im Fall eines Dreiecks kann man sich wie im Bild vorstellen, dass ein zweites Dreieck, gleich groß wie das erste, umgedreht und auf das erste zugefügt wird. So entsteht wieder ein Parallelogramm, dessen Flächeninhalt A = b · hb ist. Weil aber dieses Parallelogramm aus 2 gleiche Dreiecke besteht, muss man für den Flächeninhalt des Dreiecks das ganze mit 2 dividieren:

Entsprechend für die anderen Seiten kann man schreiben:

Sonderfälle: Rechtwinkeliges, gleichschenkeliges und gleichseitiges Dreieck. In den zwei letzten Fällen kann man den Satz des Pythagoras benutzen, um eine Formel zu erzeugen (machen wir aber hier nicht).

Fläche des Trapezes[Bearbeiten]

Fläche des Trapezes

Genauso geht man bei einem Trapez vor. Es entsteht ein Parallelogramm, dessen Basis aber jetzt a+b ist und den Flächeninhalt daher (a+b) · h. Weil, wie vorher beim Dreieck, das Trapez zwei mal vorkommt, muss man wieder für den Flächeninhalt des Trapezes das ganze durch 2 dividieren:

Umformen in der ebenen Geometrie konkret[Bearbeiten]

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

Bei manchen Aufgaben muss man die Formel umformen, z.B.:

Der Umfang eines Quadrats ist 12cm. Berechnen Sie die Seite und die Fläche!

Wir finden die Figur (hier Quadrat) in der Formelsammlung und fangen mit der Formel der gegebenen Eigenschaft (hier Umfang) an:

u=4a

Hier ist der Umfang gegeben, man braucht die Seite. Zwischen 4 und a steht nichts, also ist mal gemeint. Die Gegenrechnung von mal ist durch und der Umfang ist 12, also:

   Seiten in einer Gleichung kann man selbstverständlich umtauschen, also:

  also

a=3 cm

Die Formel für die Fläche, die man auch in der Formelsammlung finden kann ist dann:

  also  

Auch wenn die Seite erst nicht gefragt wäre, wäre es doch notwendig diese erst einmal zu berechnen, um dann mit Hilfe des Wertes für die Seite auch die Fläche berechnen zu können.

Satz von Pythagoras[Bearbeiten]

Geschichte des Satzes von Pythagoras[Bearbeiten]

Obwohl der Satz nach dem griechischen Philosoph Pythagoras genannt wird, wurde er nicht von ihm entdeckt. Der Satz wurde zumindest 1000 Jahre früher benutzt. Es gibt Tontafel aus Babylonien, die sogenannte pythagoreische Tripeln beinhalten. Eine pythagoreische Tripel sind drei Zahlen, die den Satz von Pythagoras erfühlen. Die Entdeckung zeigt eine hochentwickelte antike Zivilisation, Die Berechnungen mancher Tripel ohne technische Mittel sind ziemlich kompliziert und brauchen viel Geduld und Zeit.

Formulierung des Satzes von Pythagoras[Bearbeiten]

Der Satz von Pythagoras lautet:

In einem rechtwinkeligem Dreieck ist die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse.

Der Satz gilt daher nur bei Dreiecken, die einen rechten Winkel haben.

Selbstverständlich versteht man den Satz viel besser, wenn man eine Figur sieht:

Die Seiten an der rechten Winkel nennt man Katheten (im Bild mit a und b), die Seite gegenüber Hypotenuse (im Bild mit c).Es gilt:

Nehmen wir drei Zahlen: 2, 3 und 4. Sind diese eine pythagoräische Tripel? Die größte Zahl sollte die längste Seite sein, die Hypotenuse, also c. Hier ist es die Zahl 4. Dann wären die Katheten 2 und 3. Die entsprechenden Quadrate der Katheten sind 2²=4 und 3²=9, ihre Summe 4+9=13. Das Quadrat der Hypotenuse wäre 4²=16. Es gilt 2²+3²≠4² (13 ist nicht gleich 16!). Das bedeutet: Es gibt kein rechtwinkeliges Dreieck, dessen Katheten 2 und 3 und dessen Hypotenuse 4 Einheiten (z.B. Meter) sind.

2,3 und 4 sind daher keine Pythagoreische Tripel. Wie ist es mit 3, 4 und 5? Sind diese Zahlen eine Pythagoräische Tripel?     3²+4² = 25   aber auch 5² = 25.  Es gilt also: 3²+4²=5².  Das bedeutet nicht nur, dass es ein rechtwinkeliges Dreieck gibt, dessen Katheten 3 und 4 und dessen Hypotenuse 5 Einheiten ist, sondern auch umgekehrt, dass ein Dreieck, dessen Seiten 3, 4 und 5 Einheiten sind, einen rechten Winkel haben muss!


Zur Aufgabensammlung Weitere Links und Videos

Zum YouTube Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!

In den Aufgaben muss man aufpassen. Wenn die Katheten angegeben sind und die Hypotenuse gefragt, dann kann man die gegebene Formel benutzen:

  • Bei einem rechtwinkeligen Dreieck sind die Katheten 6 und 8 cm lang. Berechnen Sie die Hypotenuse!

wobei und also


Wenn aber die Hypotenuse und eine Kathete gegeben sind, dann muss man die Formel erst umformen:

  • Bei einem rechtwinkeligen Dreieck sind die eine Kathete 21mm und die Hypotenuse 0,29dm lang. Berechnen Sie die andere Kathete!

Erst müssen wir auf die Einheiten aufpassen: 0,29dm=29mm

also

Also: Wenn beide Katheten angegeben sind müssen wir die Quadrate addieren, wenn nur eine Kathete und die Hypotenuse, müssen wir vom größeren Quadrat das kleinere subtrahieren. In beiden Fällen ziehen wir dann die Wurzel des Ergebnisses.

Ähnlichkeit von Figuren[Bearbeiten]

SpitzdreiSpitzdrei

Zur Aufgabensammlung Weitere Links und Videos

Zum Erklärungsvideo

Zur Aufgabe
Gelöstes Beispiel Frage stellen!
Wenn wir die beiden Bilder oben vergleichen, können wir sagen, dass es das gleiche Dreieck ist, nur von einem anderen Abstand gesehen oder, dass wir doch zwei verschiedene Dreiecke haben, die zwar ähnlich zueinander sind aber doch nicht das gleiche Dreieck, da die Seiten nicht gleich sind. Um auf diesen Unterschied aufmerksam zu machen, wird beim Vergleich zwei geometrischen Figuren nicht das Wort "gleich" (und "nicht gleich") benutzt, sondern die Worten "ähnlich" (und "nicht ähnlich") und "kongruent" (und "nicht kongruent").

Zwei geometrische Figuren sind ähnlich, wenn sie die gleiche Seitenanzahl haben und alle entsprechenden Winkel gleich zueinander sind. Wenn dazu zumindest eine Seite (und daher auch alle andere) der beiden Figuren gleich ist, dann sagt man, dass die Figuren kongruent sind.

Das Wort "gleich" wird bei geometrischen Figuren nicht benutzt, weil es dann nicht klar ist, ob nur alle Winkel oder doch auch alle Seiten gleich sind.

Bei ähnlichen Figuren gilt, dass das Verhältnis entsprechender Seiten eine Konstante Zahl ist. Wenn wir die Seiten aus dem Bild benutzen, wird es klar, was damit gemeint ist. Nehmen wir die Seite b aus dem Bild links und die entsprechende Seite b' aus dem Bild rechts. Verhältnis in Mathematik bedeutet Bruch. Der Bruch der beiden Seiten ist dann . Werden die beiden Seiten in irgendeiner Weise gemessen, wird dann festgestellt, dass der Bruch ca. 1,5 ist. Es gilt also: .

Wenn wir ein anderes Paar von entsprechenden Seiten nehmen, wird das Verhältnis (der Bruch) wieder 1,5 sein: .

Das Verhältnis (der Bruch) von entprechenden Seiten (z.B. oder ) ist eine konstante Zahl, hier 1,5. Das gilt genauso für das dritte Paar von entsprechenden Seiten: .

Diese Regel gilt nicht nur in Dreiecken sondern in allen geometrischen Figuren, die ähnlich sind. Im folgenden Bild sieht man verschiedene Figuren. Alle Figuren mit der gleichen Farbe sind ähnlich.

Alle hier gleichfarbigen Figuren sind zueinander ähnlich.

Strahlensatz[Bearbeiten]

Die Ähnlichkeit von Figuren findet Anwendung im sogenannten "Strahlensatz".

Nehmen wir zwei geraden, die einander am Schnittpunkt Z schneiden, wie die Geraden BB' und AA' im Bild links. Diese Geraden werden von zwei weiteren parallel zueinander Geraden AB und A'B' geschnitten. So entstehen zwei ähnliche Dreiecke, ABZ und A'B'Z. Da die Dreiecke ähnlich sind, gilt:

Diese Formel zeigt, was bei der Ähnlichkeit von Figuren behauptet wurde: Das Verhältnis (der Bruch) von entsprechenden Seiten bleibt konstant.

Der Strahlensatz findet zahlreiche Anwendungen in Physik und Mathematik. Hier erwähnen wir "nur" seine Anwendung bei der Vermessung des Abstandes zwischen Mond und Erde.

Eine andere Anwendung ist bei der geometrischen Erzeugung einer Dezimalzahl auf einer Zahlgerade.

Eine Bemerkung dazu: Das erste in der Geschichte bekanntes Buch, in dem Geometrie als auf wenigen Sätzen aufgebautes geordnetes Wissen dargestellt wird, ist das Werk "Elemente" von Euklid. In diesem Werk wird erst der Strahlensatz bewiesen und dann auf die Ähnlichkeit von Figuren angewendet.

Raumgeometrie[Bearbeiten]

Prisma[Bearbeiten]

Definition

Eine geschlossene Raumfigur, die durch Parallelverschiebung eines ebenen Vielecks entlang einer nicht in dieser Ebene liegenden Geraden im Raum entsteht, nennt man Prisma. Die Höhe ist der Abstand zwischen Grund- und Deckfläche.

Formeln

Es gibt viele verschiedenen Prismen, daher sollte man dafür die allgemeineren Formeln benutzen, die sich am Ende dieses Teilkapitels befinden.

Pyramide[Bearbeiten]

Definition

Wenn man alle Punkte des Umfangs eines Vieleckes mit einem Punkt (genannt „Spitze“ oder „Scheitel“) außerhalb der Ebene des Vieleckes verbindet, dann entsteht die Grenzfläche einer Pyramide. Das Vieleck bildet dann i.d.R. die Grundfläche, die Dreiecke, die durch die Verbindung des Punktes mit dem Umfang entstehen, sind dann die Seitenflächen. Höhe ist der Abstand zwischen Spitze und Grundfläche.

Formeln

Es gibt viele verschiedenen Pyramiden, daher sollte man dafür die allgemeineren Formeln benutzen, die sich am Ende dieses Teilkapitels befinden.

Volumen- und Oberflächenregeln[Bearbeiten]

Für alle Körper, die eine Grund- und eine (parellele zur Grundfläche) kongruente („gleiche“) Deckfläche haben, gilt, dass das Volumen die Grundfläche mal die Höhe ist:

Genauer formuliert gilt diese Regel für alle Körper, die durch Parallelverschiebung einer ebenen Fläche entstehen. Für diese Körper gilt dann, dass die Mantelfläche    die Summe deren Teilflächen ist und die gesamte Oberfläche . Für die Teilflächen sollte dann man die Formeln aus der Geometrie der Ebene benutzen.


Für alle Körper, die eine Grundfläche und eine gegenüber liegende Spitze haben, gilt, dass das Volumen ein drittel des Produkts der Grundfläche und der Höhe ist:

Genauer gesagt muss dazu gelten, dass die Abstände zwischen Spitze und den Punkten auf dem Umfang der Grundfläche gerade sein sollen. Für diese Körper gilt dann, dass die Mantelfläche    die Summe deren Teilflächen ist und die gesamte Oberfläche . Für die Teilflächen sollte dann man die Formeln aus der Geometrie der Ebene benutzen.

Arbeiten mit Modellen, Statistik[Bearbeiten]

Stoffbeschreibung[Bearbeiten]

  • lineare Wachstums- und Abnahmeprozesse mit verschiedenen Annahmen unter Zuhilfenahme von elektronischen Rechenhilfsmitteln untersuchen können (zB Zinssätze),
  • funktionale Abhängigkeiten erkennen, formelmäßig und graphisch darstellen;
  • Untersuchen und Darstellen von Datenmengen.

Funktionen[Bearbeiten]

Wenn man z.B. die Temperaturen um gewissen Uhrzeiten an einem Tag misst, dann hat man schon eine Art von Funktion. Man sagt, dass die Temperatur die abhängige Variable ist und die Uhrzeit die unabhängige. Für jeden Wert der unabhängigen Variable gibt es einen Wert der abhängigen Variable aber für jeden Wert der abhängigen Variable kann es keine, eine oder mehrere Werte der unabhängigen Variable geben.

In unserem Beispiel: für jede Uhrzeit gibt es genau eine Temperatur (es kann nicht mehrere geben), eine Temperatur aber kann nie, einmal oder mehrmals vorkommen. Man kann die ganze Information in einer Tabelle schreiben und mit Hilfe der Tabelle, kann man auch ein Diagramm erstellen:

Wie man im Diagramm ablesen kann, es gibt nur eine Temperatur für jede Uhrzeit (z.B. um 10 Uhr ist die Temperatur 14°C und nicht gleichzeitig 18°C) aber für jede Temperatur kann es keine (z.B. 5°C gibt es nicht), eine (z.B. 10° C gibt es nur um 6 Uhr) oder mehrere Zeiten (z.B. 15°C kommt 2 mal vor, man kann sogar raten, dass es die gleiche Temperatur irgendwann zwischen 10 Uhr und 12 Uhr gab!).

Diagramme[Bearbeiten]




BILDERVERZEICHNIS
ÖFFNE DEIN HORIZONT!
LERNE MIT MATHEMATRIX!
Seite mit Anleitungen zur Anwendung von MathematrixProblemmeldung

LOGO CH DE AT
SPENDEN
Der Hauptautor ggf. das Team verdient zwar nicht viel, braucht allerdings dein Geld eigentlich nicht. Wenn du aber doch meinst, dass gute Arbeit belohnt werden soll und dieses Projekt gut findest, kannst du immer in diesem Link spenden. Das ist allerdings vielleicht die einzige Einrichtung mit völliger Transparenz, wo du genau weißt, was mit deinem Geld passiert.